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INTRODUCTION 
 
Digital signal processing (DSP) is a very exciting market these days.  FPGA's and 
ASIC's make up such a large part of this market that FPGA manufacturers are 
predicting their products will soon completely take over standard DSP 
microprocessors.  While this prediction might be a little over ambitious, digital 
signal processing in FPGAs is gaining momentum.  And while audio processing 
only makes up a fraction of the DSP market, it is both interesting and useful to 
understand how certain audio algorithms work. 
 
The effects described here have all been implemented in the time domain.  
Frequency domain processing is possible for certain effects, but time domain 
processing is much easier.  Because audio sampling is done in the time domain, 
it is inherently easier to process in this domain as it does not require hardware 
to transform the signal.  Using a few basic elements outlined below one can 
easily and effectively implement a digital effects processor. 
 
 
 
THE BUILDING BLOCKS 
 
The Circular Buffer  
 
The first critical element in effects 
implementation is a circular buffer.  
Circular buffers are a crucial 
component to any digital signal 
processing application.    They permit 
data to be continually updated, and 
overwrite the oldest data in memory.  
Looking at figure 1, data is originally 
written to the very first memory 
location.  As new data comes in, it is 
written to the next available memory 
address.  Once the address pointer 

 
 

FIGURE 1 – A CIRCULAR BUFFER 
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reaches the end of the circular buffer, it immediately wraps around and starts 
writing to the first memory address again.  Storing data in this manner, 2N 
samples are always available in the buffer, and all that is necessary is 
controlling the pointers.  This can be most easily done with a simple N-bit 
counter.  
 
For the implementation of the effects 
described here, one write pointer and 
two read pointers are used as shown in 
figure 2.  Using these three pointers, 
one is able to obtain an input, x[n] and 
two outputs, y1[n] and y2[n] .  Both 
y1[n] and y2[n] are time delayed 
versions of the input, and can be 
written as: 
 

][][ 11 dnxny τ−=  
][][ 22 dnxny τ−=  

 

 
FIGURE 2 – A CIRCULAR BUFFER FOR AUDIO 

EFFECTS 

 
where τd1 and τd2 are constant delay factors.  τd1 is the difference between the 
first (current) read pointer and the write pointer.  Generally this could be as 
little as one clock cycle (giving adequate time to store a value before 
immediately reading it back) but for purposes of this document it is assumed to 
be zero.  The human ear does not notice time delays less than about 50ms, so 
this is a reasonable assumption.  Using this, we can simplify our outputs to: 
 

][][1 nxny =   (1) 
][][2 τ−= nxny  (2) 

 
With τ being a value corresponding to the time difference of the two samples.   
This difference is the product of the sample rate of the digital audio stream, 
and the number of samples.  Also note that while n corresponds to an index in 
the circular buffer and is thus constrained to N (total number of samples 
stored), the circular buffer treats the data as continuous.  The only precaution 
that must be taken is to keep τ < N.  
 
The Mixer 
 
The next element required to implement a few basic effects is a mixer.  This is 
a very simple element that in effect takes in two signals and outputs the 
weighted sum of them.  The two inputs to the mixer are the values from the 
circular buffer, so the output of the mixer is given by the equation: 
 

][][][ 21 nynynyout βα +=    
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Which, from Equations 1 and 2, can be simplified to yield: 
 

][][][ τβα −+= nxnxnyout  (3) 
 
Where α and β are the weighting coefficients.   
 
With Equation 3, one can easily implement a large range of effects by changing 
only the values α,β and τ. 
 
 
THE EFFECTS 
 
Echo 
 
The echo effect is the easiest of the effects to implement.  This effect is 
created by adding the current sample to a previous sample.  Using Equation 3, 
it is easy to see that this effect is created by keeping T constant.  Therefore an 
echo effect is simply described by the equation: 
 

][][][ echoecho nxnxny τβα −+=  (4) 
 
Where τecho is the echo length.   
 
Obviously, this is accomplished using only the mixer and circular buffer 
outlined in equation 3 above.  The only thing that is necessary to accomplish 
this is to subtract a value from the current read pointer and use it as the 
second read pointer. 
 
Chorus 
 
The chorus effect is only slightly more complicated than the echo.  In a similar 
manner to an echo, the chorus is produced when you add the current sample to 
a previous sample, only the amount of delay is varied sinusoidally.  By varying 
the delay from 40ms to 60ms continuously at a rate of 0.25 Hz, you have a 
standard chorus effect.  The equation that describes this is: 
 

)]([][][ nnxnxnychorus τβα −+=  (5) 
 
Where )2sin()( fAn πτ = , A = Constant multiplier and  f = frequency of variation 
 
 To implement this effect, a sine look up table can be generated, and this can 
be subtracted from the current read pointer.  Numerous HDL design libraries 
include sine-cosine lookup tables, and their usage is rather simple. 
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Flange 
 
The flange effect is very similar is structure to the chorus effect.  In fact, the 
only thing that changes is the amount of varying delay, and the rate at which it 
occurs.  For a standard flange effect the delay generally varies from 0ms to 
10ms at a rate of 0.5Hz.  Obviously the equation for a flange effect is the same 
as that for a chorus effect: 
 

)]([][][ nnxnxny flange τβα −+=  (6) 
 
Where, once again )2sin()( fAn πτ = , A = Constant multiplier and  f = frequency 
of variation.  Cleary this is the same as the chorus effect in equation 5.  The 
only difference between implementation is the specification of the A and f 
values. 
 
Phaser 
 
The phaser effect is the result of two identical, yet out of phase, signals being 
added together. This produces various notches in the phase response and has a 
canceling effect which is audible to the human ear.  In essence, this is basically 
the same effect as the flange and chorus, only with different parameters once 
again.  The equation for a phaser is:  
 

)]([][][ nnxnxny phaser τβα −−=  (7) 
 
In this case, )(nτ  can be anything from a sinusoid to a saw-tooth or even a 
constant value. The only major difference is the sign of B, which results in the 
phase canceling effect.  The varying delay isn't completely necessary for this 
effect, but it does have improved tonal qualities when it is changed by some 
small factor.    
 
Once again, this can be implemented in the same manner as the flange and 
chorus effects.  The only necessary precaution is to ensure that the mixer is 
capable of signed arithmetic.  If using VHDL, the std_logic_vector array type 
has signed arithmetic capabilities built in, so one does not need to generally 
worry about this too much. 
 
 
OVERALL IMPLEMENTATION 
 
Certain other factors need to be taken into consideration when designing these 
effects into an FPGA project.  As is clearly evident, the circular buffer needs to 
be large enough to be able to produce a noticeable echo effect.  This requires 
the usage of memory, and there are numerous types of memory available to 
the FPGA designer.  The Block RAM found on Xilinx boards is generally of 
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sufficient size for this, and is easy to use.  For this reason, as well as its lack of 
external components, it is the obvious solution.  SDRAM (Synchronous Dynamic 
RAM) is another option, although this requires the usage of a separate SDRAM 
controller to handle refresh cycles and other control aspects.  If the project is 
not already using SDRAM this is perhaps not feasible in all instances.  However, 
if SDRAM is available, its larger sizes make it preferable for total flexibility of 
the effects.  SRAM (Static RAM) or Flash memory is yet another option, as it 
does not have the stringent control requirements SDRAM has.  However, one 
may find that the board they have to work with doesn't allow them to use the 
SRAM, or its resources may be used by other FPGA elements.  SRAM is also more 
expensive than SDRAM, so this may make it less feasible in certain instances.  
 
Aside from that, implementation is rather straightforward.  As the sampling 
rate of the audio is generally much lower than the clock rate for an FPGA 
project, all memory read and write operations, as well as any mixing and other 
post-processing operations can generally be done with extra clock cycles to 
spare.  Even at a standard sampling rate of 44-48 kHz and a conservative clock 
of 25MHz, there are approximately 500 clock cycles to carry out the required 
operations. 
 
 
CONCLUSIONS 
 
As described, implementing standard audio effects in an FPGA is not as 
complicated as one might assume.  It is also very rewarding, as the results of 
the implementation are noticeable by anyone.  These few basic effects are 
used widely in the music industry to process vocals and instruments, so their 
application gets heard by literally millions of ears every day.  As well, the way 
the methods used to implement the effects are applicable to various other 
fields of digital signal processing.  Based on the ease of implementation in an 
FPGA, it’s no wonder that FPGA's occupy a large share of the DSP market.   
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