
 1

FPGA Implementation of Audio Effects -
An EE 552 Student Application Note

by Richard Schultz

Audio Processing Unit
Duncan Campbell - Grant Cunningham - Clint Lozinsky - Richard Schultz

INTRODUCTION

Digital signal processing (DSP) is a very exciting market these days. FPGA's and
ASIC's make up such a large part of this market that FPGA manufacturers are
predicting their products will soon completely take over standard DSP
microprocessors. While this prediction might be a little over ambitious, digital
signal processing in FPGAs is gaining momentum. And while audio processing
only makes up a fraction of the DSP market, it is both interesting and useful to
understand how certain audio algorithms work.

The effects described here have all been implemented in the time domain.
Frequency domain processing is possible for certain effects, but time domain
processing is much easier. Because audio sampling is done in the time domain,
it is inherently easier to process in this domain as it does not require hardware
to transform the signal. Using a few basic elements outlined below one can
easily and effectively implement a digital effects processor.

THE BUILDING BLOCKS

The Circular Buffer

The first critical element in effects
implementation is a circular buffer.
Circular buffers are a crucial
component to any digital signal
processing application. They permit
data to be continually updated, and
overwrite the oldest data in memory.
Looking at figure 1, data is originally
written to the very first memory
location. As new data comes in, it is
written to the next available memory
address. Once the address pointer

FIGURE 1 – A CIRCULAR BUFFER

 2

reaches the end of the circular buffer, it immediately wraps around and starts
writing to the first memory address again. Storing data in this manner, 2N
samples are always available in the buffer, and all that is necessary is
controlling the pointers. This can be most easily done with a simple N-bit
counter.

For the implementation of the effects
described here, one write pointer and
two read pointers are used as shown in
figure 2. Using these three pointers,
one is able to obtain an input, x[n] and
two outputs, y1[n] and y2[n] . Both
y1[n] and y2[n] are time delayed
versions of the input, and can be
written as:

][][11 dnxny τ−=
][][22 dnxny τ−=

FIGURE 2 – A CIRCULAR BUFFER FOR AUDIO

EFFECTS

where τd1 and τd2 are constant delay factors. τd1 is the difference between the
first (current) read pointer and the write pointer. Generally this could be as
little as one clock cycle (giving adequate time to store a value before
immediately reading it back) but for purposes of this document it is assumed to
be zero. The human ear does not notice time delays less than about 50ms, so
this is a reasonable assumption. Using this, we can simplify our outputs to:

][][1 nxny = (1)
][][2 τ−= nxny (2)

With τ being a value corresponding to the time difference of the two samples.
This difference is the product of the sample rate of the digital audio stream,
and the number of samples. Also note that while n corresponds to an index in
the circular buffer and is thus constrained to N (total number of samples
stored), the circular buffer treats the data as continuous. The only precaution
that must be taken is to keep τ < N.

The Mixer

The next element required to implement a few basic effects is a mixer. This is
a very simple element that in effect takes in two signals and outputs the
weighted sum of them. The two inputs to the mixer are the values from the
circular buffer, so the output of the mixer is given by the equation:

][][][21 nynynyout βα +=

 3

Which, from Equations 1 and 2, can be simplified to yield:

][][][τβα −+= nxnxnyout (3)

Where α and β are the weighting coefficients.

With Equation 3, one can easily implement a large range of effects by changing
only the values α,β and τ.

THE EFFECTS

Echo

The echo effect is the easiest of the effects to implement. This effect is
created by adding the current sample to a previous sample. Using Equation 3,
it is easy to see that this effect is created by keeping T constant. Therefore an
echo effect is simply described by the equation:

][][][echoecho nxnxny τβα −+= (4)

Where τecho is the echo length.

Obviously, this is accomplished using only the mixer and circular buffer
outlined in equation 3 above. The only thing that is necessary to accomplish
this is to subtract a value from the current read pointer and use it as the
second read pointer.

Chorus

The chorus effect is only slightly more complicated than the echo. In a similar
manner to an echo, the chorus is produced when you add the current sample to
a previous sample, only the amount of delay is varied sinusoidally. By varying
the delay from 40ms to 60ms continuously at a rate of 0.25 Hz, you have a
standard chorus effect. The equation that describes this is:

)]([][][nnxnxnychorus τβα −+= (5)

Where)2sin()(fAn πτ = , A = Constant multiplier and f = frequency of variation

 To implement this effect, a sine look up table can be generated, and this can
be subtracted from the current read pointer. Numerous HDL design libraries
include sine-cosine lookup tables, and their usage is rather simple.

 4

Flange

The flange effect is very similar is structure to the chorus effect. In fact, the
only thing that changes is the amount of varying delay, and the rate at which it
occurs. For a standard flange effect the delay generally varies from 0ms to
10ms at a rate of 0.5Hz. Obviously the equation for a flange effect is the same
as that for a chorus effect:

)]([][][nnxnxny flange τβα −+= (6)

Where, once again)2sin()(fAn πτ = , A = Constant multiplier and f = frequency
of variation. Cleary this is the same as the chorus effect in equation 5. The
only difference between implementation is the specification of the A and f
values.

Phaser

The phaser effect is the result of two identical, yet out of phase, signals being
added together. This produces various notches in the phase response and has a
canceling effect which is audible to the human ear. In essence, this is basically
the same effect as the flange and chorus, only with different parameters once
again. The equation for a phaser is:

)]([][][nnxnxny phaser τβα −−= (7)

In this case,)(nτ can be anything from a sinusoid to a saw-tooth or even a
constant value. The only major difference is the sign of B, which results in the
phase canceling effect. The varying delay isn't completely necessary for this
effect, but it does have improved tonal qualities when it is changed by some
small factor.

Once again, this can be implemented in the same manner as the flange and
chorus effects. The only necessary precaution is to ensure that the mixer is
capable of signed arithmetic. If using VHDL, the std_logic_vector array type
has signed arithmetic capabilities built in, so one does not need to generally
worry about this too much.

OVERALL IMPLEMENTATION

Certain other factors need to be taken into consideration when designing these
effects into an FPGA project. As is clearly evident, the circular buffer needs to
be large enough to be able to produce a noticeable echo effect. This requires
the usage of memory, and there are numerous types of memory available to
the FPGA designer. The Block RAM found on Xilinx boards is generally of

 5

sufficient size for this, and is easy to use. For this reason, as well as its lack of
external components, it is the obvious solution. SDRAM (Synchronous Dynamic
RAM) is another option, although this requires the usage of a separate SDRAM
controller to handle refresh cycles and other control aspects. If the project is
not already using SDRAM this is perhaps not feasible in all instances. However,
if SDRAM is available, its larger sizes make it preferable for total flexibility of
the effects. SRAM (Static RAM) or Flash memory is yet another option, as it
does not have the stringent control requirements SDRAM has. However, one
may find that the board they have to work with doesn't allow them to use the
SRAM, or its resources may be used by other FPGA elements. SRAM is also more
expensive than SDRAM, so this may make it less feasible in certain instances.

Aside from that, implementation is rather straightforward. As the sampling
rate of the audio is generally much lower than the clock rate for an FPGA
project, all memory read and write operations, as well as any mixing and other
post-processing operations can generally be done with extra clock cycles to
spare. Even at a standard sampling rate of 44-48 kHz and a conservative clock
of 25MHz, there are approximately 500 clock cycles to carry out the required
operations.

CONCLUSIONS

As described, implementing standard audio effects in an FPGA is not as
complicated as one might assume. It is also very rewarding, as the results of
the implementation are noticeable by anyone. These few basic effects are
used widely in the music industry to process vocals and instruments, so their
application gets heard by literally millions of ears every day. As well, the way
the methods used to implement the effects are applicable to various other
fields of digital signal processing. Based on the ease of implementation in an
FPGA, it’s no wonder that FPGA's occupy a large share of the DSP market.

References

[1] Micea , Mihai V., Stratulat, Mircea, Ardelean, Dan, and Aioanei, Daniel
Implementing Professional Audio Effects with DSPs. University of Timisoara,
Romania, 2001

[2] Smith, Steven W. The Scientist and Engineer's Guide to Digital Signal
Processing, Second Edition. San Diego, CA: California Technical Publishing,
1999

