SAN DIEGO STATE
UNIVERSITY

Implementing Filters on FPGAs

Department of Electrical and Computer Engineering

Real-Time DSP and FPGA Development Lab
Mark S. Manalo and Ashkan Ashrafi

Table of Contents

IEEOAUCTION. ...ttt ettt et s b et a e e bttt e st e s bt e bt e et e e bt et e eatesbee bt enteeseeennnean 3
ANALOZ t0 DIItal COMVETSION. .. .uiieitiieeiiieeiieeetteeeteeesiteeesteeesereeessbeeesseessseesssaeesssaeessseeesnssssseeeesssssseeeenns 3
AdAING @ DIC OFFSCL...cuviiiieiiieiiecie ettt ettt e steesbe e bt e sebe e teeesbeesbeessseesaeeensseeeensseeeensseeennsees 6
Designing a Lowpass Digital Filter in MATLAB..........coooiiiiie ettt svae e 9
Implementing a Filter on an FPGA..........ccooiiiiiiiiie ettt ettt st beesnbe e saaeeaes 12
Least Mean Square Adaptive Filter on FPGA.........cooiiiii et 16
FN 0] 0153 1T 1 OO PP URR 21
Analog to Digital Conversion COde.........c.uiiiiiieriieeiiieeriee et et e etee et e e ereeesreeesesaeeeeeesssaeaeeas 21
MATLAB FIter COT@......coueiriiiiiiiiiieteeeetet ettt sttt ettt et e st e sebeesateeenee 24
DigItal FIter COe.viiiiiiiiiiie ettt et e et e et e e sta e e ssaeeessaeeesaeesssaeessseeessseeesssaeaaenns 26
Adaptive FIlter HDL.......c.ooiiiiiiiii ettt ettt ettt et et e et e e esbeeeensbeeeensseeeennns 30
RETRIEIICES. ...ttt ettt e b e et e e bt e e et e e bt e s abe e bbeenbeesbteeabeeeenteeans 36

Introduction

This paper explains the process of designing a digital filter in MATLAB, converting it to HDL using
HDL Coder and programming it onto an FPGA. The reader should have experience with creating a
project in Xilinx ISE, implementing the project and programming it onto an FPGA,
MATLAB/Simulink, and basic digital filter concepts. The reader should also have a working
knowledge of the VHDL language and concepts such as component instantiation. The software version
used are as follows:

Xilinx ISE 13.2 (64-bit), MATLAB (R2011a) with DSP toolbox and Simulink HDL Coder.

Analog to Digital Conversion

The ADC/DAC that we will be using is the PMODAD1 and PMODDA?2 modules from Digilent. The
PMODADI uses the Analog Devices AD7476 12-bit, A/D Converter. The PMODDA?2 uses the
National Semiconductor CAD121S101, 12-bit D/A Converter. These devices are controlled using the
Serial Peripheral Interface (SPI) . For a tutorial and example VHDL code on using these modules on
the Spartan-3E starter board see: http://www.cosmiac.org/tutorial 15.html

First start ISE 13.2:
First create a new directory and call it 'filter ML506'

Then start Xilinx ISE and create a new project for the Virtex5 ML506 board called 'lowpass ml506'
and save it under the 'filter ML506' directory.

Create a new VHDL module and name it 'adc_dac'.

Create a new project and copy the the code located in Appendix: Analog to Digital Conversion Code
for controlling the ADC/DAC. The code simply receives an analog signal, digitizes it with the ADC
and then sends it to the DAC which recreates the analog signal. (note: This code is from the tutorial
located at http://www.cosmiac.org/tutorial 15.html , but modified for use with the Virtex5 ML506
board).

Next create an Implementation Constraints File (.ucf), name it 'ml506' and copy this code (note: we are
using the XGI Expansion Headeres, J6 Header of the ML506 to interface with the
PmodAD1/PmodDA?2):

ML506 100 MHz clock pin
NET "CLK" LOC ="4AHI5";

Pmod AD1 ADC Pins on J6 Header

NET "CS" LOC = "H33";
NET "DIN" LOC = "F34";
NET "SCLK" LOC ="G33";

http://www.cosmiac.org/tutorial_15.html
http://www.cosmiac.org/tutorial_15.html

Pmod DA2 DAC Pins on J6 Header

NET "SYNC" LOC = "J34";
NET "DOUT" LOC = "L33";
NET "SCLK2" LOC = "P34";

Your project workspace should now look something like (figure 1):

| = ISE Project Nauigatﬂr(O;ﬁM‘— E\SEMMWM_ L5

File Edit View Project Source Process Tools Window Layout Help IZ”E”
DAHFIL XoBXx/we| ~ 2R 2RIR 2B seirpcL@
Design «08 x| & 1 # ML506 100 MHz clock pin
[|View: @ &} implementa©) [l Simular 3= 2 NET "CLE" LOC = "RH1S";
i —e 3
‘E Hlerachy e # Pmod AD1 ADC Pins on J6 Header
> lowpass_ml506 e 5 NET "CSw LOC = "H33":
— | B £3 xcovskS0t-1ff1136 = & NET "DIN" LOC = "F3an
& 9..ﬁ?lﬁadc_dac—r:‘-ehavioral(z 7 NET "SCLE" LOC = "E33"
= mi506.ucf © a
% _— =] # Pmod DA&2 DAC Pins on J6 Header
e A 10 HET "SYNC" LOC = "J34";
% 11 KET "DOUT" LOC = "L33";
E o 12 NWET "SCLE2" LOC = "P34";
—
e
“*
)

Figure 1: .ucffile

Now connect the pmods to the ML506 J6 headers, making sure that every thing is connected properly.
The J6 Header also supplies the power and ground pins of the Pmods. (Figure 2) is a picture of the

setup:

- - -

- - i ! ‘6‘ i
Figure 2: ML506 J6 Header

Y
-

-
-

After everything is connected, generate a programming file in Xilinx ISE by clicking on 'Generate

Programming File' in the process window:
|« | 1] | 2

?J Mo Processes Running

Processes: adc_dac - Behavioral

= Design Summary,/Reports
: Design Utilities
User Constraints
‘P2 Synthesize - XST
View RTL Schematic
> View Technelogy Sc..
- PAE) Check Syntax
P2 Generate Post-Synth...
-2 Implement Design
. Generate Programming ...
Configure Target Device
488 Analyze Design Using C...

Turn on the board and program the FPGA with iMPACT or any other programming tool of choice.

To test this code a function generator is used to to produce a S00Hz sine wave with 0.5Vpp and high-z

output. This sine wave is then fed into the A0 pin of the ADC. The signal gets converted to digital and
then gets converted back to analog. As you can see in (Figure 3), the output seems to be rectified. This
is because the ADC only accepts voltages between 0-3.3V and the DAC can only output 0-3.3V, but the

output of the function generator is between -0.5V and 0.5V.

s e 1 s

.......

Figure 3: Rectified Signal

Thus, we need to add a DC offset to our input signal so we can properly digitize it. This can easily be
done by changing the function generator settings to automatically add a DC offset. But if we are using
an audio signal, we don't have the luxury of doing this. Instead, we must build a circuit which can add
a DC offset to our signal. This is discussed in the next section.

Adding a DC Offset

The ADC/DAC modules we used only supports voltages of 0-3.3V. However the voltage coming from
a typical audio audio signal -0.5 to 0.5V. So before sending this signal into the ADC we must first add
a DC offset to the input signal. Since our input voltage is 0.5Vpp we chose a DC offset of 1.5V. The
circuit that does this is shown in (Figure 4)

1khm

Signal m ar @

Wieast

Figure 4:DC Offset

Here is the circuit implemented on a breadboard (note that the circuit shown has two inputs and both
the inputs are added a DC offset, you only need one input at the moment, the second input is used for
the adaptive filter discussed later):

Input Signal

Figure 5: DC Offset Circuit on Breadboard

- - " -

Figure 6: DC ﬁ% circuit Connect to ADC/DA&’- cl‘zipls

Now when we apply our signal with the DC offset we get no rectification as shown below:

Figure 7: Signal with no rectification

Designing a Lowpass Digital Filter in MATLAB

After converting the analog signal to a digital signal, several DSP techniques can be used to manipulate
the inputsignal. In this case we will implement a lowpass digital filte.

First we will create a lowpass filter using MATLAB. To facilitate this process we will use the
MATLAB demo 'HDL Butterworth Filter'.

(To find this demo, start MATLAB and click help — Product Help. In the search bar type: 'HDL
Butterworth Filter')

In MATLAB create a new script file as shown in (Figure 8):

4 waras 7320

File | Edit Debug Parallel Desktop Window Help
Mew 3 Script Cel+N |1
Open... Ctrl+0 Function
Close Command Window Ctrl+W Class i
Enurneration 4
Impert Data...
Figure
Save Workspace As... Ctrl+5

Figure 8: Create a new MATLAB script ﬁle o

Then Click File — save as.. and name the file 'my lowpass.m' in a directory called
'lowpass MATLAB': as shown in (Figure 9)

? Select File for Save As [

Savein: | | lowpass_MATLAB | o« &t BB~

= Mame Date maodified Type Size

=

Recent Flaces
Desltop
=
Libraries
. i
A

Computer

@

Netwarl

Mo items match your search.

File name: Fry Jowpass m]
Save as type: |MATLAB files (" m)

Save

J

Cancel

Figure 9: New M file for lowpass filter

Then copy-paste the code from (Appendix: MATLAB Filter Code) a slightly modified version of the
butterworth example (This will create a lowpass filter with a sampling frequency of 52 kHz and a
cutoff frequency of 1000 Hz, with 12 bit input/output widths and 11 fractional length):

Now click on the green play arrow and click 'Change Folder' if it asks:

itor - F:\SpringEﬂlmWMAmmﬂly_hwpass._ =1 =

Edit Text Go Cell Tools Debug Desktop Window Help L
CH st aD-Aesi [RERBERE BB sakBse - & HOB
2| - |10 + | + |11 x | ot o8 | @

%% Create the (mantized Filter

= Hd.arithmetic = "fixed":

= Hd.InputWordLength = 12

= Hd.InputFracLength = 11

= Hd.OutputWordLength = 12;

= Hd.CutputMode = 'SpecifyPrecision';
= Hd.OutputFracLength = 11;

~
= Hd.CoeffWordLength = 14 \ATLAB Editor ﬁ
= Hd.ZccumWordLength = 2
= Hd.HumStateWordLength = 2 i) File F:\..ilterReport\lowpass_MATLAB\my_lowpass.m is not found
= Hd.DenStateWordLength = 2 r’J in the current folder or on the MATLAB path.
= Hd.CastBeforeSum = f& T his fil ther ch he MATLAB fold dd;
— o run this file, you can either change the current folder or add its
= Hd. Eu dMod =
pundEoce 1 folder to the MATLAE path.

= Hd.OverflowMode = '
B fvtool (Hd, 'Fs', Fs, 'Frequs : ChangeFdder§|l Add to Path][Cancel] [Help]

%% Recmantize the Filter b

Figure 10: MATLAB Filter

Then MATLAB should create a testbench and a VHDL module for the filter we specified as shown in
(figure 11):

10

Starting VHDL code generation process for filter: hdlbutter

$###% Starting VHDL code generation process for filter: hdlbutter

###% Generating: F:\Spring2012\DSP“FilterReportilowpazss MATLABYhdA]l work\hdlb
##% Starting generation of hdlbutter VHDL entity

##%# Starting generation of hdlbutter VHDL architecture

###% First-order section, # 1

###%# Second-order section, # 2

$### Second-order section, # 3

HDL latency is 2 samples

Successful completion of VHDL code generation process for filter: hdlbu

Warning: GENERATETE function i= g

deprecated. Please use GENERLTEHDL

with '"GenerateHDLTestbench'

property set to 'on' instead.

> In dfilt.kbasefilter.generatetkh at 48
In my lowpass at 87

m

#%#%# Starting generation of VHDL Te=st Bench

Generating input stimalus

$###% Done generating input stimulus; length 3045 samples.

$###% Generating Test bench: F:\Spring20l12\DSP“FilterReporti\lowpass MATLAB‘hd
Flease wait ...Done

##%# Done generating VHDL Test Bench
i

Figure 11: MATLAB Creates HDL

A

Now if we look into the 'lowpass MATLAB' directory we created earlier, we should have a new
directory called 'hdl_work', this is shown in (Figure 12). In this directory is the VHDL module and
testbench for our lowpass filter. In the next section we will use the VHDL file that MATLAB created
and instantiate it in our ADC/DAC module.

v FilterReport » lowpass MATLAE » hdl_work - | g | Sea
rwith = Burn Mew folder == =
Mame Date modified Type
|2 hdlbutter 2/14/2012 1:09 PM VYHD File
|| hdlbutter_compile.do 214/2012 1:09 PM DO File
\Z| hdlbutter_th 2/14/2012 1:09 PM VHD File
|| hdlbutter_th_compile.do 2/14/2012 1:09 PM DO File
L L . FTHAAMY A0 TIKA Mi™ Cil-

Figure 12: HDL Files

11

Implementing a Filter on an FPGA

After MATLAB creates the HDL files, we will instantiate them into our ADC/DAC circuit.

Go back to Xilinx ISE and right-click the project and click 'add source":

]SEijectNamgatur.ﬁlu:I] FA\Spring201

File Edit View Project Source Process Tools Window Layc

DBHﬁL AOEX|wal 2 frRE

Design

08 x| g 122

View: @ {E_:l}lmplemenmi:} @Simula' p=| 122

u|@ﬁ|@|§u|ﬂ@@

Hiera rch].r

El E:E xcovsxS0t-1ff1136

—| 124
125
“ 126

127
=8 .. adc_dac avinral (= T

: |:| Mew Source...

g Add Source...

Add Copy of Source...

=] lowpass_ml506

Open
45| Remove

Figure 13: New source

Navigate to the hdlbutter.vhd file that MATLAB created and add it:

DiaHE_}”_! Add Source - '{l.'.a - e
= | @‘O | < Spring2012 » DSP » FilterReport » lowpass_MATL
_J View: @ I!:J:Elmplen* s == e e L
g Hierarch],r Organize = Mew folder
=] lowpass_mly : Z
Al g & €3 xcOvesOrLff| O Favorites ame
- _: Bl Desktop 7| hdlbutter
g 4. Downloads \Z| hdlbutter_th
= "= Recent Places
A
Figure 14: Adding HDL file to project

12

Now we must create a clock for the filter using DCM. Right-click the project and click 'New Source'.
Click 'TP (CORE Generator & Architecture Wizard)' and name it 'clk_div'":

[BIVINVI FlIE

&4 ChipScope Definition and Connection File
EJ Implementation Constraints File

[IP (CORE Generator & Architecture Wizard)
MEM File

Schematic

Systemn Generator Project

Uzer Document dk_div
Werilog Module
Verilog Test Fixture
VHDL Module 12'DSP\FilterReportifilter_ML506Yowpass_ml506Ysrc E]
WHOL Library

WHOL Package
WHDL Test Bench
Embedded Processor

File name:

Location:

MEETEEREI)X &

Add to project

o] [con

Figure 15: Xilinx IP Core

In the IP selection Wizard, navigate to FPGA Features and Design — Clocking — Virtex-5 — Choose
wizard by basic function and click on 'Double clock frequency (DCM)' and click Next and Finish (this
is shown in the following page on Figure 16):

[~
@ MNew Source Wizard
SelectIP
Create Coregen or Architecture Wizard IF Core.
Wiew by Function Wiew by Mame
Mame Versior =
| B Virtex-5
i =+ | Choose wizard by basic function
N == Double clock frequency (DCM) 'l
Dynamically switch between input clock sources (PLL) 131
Filter clock jitter (PLL) 133
o Filter jitter on DCM input clock (PLL to DCM) 133
i 4y Filter jitter on single DCM output clock (DCM to PLL) 131 >
<« | T | 3
Search IF Catalog:
[all 1P versions [] only IF compatible with chosen part
i) [

Figure 16: Add DCM
In the next window choose the following options in figure 17 and click OK:

13

[Xilinx Architecture Wizard - Stil ' s |
AW File:
|i|3ring2[:'1 2DSP\FiterReport'fiter_ML506 \owpass_mIS06 \src clk_div xaw
) Verlog
| |
EI N
|| (xcBvacsi- 11136 | Select |
| |
i I
1
o [Gwmed |

Figure 17: Choose VHDL as the file type

We will divide the 100MHz ML506 clock by 20 to get 5 MHz. Choose the following options shown in
figure 18 :

- e
& Xilinx Clocking Wizard - General Setup

OooOEOOOME

Ll Il
| =
Input Clock Erequency Phase Shift
® M O Tyoe: [NONE =
FREQUENCY IS DIVIDED BY 2 Value: *
CLKIN Source Feedback Source
| Bdemal @ Intemal) Extemal @ Intemal) MNone
I @ Single @ Single
I Differential Differential
Divide: By Value Feedback Value ‘
IRCI @ 1X

Use Duty Cycle Comrection

E More Info ; Advanced < Back |[Meodt >] [Cancel]
Figure 18: DCM Settings

Click the 'Advanced' button and check the 'Divide Input Clock By 2' option:

14

‘v Xilinx Clocking Wizard - Advanced - |5 |
y el fE Y el SYSTEM_SYNCHRONOUS [

[] Wait for DCM lock before DOME signal goes high
[¥] Divide Input Clock By 2

Insert reset logic
MSEM Neset 10g1c

[] Use DCM Reconfiguration pins N

Peformance Mode: @ Maxmum Speed () Maxmum Hange

T =)

Figure 19: Divide by 2

Xilinx will now create a clock divider module that will divide our I00MHz clock into a SMHz clock.
Our next step is to instantiate the clock divider and the lowpass filter into our adc _dac module. But we
must take care of one more issue before doing this. The filter we created only accepts signals that have
zero DC offset, meaning that they have to be centered around 0. Thus, the DC offset we added to our
signal earlier will not work with our filter. To fix this, we must subtract off the DC value in our VHDL
code. There are many ways of doing this, for this example we will simply subtract 0x”800 which is
approximately 1.5V to every value of our signal. Then pass this through the filter and then add back
0x”800” to the filter output and pass it to the DAC.

The new VHDL code that will instantiate the lowpass filter, DCM clock divider and take care of the
DC offset is given in the Appendix titled Digital Filter Code (just copy and paste over the existing
adc_dac module):

Then add these lines at the end of the .ucf file:

dip switch 1
NET "sw0" LOC ="U25";

After Implementing the design and programming the FPGA. We can use the function generator as the
input with *1V , and verify that our filter attenuates frequencies above 1kHz: (note: if your filter
output has several spikes then most likely your ADC/DAC and filter clock are not synchronized make
sure that they are both synchronized to the rising edge of the clock)

15

1

Figure 20: Attenuated output of Digital Lowpass Filter

Least Mean Square Adaptive Filter on FPGA

A least mean square adaptive filter can also be implemented using a similar process.

For this section we will use the MATLAB Simulink HDL Coder example of noise cancellation using
the LMS Adaptive Filter.

This file can be found in the following path : Program Files - MATLAB — R2011a — toolbox —
hdlcoder — hdlcoderdemos — hdlcoderlms.mdl

First copy-paste this file into a directory called '"NoiseRemove'.
Before generating the HDL code for this block, we must make the following changes:
— Change the sampling frequency to match our previous HDL code for the lowpass filter which is

52kHz
— The model is made for 16-bit fixed point but our ADC is 12-bit.

First change the sampling frequency of the Ims filter. Open hdlcoderlms.mdl in MATLAB. Then
change the sampling time from the default 1/8000 to 1/52000 by double clicking all the blocks and
changing it. (This may sound tedious but you only need to do this for the input blocks as most of the
other blocks inherit their sampling time from the previous block). Figure 21 shows a screenshot of how

16

to change the sampling time.

I [E=HiEix]

ree
File Edit Vi
D= @4 o BB REE®
| Output the constant specified by the 'Constant value' parameter. If
| 'Constant value' is a vector and 'Interpret vector parameters as 1-D' is 1
on, treat the constant value as a 1-D array. Otherwise, output a matrix Filter

with the same dimensions as the constant value.

Main Signal Attributes

Constant value:

o i
1
Filter Select Interpret vector parameters as 1-D 1z
Waterfsll
Mo Sampling mode: |Sample based] Scope
a
Sample time: Watertall

Filtered Signal
y_filtered

LMS Filter|Ermor - Behavi

?] oK] [Cancel I [Help o
- LMS Filter Ermor - Hajdwars

sl 1/52000

Step_Sze . >
reser wegns
Ims Hardware Filtered Signal Pep—
This model shows how to use - -
Simulink HDL Coder to check, [Audio playback in MATLAB:]
generate, and verify HDL for a
fixed-point LMS Filter model. Original Naisy Filtered Rardnars
In MATLAB, type the following: Signal Signal Signal Signal
checkhdI('t Nims")

makehdi('r ')

makehdItb('l

Or double-click the blue button Launch HDL Dialog
at the right to see the dialog.

Run Demo

Gopyright 2005-2008 The MathWoris, Inc.

Figure 21: Change Sampling Time
Then we need to change the model to work with 12 bits instead of 16 bits.

Double-click the Acoustic Environment and change the Convert block to the data type specified below
(Figure 22):

Data Type Conversion

W hdicoderlms_adaptive/Acoustic Enviro Convert the input to the data type and scaling of the output.

File Edit View Simulation Format To

OEH&| %8

The conversion has two possible goals. One goal is to have the Real World
Values of the input and the output be equal. The other goal is to have the
Stored Integer Values of the input and the output be equal. Overflows and
quantization errors can prevent the goal from being fully achieved.

Moise
Parameters
E i\ pe{Convert
Output minimum: Output maximum:
Conversion
Bandpass 0 [l

firl{28,1.2 .51

Output data type: -

Filter [] Lock output data type setting against changes by the fixed-point tools
Lowpass Input and output to have equal: [Real World Value (RWW) v]
| int18((2*1 1) {wawesd(sine500 wi Integer rounding mode: [Nearest v]

52.08 kHz sudio signal [] Saturate on integer overflow

Sample time (-1 for inherited):
-1

s)- [OK J[Cancel][Help Apply

Figure 22: 12 Bits

17

Double-click the Ims block and change the final summing node to have the following data type shown
in figure 23:

[Function Block|

Sum

Add or subtract inputs. Specify one of the following:

a) string containing + or - for each input port, | for spacer between ports

(e.g. ++|-|++)

b} scalar, == 1, specifies the number of input ports to be summed.

‘When there is only one input port, add or subtract elements over all B In

dimensions or one specified dimension Delay_Out » -

Terminator

Signal Attributes |

[7] Require all inputs to have the same data type
Accumulator data type: [[LA0 -

Output minimum: Output maximum:

1 1

Output data type: fixdt{1,12,9) -

] Lock data type settings against changes by the fixed-point tools

Integer rounding mode: [Nearest v]

Saturate on integer overflow

,_‘) [OK][Cancel][Help]
Figure 23: Summing node data type

Save the project and go to Tools — HDL Code Generation — Options.

Set the following options to generate VHDL code for the Ims block and save it into a folder named
'Ims_ HDL' (This is shown in Figure 24)

Select: Target =

- Solver
Data Import/Export
Optimization

~Diagnostics Folder: C:\Ims_HDL Browse...

Hardware Implementat...

Generate HOL for: hdicoderims_adaptive/ims -

Language: [wHDL -

@

0

--Model Referencing Code generation output

7

Simulation Target

@ Generate HDL code
Code Generation

@

L Ty —) Display generated model only L
i~ Global Settings) Generate HDL code and display generated model
i Test Bench
i EDA Tool Scripts Code Generation Report

[C] Generate traceability report
l:l Generate resource utilization report

[C] Generate optimization report

Restore Factory Defaults Run Compatibility Checke
Generate

< it ;

% oK [gencel | [mHelp | [Apply |
Figure 24: HDL Coder Settings

Click OK.

Then click Tools — HDL Code Generation — Generate HDL

18

After the HDL code generation completes, we follow the steps in the previous section for the lowpass
filter but instead of instantiating the lowpass filter we would instantiate the Ims adaptive filter.

The VHDL code instantiating the adaptive filter is given in the appendix title Adaptive Filter HDL
Here is the UCF file for interfacing with the ML506:

ML506 100 MHz clock pin
NET "CLK" LOC ="AHI15";

Pmod AD1 ADC Pins on J6 Expansion Header

NET "CS" LOC ="H33";

NET "DIN" LOC ="F34"; # noise

NET "DIN2" LOC = "H34";# desired, pilots mic # (noise + clean signal)
NET "SCLK" LOC ="G33";

Pmod DA2 DAC Pins on J6 Expansion Header

NET "SYNC" LOC ="J34";

NET "DOUT" LOC ="L33";

NET "SCLK2" LOC = "P34";

gpio switch 1
NET "sw0" LOC ="U25";

After programming the FPGA, we created two inputs using MATLAB. One is noise and the other is a
500Hz signal + noise. The noise is stored in the left channel of a .wav file and the signal+noise is
stored in the right channel.

We then input these two signals simultaneously into the adaptive filter. Below are pictures of the input
and output. (Figures 25 and 26)

Figure 25: Signal with noise

19

e

Figure 26: Filtered Signal

20

Appendix

Analog to Digital Conversion Code

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use ieee.std_logic_arith.all;

entity adc_dac is

port(
CLK :instd logic, -- ML506 100MHz clock
CS 2 out std_logic; -- chip select for ADC(active low)
SYNC : out std_logic; -- SYNC for DAC
DIN :instd logic; --ADC
DOUT : out std_logic, --DAC
-- These two clock signals will clock the ADC/DAC
SCLK : out std logic, --ADC
SCLK?2: out std_logic --DAC
) .

end adc , dac,

architecture Behavioral of adc_dac is

-- FSM states
type state _type is (IDLE, READ DATA, FUNC, WRITE DATA),

-- initial state
signal state : state_type := READ DATA,

-- data from the ADC
signal data . std_logic vector(11 downto 0);

-- counter variable
signal cnt . integer range 0 to 20 := 0;

-- counter for clock division
signal clkdiv . integer range (0 to 6;

-- new clock from division
signal newclk :std _logic :="0";
signal risingedge . std logic :="1";

21

begin

-- reset signal
signal reset . std _logic :="0';

-- drive the ADC and DAC clock pins

-- The ADC and DAC can be clock up to 20 MHz
SCLK <= newclk;

SCLK?2 <= newclk;

-- divide the ML506 clock to 20 MHz
clock_divide : process(CLK, reset)
begin
if (reset = 'l') then
elsif (rising_edge(CLK)) then
if (clkdiv = 5) then -- divide 100MHz by 5
risingedge <= risingedge xor 'l';
newclk <= newclk xor '1’;
clkdiv <= 0;
else
clkdiv <= clkdiv + 1;
end if;
end if;
end process clock_divide;

-- main process FSM
main : process (CLK, reset)

begin
if (reset = 'l') then
elsif (rising_edge(CLK)) then
if (clkdiv = 5 and risingedge = 'l') then

case state is

-- each state takes 16 clock cycles to finish
-- except FUNC which only takes 1

when IDLE =>
CS<="1"
SYNC <="]1";
if (cnt = 16) then
cnt <=0;

state <= READ DATA;
else

cnt<=cnt+ 1;

22

state <= [DLE;
end if;

when READ DATA =>
CS<=""
SYNC <="]1";
cnt<=cnt+ 1;

if (cnt<4) then
cnt<=cnt + 1;
state <= READ DATA;
elsif (cnt > 3 and cnt < 16) then
cnt <=cnt+ I;

-- the first 4 bits are 0000 only read the last 12
data(15-cnt) <= DIN;
state <= READ DATA;
elsif (cnt = 16) then
cnt <=0,
state <= FUNC;
end if;

-- signal processing would go in this state
-- but for now we don't do anything in here
when FUNC =>

CS<="1";

SYNC <="1";

cnt <= 0;

state <= WRITE DATA;

when WRITE DATA =>
CS<="1"
SYNC <=10";

if (cnt = 0 or cnt = 1) then

cnt <=cnt+ 1I;

DOUT <="0';

state <= WRITE DATA,
elsif (cnt = 2 or cnt = 3) then

cnt <=cnt+ 1I;

DOUT <="0';

state <= WRITE DATA,
elsif (cnt > 3 and cnt < 16) then

cnt <=cnt+ 1I;

DOUT <=data(l5 - cnt);

23

state <= WRITE DATA;
elsif (cnt = 16) then

cnt <=0;
state <= IDLE;
end if;
end case,
end if;
end if;
end process main;
end Behavioral;
MATLAB Filter Code

o°

% Design a lowpass filter to filter out some high frequency sounds in an
audio file.

o\°

%% Create the filter
close all;
clear all;

Fs = 52000; % Sampling freg = 52 kHz
Fn = Fs/2;
F3db = 1000; % Cutoff frequency

% Design the lowpass filter

% filter order is 5, witha 3dB point at F3db = 500Hz
filtdes = fdesign.lowpass('n,f3db', 5, F3db, Fs);

Hd = design(filtdes, 'butter');

% Convert it from the default structure (DF2S0S) to the desired structure,
% DF1S0S

Hd = convert (Hd, 'dflsos');

% Examine the response

fvtool (Hd, 'Fs', Fs, 'FrequencyScale', 'log');

o

% Create the Quantized Filter

Hd.arithmetic = 'fixed';
Hd.InputWordLength = 12;
Hd.InputFracLength = 11;
Hd.OutputWordLength = 12;

Hd.OutputMode 'SpecifyPrecision’';
Hd.OutputFracLength = 11;

Hd.CoeffWordLength = 12;
Hd.AccumWordLength = 200;
Hd.NumStateWordLength = 20;

24

Hd.DenStateWordLength = 20;
Hd.CastBeforeSum false;
Hd.RoundMode 'nearest’';
Hd.OverflowMode = 'saturate';

fvtool (Hd, 'Fs', Fs, 'FrequencyScale', 'log');

oo

% Requantize the Filter

In the previous plot, fvtool shows that the quantized passband is
approximatley 2dB lower thant the desired response. Adjust the
coefficient word length from 12 to 16 to get the quantized response
closer to the reference double-precision response and zoom in on the
passband response.

o® 00 o o°

o

Hd.CoeffWordLength = 16;
fvtool (Hd, 'Fs', Fs, 'FrequencyScale', 'log');
axis ([0 1.0 -1 11);

%% Examine the Scale Values

scales = Hd.scalevalues .* 27Hd.InputFracLength
% Now scale the filter using the frequency domain infinity norm.
scale (Hd, 'Linf"'");

% After scaling, the scale value are all one in this case

scales = Hd.scalevalues

%% Generate HDL Code from the Quantized Filter

% Create a temporary work directory

workingdir = 'hdl work';

generatehdl (Hd, 'Name', 'hdlbutter', 'TargetLanguage',6 'VHDL',
'TargetDirectory', workingdir);

edit (fullfile(workingdir, 'hdlbutter.vhd'));

%% Generate a Test Bench from the Quantized Filter

o

Since the passband of this filter is so low relative to the sampling
rate, a custom input stimulus is a better way to test the filter
implementation. Build the test input with one cycle of each of 50 to 300
Hz in 50 Hz steps.

o oo

o\

o©

Generate a VHDL test bench to verify that the results match the MATLAB
results exactly.

o\°

oo

After generating the test bench, open the generated file in the editor

userstim = [];
for n = [50, 100, 150, 200, 250, 300, 500, 600, 700, 800,
1000, 1200, 1500, 2000]
userstim =[userstim,sin(2*pi*n/Fs* (0:Fs/n))1;
end

generatetb (Hd, 'VHDL', 'TestBenchName', 'hdlbutter tb',...
'TestBenchStimulus', [],...
'TestBenchUserStimulus', userstim, ...
'TargetDirectory', workingdir);

25

edit (fullfile(workingdir, 'hdlbutter tb.vhd'));

%% Simulation

o\°

After Creating the VHDL and VHDL test bench run it in ModelSim and
% compare the results with the MATLAB simulation, describe below:

% Plot the input

xrange = (0:length (userstim) - 1);

y = filter (Hd, userstim);

subplot(2,1,1); plot(xrange, userstim);
%axis ([0 length (userstim) -1.1 1.17]);

title ("HDL Butterworth filter in Stimulus');
xlabel ('Sample #');

% Plot the output of the filter

% Notice how it attenuates the frequencies higher than 500 Hz
subplot(2,1,2); plot(xrange, Vy);

%axis ([0 length (userstim) -1.1 1.11);

title ('HDL Butterworth filter out Response');

xlabel ('Sample #'");

Digital Filter Code

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
USE IEEE.numeric_std.ALL;

entity adc_dac is

port(
CLK :in std_logic; -- ML506 clock
[\ :out std_logic;, -- chip select for ADC(active low)
SYNC :outstd logic, -- SYNC for DAC
DIN :in std_logic; -ADC
DOUT : out std_logic;, --DAC
-- turn low pass filter on or off with a SW0
sw0 : in std_logic;
-- These two clock signals will clock the ADC/DAC
SCLK :outstd logic, --ADC
SCLK2 : out std_logic --DAC

)’.

end adc_dac;

architecture Behavioral of adc_dac is

-- FSM states

type state_type is (IDLE, READ DATA, FUNC, WRITE DATA);

signal state : state_type := READ DATA;

signal data : std_logic_vector(11 downto 0);
signal cnt : integer range 0 to 20 := 0;

signal clkdiv . integer range 0 to 20;

signal newclk 2 std_logic :="0';

signal risingedge : std logic :="l';

signal reset 2 std_logic :="0";

26

begin

-~ filter clock
signal newclk_filter . std_logic :="0'";
signal filter cnt : integer range 0 to 100 := 0;

-- SMHz clock from DCM
signal clk 5e6 : std_logicy

COMPONENT clk_div

PORT(
CLKIN IN : IN std logic;
CLKDV _OUT : OUT std_logic,
CLKO _OUT : OUT std_logic;
LOCKED _OUT : OUT std_logic

),.
END COMPONENT;

-- lowpass filter signals

signal clk_enable : std logic :="1";

signal filter in : std_logic_vector(11 downto 0);
signal filter out : std_logic vector(11 downto 0);

component hdlbutter

port (
clk :in std_logicy
clk_enable :in std_logicy
reset :in std_logic;
filter in :in std logic vector(1l downto 0);
filter_out : out std_logic_vector(11 downto 0)
)’.

end component;

-- constant to convert the ADC values to signed
constant one_five : std_logic_vector(11 downto 0) := X"800"; -- 1.5V

-- Instantiate the Butterworth filter
butterl : hdlbutter port map(

clk => newclk _filter,
clk_enable => clk_enable,
reset => reset,

filter_in => filter_in,
filter _out => filter out

);

-- Instantiate the DCM clock divider
Inst_clk_div: clk_div PORT MAP(
CLKIN IN => CLK,
CLKDV _OUT => clk_5e6,
CLKO OUT => open,
LOCKED OUT => open
)’.

-- drive the ADC and DAC clock pins
SCLK <= newclk;
SCLK2 <= newclk;

-- Each of the states take 16 clock cycles long

-- The DCM takes the 100MHz FPGA clock and divides it:

-- 100Mhz/ (2*10) = 5 MHz

-- But it takes 3*16 clock cycles to sample and output the sound

27

--50 5 MHz/ (3*16) = 104.17 kHz sampling frequency

-- But on each rising edge of the 104.17 kHz clock we increment
-- clkdive by 1. So newclock is 104.17 kHz / 2 = 52.08 kHz
-- which is just above the CD sampling rate of 44.1kHz
clock_divide : process(clk_5e6, reset)
begin
if (reset = '1") then
elsif (rising_edge(clk_5e6)) then
if (clkdiv = 1) then
risingedge <= risingedge xor 'l';
newclk <= newclk xor 'l';
clkdiv <= 0;
else
clkdiv <= clkdiv + 1;
end if;
end if;

end process clock_divide;

-- Change the clock frequency of the filter clk to 52.08 kHz
filter clock : process(clk_5e6)
begin
if (rising_edge(clk_5e6)) then
if (filter _cnt = 48) then
if (clkdiv = 1 and risingedge = 'l') then
newclk_filter <= newclk_filter xor 'l';
filter _cnt <= 0;
end if;
else
filter _cnt <= filter _cnt + 1;
end if;
end if;
end process filter _clock;

-- main process FSM
main : process (clk_5eb6, reset, sw0, filter_out)

-- Convert to signed

variable DIN _temp 2 std_logic_vector(12 downto 0);
variable one_five temp : std_logic_vector(12 downto 0);

variable DIN signed temp : signed(12 downto 0);

variable DIN signed temp2 : signed(12 downto 0);

variable DIN signed : signed(11 downto 0);

variable one_five signed : signed(12 downto 0);

-- Convert to unsigned

variable data_out temp : signed(12 downto 0);
variable data_out unsigned_temp : signed(12 downto 0);

variable data_out_unsigned temp? : signed(11 downto 0);

variable data_out unsigned : unsigned(11 downto 0);

begin
if (reset = '1') then
elsif (rising_edge(clk_5e6)) then
if (clkdiv = 1 and risingedge = 'l') then

case state is
when IDLE =>
CcS <="] /;

SYNC <="1";
if (cnt = 16) then

28

cnt <=0,
state <= READ DATA;

else
cnt <=cnt+ 1;
state <= IDLE;
end if;
when READ DATA =>
CS<="0";
SYNC <="1";

cnt<=cnt + 1;

if (cnt<4) then
cnt<=cnt+ 1;
state <= READ DATA;
elsif (cnt > 3 and cnt < 16) then
cnt <=cnt+ 1I;
data(15-cnt) <= DIN;
state <= READ DATA;
elsif (cnt = 16) then
cnt <= 0;
state <= FUNC;
end if;

when FUNC =>
CcS <="] r’.
SYNC <="1";
cnt <= 0;

-- remove the offset of 1.5V and convert to signed

DIN temp :="0"' & data;
one_five _temp :="'0" & one_five;

-- convert to signed
DIN signed temp := signed(DIN temp);
one_five_signed := signed(one_five _temp);

DIN signed temp2 := DIN signed temp - one_five signed;
DIN signed := DIN signed_temp2(11 downto 0);

filter_in <= std_logic vector(DIN signed),
state <= WRITE DATA;

when WRITE_DATA =>
CS <= /]l}.
SYNC <=0,

if (cnt = 0 or cnt = 1) then

cnt <=cnt+ 1;

DOUT <= "0

state <= WRITE _DATA;
elsif (cnt = 2 or cnt = 3) then

cnt <=cnt+ 1I;

DOUT <= "0

state <= WRITE DATA;
elsif (cnt > 3 and cnt < 16) then
cnt <=cnt+ 1;

29

-- convert back to unsigned and

-- add the offset of 1.5V = 0x800~0x7FF

data_out_temp :="0" & signed(filter_out);
data_out unsigned temp :=data_out temp + one_five_ signed;

data_out_unsigned temp?2 := data_out_unsigned_temp(11 downto 0);
data_out_unsigned := unsigned(data_out _unsigned temp2);

if sw0 ="1") then

DOUT <= data_out unsigned(15-cnt);
else

DOUT <= data(15-cnt);
end if;

state <= WRITE DATA;
elsif (cnt = 16) then

cnt <=0,
state <= IDLE;

end if;
end case;
end if;
end if;
end process main,
end Behavioral;
Adaptive Filter HDL
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std. ALL;
entity adaptive_filter is
port(
CLK s in std_logicy -- ML506 Clock
-- ADC and DAC Pins
cS :out std_logic; -- chip select for ADC(active low)
SYNC :outstd logic, -- SYNC for DAC
DIN s in std_logic; --ADC
DIN2 :instd logic, -ADC
DOUT : out std_logic, -- DAC
-- turn on filter with a switch
sw0 : in std_logic,
-- These two clock signals will clock the ADC/DAC
SCLK :out std logic; --ADC
SCLK2 : out std_logic --DAC
),.
end adaptive_filter;

30

architecture Behavioral of adaptive_filter is

-- FSM states

type state_type is (IDLE, READ DATA, FUNC, WRITE DATA);

signal state

-- ADC/DAC Temporary Signals
signal data

: state_type := READ DATA;

. std_logic_vector(1l downto 0);

signal data?2 2 std_logic_vector(11 downto 0);
signal cnt : integer range 0 to 20 := 0;

signal Ims_cnt . integer range 0 to 150 := 0;

signal clkdiv . integer range 0 to 11;

signal newclk 2 std_logic :="0'";

signal risingedge : std _logic :="1';

signal rst :std_logic :="0';

-- LMS Temporary Signals

signal reset :std_logic :="0';
signal clk_enable :std_logic :="1";

--0.002 000000000100
signal Step_Size

signal Reset Weights
signal ce_out

signal Error_Out

signal Input
signal Desired

-- Adaptive filter clock
signal newclk_filter
signal filter _cnt

-- SMHz clock from DCM
signal clk 5e6 : std_logicy

-- Declare the DCM clock divider
COMPONENT clk_div
PORT(

CLKIN IN : IN std logic;

2 std_logic_vector(11 downto 0) := "000000000100";
:std_logic :="0';

: std_logic;

: std_logic_vector(11 downto 0);

: std_logic_vector(11 downto 0);
: std_logic_vector(11 downto 0);

:std_logic :="0';
. integer range 0 to 100 := 0;

CLKDV OUT : OUT std_logic;

CLKO OUT : OUT std_logic;

LOCKED OUT : OUT std_logic

)’.
END COMPONENT;

-- Declare the LMS MATLAB Component

component Ims

port(
clk
reset
clk_enable
Input
Desired
Step Size
Reset Weights
ce_out
Error_Out

)’.

end component;

2 in std_logicy
s in std_logic;
s in std_logic;
sin std_logic_vector(11 downto 0),;
sin std_logic_vector(11 downto 0),;

sin std_logic_vector(11 downto 0);
:in std_logicy

2 out std_logic,
2 out std_logic vector(11 downto 0)

31

begin

-- Instantiate the LMS MATLAB Block
LMS Block : Ims
port map(

clk => newclk filter,
reset => reset,
clk_enable => clk_enable,
Input => Input,
Desired => Desired,
Step Size => Step Size,
Reset Weights => Reset Weights,
ce_out => ce_out,
Error_Out => Error_Out

)’.

-- Instantiate the DCM clock divider
Inst _clk_div: clk_div PORT MAP(
CLKIN IN => CLK,
CLKDV _OUT => clk_5e6,
CLKO _OUT => open,
LOCKED OUT => open
);

-~ drive the ADC and DAC clock pins
SCLK <= newclk;
SCLK2 <= newclk;

-- Each of the states take 16 clock cycles long

-- The DCM takes the 100MHz FPGA clock and divides it:

-- 100Mhz/ (2*10) = 5 MHz

-- But it takes 3*16 clock cycles to sample and output the sound
--50 5 MHz/ (3*16) = 104.17 kHz sampling frequency

-- But on each rising edge of the 104.17 kHz clock we increment
-- clkdive by 1. So newclock is 104.17 kHz / 2 ~ 52 kHz
-- which is just above the CD sampling rate of 44.1kHz
clock_divide : process(clk_5e6, rst)
begin
if (rst ="'1') then
elsif (rising_edge(clk_5e6)) then
if (clkdiv = 1) then
risingedge <= risingedge xor 'l';
newclk <= newclk xor 'l';
clkdiv <= 0;
else
clkdiv <= clkdiv + 1;
end if;
end if;

end process clock_divide;

-- Change the clock frequency of the filter clk to 52 kHz
--5MHz / (2*48) ~ 52 kHz
filter _clock : process(clk _5e6)
begin
if (rising_edge(clk_5e6)) then
if (filter _cnt = 48) then
if (clkdiv = 1 and risingedge = '1") then
newclk_filter <= newclk_filter xor 'l';
filter _cnt <= 0;
end if;
else

32

filter _cnt <= filter _cnt + 1;
end if;
end if;
end process filter _clock;

-- main process FSM
main : process (clk_5e6, sw0, Error_Out, rst)

-- Convert to signed

variable DIN temp : std_logic_vector(12 downto 0);
variable DIN temp2 2 std_logic_vector(12 downto 0);
variable one_five temp : std_logic_vector(12 downto 0);

variable DIN signed temp : signed(12 downto 0);

variable DIN signed temp4 : signed(12 downto 0);

variable DIN signed_temp?2 : signed(12 downto 0);

variable DIN signed_temp8 : signed(12 downto 0);

variable DIN signed : signed(11 downto 0);
variable DIN signed2 : signed(11 downto 0);

variable one_five signed . signed(12 downto 0);

-- Convert to unsigned

variable data_out temp 2 signed(12 downto 0);

variable data_out unsigned temp : signed(12 downto 0);
variable data_out unsigned temp2 : signed(1l downto 0);

variable data_out_unsigned :unsigned(11 downto 0);

-- constant to convert the ADC values to signed
constant one_five 2 std_logic_vector(11 downto 0) := X"800";

begin
if (rst ='1l') then
elsif (rising_edge(clk_5e6)) then
if (clkdiv = 1 and risingedge = 'l') then

case state is

when IDLE =>
CS<="'1";
SYNC <="1";
if (cnt = 16) then
cnt <=0,
state <= READ DATA;
else
cnt <=cnt+ 1;
state <= IDLE;
end if;
when READ DATA =>
CS<="0";
SYNC <="1";

cnt<=cnt + 1I;

if (cnt<4) then
cnt <=cnt+ 1;
state <= READ DATA;
elsif (cnt > 3 and cnt < 16) then
cnt <=cnt+ 1I;

-- the first 4 bits are 0000 only read the last 12

data(15-cnt) <= DIN;
data2(15-cnt) <= DIN2;
state <= READ DATA;

33

- 1.5V

elsif (cnt = 16) then

cnt <= 0;

state <= FUNC;
end if;

when FUNC =>
CS<="] I’.
SYNC <="1";
cnt <= 0;

-- remove the offset of 1.5V and convert to signed

DIN temp ='0"& data;
DIN temp2 :="0"& data2;
one_five_temp :="0"& one_five;

-- convert to signed

DIN signed temp := signed(DIN temp),
DIN signed temp4:= signed(DIN temp2);
one_five signed := signed(one_five temp);

DIN signed temp?2:= DIN signed temp - one_five signed;
DIN signed_temp8:= DIN_signed _temp4 - one_five_signed;

DIN signed ;= DIN signed_temp2(11 downto 0);
DIN signed?2 ;= DIN signed_temp8(11 downto 0);
-- Noise

Input <= std_logic_vector(DIN signed);

-- Signal + Noise
Desired <= std_logic_vector(DIN signed?2);

state <= WRITE DATA;

when WRITE DATA =>
CS <= '1’,'
SYNC <='0%

if (cnt = 0 or cnt = 1) then

cnt <=cnt+ 1;

DOUT <= "0

state <= WRITE DATA;
elsif (cnt = 2 or cnt = 3) then

cnt <=cnt+ 1;

DOUT <= "0

state <= WRITE _DATA;
elsif (cnt > 3 and cnt < 16) then

cnt <=cnt+ 1;

-- convert back to unsigned and add the offset of 1.5V = 0x800~0x7FF

data_out_temp :="0" & signed(Error_Out);
data_out _unsigned temp :=data_out temp + one_five_ signed;
data_out_unsigned_temp?2 := data_out_unsigned_temp(11 downto 0);
data_out unsigned ;= unsigned(data_out unsigned temp2);

if (sw0 = "1") then

DOUT <= data_out _unsigned(15 - cnt);
else

DOUT <= data2(15 - cnt);
end if;

34

state <= WRITE DATA;
elsif (cnt = 16) then

cnt <= 0;

state <= IDLE;
end if;

end case;

end if;
end if;
end process main,

end Behavioral;

35

References

"Cosmiac - Spartan 3E Tutorials - Configurable Space Microsystems Innovations & Applications
Center." Cosmiac. Web. 21 Feb. 2012. <http://www.cosmiac.org/spartan3e_tutorials.html>.

"Clamper (electronics)." Wikipedia. Wikimedia Foundation, 02 Dec. 2012. Web. 21 Feb. 2012.
<http://en.wikipedia.org/wiki/Clamper_(electronics)>.

"Forum for Electronics." Forum for Electronics. Web. 21 Feb. 2012. <http://www.edaboard.com/>.

"MATLAB Answers - MATLAB Central." Document Moved. Web. 21 Feb. 2012.
<http://www.mathworks.com/matlabcentral/answers/>.

36

	Introduction
	Analog to Digital Conversion
	Adding a DC Offset
	Designing a Lowpass Digital Filter in MATLAB
	Implementing a Filter on an FPGA
	Least Mean Square Adaptive Filter on FPGA
	Appendix
	Analog to Digital Conversion Code
	MATLAB Filter Code
	Digital Filter Code
	Adaptive Filter HDL

	References

