
An FPGA Implementation of Linear Kernel Support Vector Machines

Omar Piña-Ramı́rez, Raquel Valdés-Cristerna and Oscar Yáñez-Suárez
Universidad Autónoma Metropolitana - Iztapalapa

Neuroimaging Laboratory
09370 Mexico City, MEXICO

santusay@gmail.com

Abstract

This paper describes preliminary performance results of
a reconfigurable hardware implementation of a support vec-
tor machine classifier, aimed at brain-computer interface
applications, which require real-time decision making in a
portable device. The main constraint of the design was that it
could perform a classification decision within the time span
of an evoked potential recording epoch of 300 ms, which was
readily achieved for moderate-sized support vector sets. Re-
gardless of its fixed-point implementation, the FPGA-based
model achieves equivalent classification accuracies to those
of its software-based, floating-point counterparts.

1. Introduction

Support vector machine (SVM) classifiers were introduced
in the early eighties and ever since then they have enjoyed
growing acceptance for application in all sorts of classifi-
cation tasks due to their reliability, generalization capacity,
and proved performance superiority over other learning clas-
sification models such as multi-layer feedforward neural net-
works [4]. Given that the design of an SVM classifier is data
driven and involves a quadratic optimization procedure, the
computational requirements during SVM training are very
large. Moreover, practical application of such classification
engines is also limited by the vast requirements of computa-
tional power and space implied by the trained model charac-
teristics. It has been recognized that useful online application
of an SVM requires fast hardware support, both for the train-
ing and testing phases. However depending on the applica-
tion (for example those in which retraining is not a require-
ment) SVM training can be carried out offline in a general-
purpose computer, and in such cases the relevant hardware
design should aim exclusively to fast evaluation of the classi-
fiers’ decision function.

Different efforts have been made towards the design of effi-
cient architectures for SVM training and evaluation. Probably
the first account of a hardware design for an SVM system is
found in the work by Anguita et al [2], in which the authors

showed an efficient implementation of a kernel based per-
ceptron in fixed-point digital hardware. They compared the
performance of the proposed hardware implementation with
the results of a simulated SVM with both fixed and floating
point underlying math. They obtained similar performance
metrics among the different models, and considered the hard-
ware design a better alternative due to the small amount of
bits utilized for coding and computation. In a follow-up pa-
per [3] the same authors have proposed a digital architecture
for nonlinear SVM learning. Its implementation on a field
programmable gate array (FPGA) was discussed, along with
the evaluation of the quantization effects on the training and
testing errors. The authors established that a minimum of 20
bits for individual coefficient coding was required to maintain
adequate performance.

A different approach has been proposed by Khan et al
[5], who presented an implementation of a digital SVM
linear classifier using logarithmic number systems (LNS).
They used LNS in order to transform the multiplication op-
erations involved in evaluating the decision function into
addition computations, which are a less consuming task.
Their design was implemented into a Xilinx FPGA Spartan3
XL3S50pq208-5 device. Their analysis showed that the LNS
hardware implementation had a classification accuracy equiv-
alent to a LNS software simulation and to a floating point
software implementation. Its performance was equivalent to
a 20-bit fixed-point implementation, as was reported by An-
guita, but the LNS version required 25% less slices of the
Xilinx FPGA. Recent studies with different data sets have al-
lowed these authors to conclude that even a 10-bit LNS archi-
tecture was guaranteed to match the performance of a double-
precision floating point alternative [6].

In this paper, we focus specifically on a design aimed at fast
evaluation of the decision function of a linear SVM, avoid-
ing the complexities associated with hardware-based training.
A 16-bit implementation on a Virtex II FPGA is described,
which concurrently utilizes several core multipliers to accel-
erate calculations, and which is suitable for pipelining. Hard-
ware description was realized using the Handel-C modelling
extensions.

For BCI application, a portable implementation of data

1-4244-0690-0/06/$20.00 ©2006 IEEE.

processing with low power consumption, easily scalable, and
parallelism capability is required. The main constraint of
the design was that it could perform a classification decision
within the time span of an evoked potential recording epoch
of 300 ms, which was readily achieved for moderate-sized
support vector sets.

1.1. Support Vector Machines

SVMs are a class of supervised classifier models aimed at
separating feature vectors x from two different classes with
a maximum-margin hyperplane. Such a hyperplane is con-
structed (by any suitable SVM training algorithm) within a
transformed space that promotes feature separation. The nor-
mal w of the separating hyperplane is described as the lin-
ear combination of the set of training vectors (xi, yi) , i =
1, ..., N :

w =

N∑
i

αiyif(xi) (1)

where f(·) denotes the space transformation, the αi’s are
the mixing coefficients determined through training, and the
yi’s are the labels indicating the class membership of each of
the training vectors, y ∈ {−1, 1}. In practice, most of the
αi’s are zero, so the plane is only defined by the so-called sup-
port vectors (SV), which are, roughly speaking, the subset of
training samples that are the most difficult to separate (and for
which the mixing coefficients are non-zero). For SVM train-
ing details, the reader is referred to [4]. Classifying with an
SVM amounts to determining on which side of the separating
hyperplane a given feature vector lies. This is readily accom-
plished by projecting the feature vector x onto the normal w
and observing the sign of the resulting projection. Thus, a
decision function dw can be defined as:

dw(x) = sgn(wT x) = sgn

(
N∑
i

αiyif(xi)
T f(x)

)
(2)

so that the classification decision becomes

dw(x) >= 0 ⇒ x ∈ C1 (3)

dw(x) < 0 ⇒ x ∈ C
−1 (4)

where C1 and C
−1 denote the classes associated with la-

bels yi. In particular, a linear SVM is realized when the spa-
tial transformation is the identity: f(x) = x. Under such
assumption 2 becomes:

dw(x) = sgn

(
N∑
i

αiyixT

i x

)
(5)

which is the reference form of the decision function used
for this work.

2. Methods

2.1. Platform

The SVM design was implemented on a RC200 develop-
ment system (Celoxica Ltd., UK), whose core device is a
Virtex-II XC2V1000-4 FPGA (Xilinx Inc., USA), with the
peripheral support such as:

• Two ZBT SRAM banks

• RS-232 hardware interface

• Four MB video support

• Parallel configuration port

Operating frequency of the system was 50 MHz. The hard-
ware description was written in Handel-C.

2.2. Architecture

The purpose of the hardware SVM design is to evaluate the
decision function in (5). The computations involved in this
evaluation can be split into the following basic operations:

1. Dot product evaluation; P = xT
i x

2. Scalar product evaluation; S = αiyi

3. Scalar product evaluation; D = P × S

4. Accumulator; A = A + D

5. Decision making;

The execution flow controller is then designed to imple-
ment the SVM algorithm (Figure 1). At the same time, these
basic operations define the main datapath of the design (Fig-
ure 2).

2.2.1 Datapath components

To determine the class assignment for a given input vector x
it is necessary to repeat the first four basic operations as many
times as there are support vectors for the implemented clas-
sifier. Since logical synthesis of the many required multipli-
ers would impose a high LUT demand on the FPGA [1], the
multiplications are mapped to the dedicated fixed-point mul-
tipliers (FPM) available in the chosen programmable device.
Eight of these elements are used to compute 36-bit multiplica-
tions throughout the design; six FPMs perform the dot prod-
uct (P), while the remaining two perform the scalar products
(S,D). The six multiplications required for P are carried out
in parallel, while the additions are split into a three-stage 40-
bit adder. Since the operations required for S are unrelated to
those for P, these are also run in parallel with the computation
of P. To avoid losing precision, accumulation A is performed
in 48 bits, which seems adequate even for SV counts of 512

iy

x

ix

i
a

i
a

aa

*x

y

Total
Virtex RAM

Virtex RX Serial Port

Host
Serial Port

T
im

e

RAM

RAM

RAM

i
a

i
a ixiyreg reg regs

1 Embedded
Mult18X18

6 Embedded
Mult18X18s

Partial Sum
(inner product)

1 Embedded
Mult18X18

Accumulator

Decision
Evaluation

for i=0 until Number Support Vectors -1

Virtex TX Serial Port

Buffer

Host
Serial Port

Figure 2. Datapath for the hardware-based SVM system. Vertical line shows the time evolution. Hori-
zontal lines point-out to parallel process. The arrows show the dependences among processes.

i
a

i
a

ii
yxx

P = ixx S=
i

�
i iy*

P S*D =

A = A + D

i < #SV

A>= 0

YES

NO

d() = 0w

d() = 1w

NO

YES

Figure 1. Dataflow diagram of the SVM classifi-
cation algorithm. See equation (5) and Section
2.2 for variable definitions.

(the maximum allowed in the design). Decision-making is
straightforward, since two’s complement arithemtic is uti-
lized. The SVM core evaluates a single feature vector at a
time, but with the available resources, additional cores could
be fit to parallelize multiple classifications.

1. The host serial port sends the support vectors αi, yi and
xi

2. The client serial port (Virtex) receives and stores the data
into the internal RAM.

3. The hardware waits for a new pattern x for classifying.

4. When x is received, αi and yi are read from the internal
RAM in parallel way. At same time, every component
of xi is also read.

5. When reading is finished, the product S and the prod-
uct component by component of x and xii are done in a
parallel way.

6. Finally, the partial products are added in order to obtain
the dot product P.

7. The product D=S×P is computed.

8. D is accumulated in A

9. The steps 4 to 8 are repeated for each support vector xi

10. When the loop is finished, the sign of A is evaluated in
order to obtain the class of the pattern x.

11. The classification result is stored into a buffer.

12. The Virtex waits for another pattern to classify, when it
is received the steps 4 to 11 are repeated

13. When the buffer is full, the Virtex sends by the serial
port the classified datum

14. . The host receives them and store them into a file.

For this implementation the patterns to classify are sent by
the serial port from a host system and the classification out-
come is also sent to the host in order to downloaded to a file.
In a BCI application, the Virtex will read the data from the
same embedded system.

2.2.2 Data storage

Parameter vectors for the αi, yi, xi are stored in separate
internal memory blocks with parallel access. 16-bit precision
(Q15, two’s complement) was defined for the memory width.
While not strictly necessary, feature vectors are also stored in
internal memory of the development board.

2.2.3 Host communications

In the current implementation, the feature vectors are orig-
inated on a host computer that acquires the relevant experi-
mental data and performs feature extraction tasks. The fea-
ture vectors are originated on a host computer that acquires
the relevant experimental data and performs feature extrac-
tion tasks. Feature vectors are then fed to the SVM core
through the serial RS232 interface. Since this interface is
eight bits wide, big endian ordering is used for data trans-
mission and storage. Internal access to the αi, yi banks is
full width, i.e., 16 bits. A Java-based comm application was
developed for host file access, data formatting, serial transfer
control, and file storage of classification results. The serial
protocol is carried out at 57600 baud, with one stop bit.

2.3. Validation

In order to evaluate the performance of the SVM architec-
ture, two linear SVMs were designed:

• SVM 1 was trained to separate synthetic, multidimen-
sional (x ∈ �6) Gaussian classes with different means
and equal variances, using a 1000-sample training set.

Figure 3. Multispectral MR. top: T1, T2 images;
bottom: PD, hardware SVM-segmented images

• SVM 2 was trained for classification of multispectral
magnetic resonance imaging data, obtained from three
different excitation sequences: T1, T2, and Proton Den-
sity (Fig.3), into white matter and non-white matter vox-
els. All data came from the same axial slice, corre-
sponding to a set of three images of 256x256 pixels
each. Since the SVM architecture was built for six-
dimensional features, and only three gray levels are
available per voxel, the remaining feature entries were
filled with zeros.

In both cases, quadratic optimization training was carried
out using the libSVM Matlab extensions [7]. Fixed-point
quantization of classifier parameters was performed with the
Fixed Point toolbox, also from Matlab. Performance evalu-
ation was carried out using unseen equiprobable sets of 100
test samples for each machine; additionally, the entire multi-
spectral slice was segmented. In both SVM cases, the float-
ing point execution of the trained machines over the test cases
(within Matlab) produced 100% correct classification. In or-
der to evaluate the gains in processing time, a high-level sim-
ulation of SVM 2, implemented in C using gcc under Linux
Mandrake 10 was also executed.

3. Results

The training process of SVM 1 produced a small machine,
with only 6 support vectors. Classification performance for
SVM 1 is summarized in the confusion matrix of Table 1,
which corresponds to 97% correct classification on the test
set.

In the case of SVM 2, training produced a support vec-
tor set of 78 components, thus requiring more processing

Table 1. Confusion matrices for SVM 1, both
for the floating-point Matlab model and for the
fixed-point Virtex-II implemenation.

—
MatLab Virtex-II

C1 C
−1 C1 C

−1

C1 50 0 49 2

C
−1 0 50 1 48

Table 2. Confusion matrices for SVM 2, both
for the floating-point Matlab model and for the
fixed-point Virtex-II implemenation.

—
MatLab Virtex-II

C1 C
−1 C1 C

−1

C1 50 0 49 4

C
−1 0 50 1 46

time per feature vector. Its corresponding confusion matrix
is shown in Table 2, resulting in a classification accuracy of
95%. Full slice segmentation is shown in Figure 3, bottom-
right, with white pixels corresponding to white matter struc-
tures. In this image, circles indicate voxel locations that were
misclassified; the Tanimoto index [8] for this segmentation
was 0.9996 (unit Tanimoto index means perfect segmenta-
tion), corresponding to 26 misclassified voxels out of 65536.

In regard to processing time, the reference implementation
of SVM 2 in C was run on a 550 MHz AMD Athlon ma-
chine, delivering a segmented image in 59.5 seconds, 1.84
times faster than the FPGA design, a difference that vanishes
when considering that the PC had an 11-fold gain in main
clock frequency with respect to the FPGA implementation.
Table 3 shows additional time comparisons between the soft-
ware and hardware versions of this machine.

Finally, Table 4 displays a summary of the FPGA resources
utilized by the current SVM 2 implementation.

4. Conclusion

An FPGA-based implementation of a linear kernel sup-
port vector machine classifier has been presented. Given
that it is specified that no training has to be carried out in
hardware, the design is simple and efficient. Even for the
fixed-point constraint, the hardware model achieves a classi-
fication rate higher than 95% correct for all the validations
performed. Processing time per six-dimensional feature vec-
tor was 1.67 ms, for a machine with 78 support vectors,
a condition that clearly meets the original design goals for
the hardware-based SVM. This time is expected to increase
linearly with the number of SVs, and thus an increasingly
parallel architecture should be designed (SIMD). The use of

Table 3. Comparison of processing times be-
tween the PC simulation and FPGA implemen-
tation of SVM 2. tTxRx is total serial trans-
mision time, ttotal is the entire process dura-
tion, tFPGA is net processing time in the FPGA,
tvector x is the time for classification of a sin-
gle feature vector xi, and tV S is the processing
time per support vector

time FPGA (50 MHz) PC (550 MHz)

tTxRx 63.7 s –

ttotal 173.4 s 59.5s

tFPGA 109.7 s –

tvector x 1.67 ms 0.91 ms

tV S 21.46 µs 11.64 µs

Table 4. Post-synthesis summary of allocated
resources for SVM 2

Resource Available % Used

Slice Flip Flops 908 8%

Occupied Slices 751 14%

Shift registers 3 –

Bonded IOBs 9 2%

IOB Flip Flops 2 –

Block RAMs 12 30%

MULT18X18s 6 15%

GCLKs 1 6%

Handel-C semaphores, channels and signals with this purpose
is currently under investigation.

Every product in the SVM evaluation algorithm was car-
ried out with dedicated multipliers within the Virtex-II chip,
as these are single cycle circuits. In the specific case of the
scalar product αi ∗ yi, this multiplication is actually unneces-
sary, since it basically amounts to a two’s complement oper-
ation. However, implementing the complement circuit would
have unnecessarily increased the overall clock period. More-
over, there might be training solutions that do not provide
unit-valued αi’s.

Table 3 demonstrates that the main purpose of this work
was succesfully attained. Processing times with respect to the
reference software model are in a 2:1 relation, even with the
significant variation of main clock frequencies. This indicates
that the inclusion of parallel structures in the design would
allow its application to heavily demanding tasks. It is not
necessary for BCI application an implementation with better
performance.

In future work, the serial communication will be replaced
by an acquisition system maybe embedded into the same pro-

totype. Indeed, it would be possible that the RC200 kit also
performs the stimulation together with the acquisition, classi-
fication and feed-backing.

The hardware SVM model proposed and implemented is
capable of evaluating any machine that solves a classification
problem in six dimensions, since parallelization is currently
implemented in the inner product multiplications. El uso de
punto flotante o punto fijo, no implica un compromiso en-
tre tasa de buena clasificacin y precisin. Adems el tiempo
de clasificacin esta muy por debajo del limite fijado. Esto
indica que las optimizaciones al modelo son en sentido del
numero de componentes que se utilizan y no en la dismin-
ucin del tiempo de clasificacin. No hardware reconfiguration
is required for a change of machine as long as the feature di-
mension does not change. Even for a change in feature space
dimension, a simple architectural modification would suffice.

Acknowledgement

Mr. Omar Piña-Ramı́rez is currently the recipient of schol-
arship 203532 from the National Council of Science and
Technology, CONACyT, Mexico.

References

[1] HDL synthesis for FPGAs. http://www.xilinx.com.
[2] D. Anguita, A. Boni, and S. Ridella. The digital kernel percep-

tron. Electronics Letters, 38(10):445–456, 2002.
[3] D. Anguita, A. Boni, and S. Ridella. A digital architecture for

support vector machines: Theory, algorithm, and FPGA imple-
mentation. IEEE Transactions on Neural Networks, 14(5):993–
1009, September 2003.

[4] N. Cristianini and J. Shave-Taylor. An Introduction to Support
Vector Machines and other Kernel-Based Learning Methods.
Cambridge University Press, USA, 2000.

[5] F. Khan, M. Arnold, and W. Pottenger. Hardware-based sup-
port vector machine classification in logarithmic number sys-
tems. IEEE Euromicro Symp. Digital System Design (DSD),
pages 254–261, September 2004.

[6] F. Khan, M. Arnold, and W. Pottenger. Finite precision analysis
of support vector machine classification in logarithmic number
systems. IEEE International Symposium on Circuits and Sys-
tems, pages 1–4, May 2005.

[7] C. Lin. libSVM: A library for support vector machines.
http://www.csic.ntu.tw/ cjlin/libsvm/index.html.

[8] S. Theodoridis and K. Koutroumbas. Pattern Recognition.
USA: Academic Press, 1999.

