Fundamentals of Reconfigurable Computing ECGR6090/8090

L_ab

CRC IMPLEMENTED IN SOFTWARE

1 Objective

The goal of this lab is to become familiar with a software implementation of a Cyclic Redundancy Check
(CRC). The overall objective of the next few labs is to compare a software implementation of a CRC to that
of a hardware implementation of the CRC. To begin we must first understand what a CRC is and how to
develop it in software. Since software development is much quicker than hardware development we will
begin with the software implementation.

This lab builds on the previous lab by adding an additional software application that will then be included
into the RAM Disk image. You may need to refer back to Lab 3’s handout. Read this lab handout completely
before beginning!

The goal is to come away with:

e learning what a Cyclic redundancy check is.
e learning how to implement a CRC is software.
e combining your CRC with your previous Linux base system.

e preparing you to take a software CRC and implement a hardware CRC core.

2 Lab Setup

This lab builds on Lab 3 so before beginning you will need to complete Lab 3. Once you have a working
Lab 3 you will only be modifying software and reuse your previously created base system (hardware). This
is why it is critical your lab 3 design is fully functional.

1. Getting Started
To begin, start by making a copy of your lab3 and call it lab4.

cp -r “/lab3 " /lab4



Change Directories to your lab4 folder. Create a folder called sw_crc which will contain your software
CRC implementation. In the sw_crc folder copy a template C file which will contain some initial data you
will need to get started. Do not modify the data, just add your code within the Main Function as you would
with any other program. The file can be found on Homer:

/build/ecgr6090/labd/crc.c

In cre.c you will see a Table which contains lookup values used by the CRC you will write. When you
read about CRCs (from Wikipedia or whatever website / books you use during your research about CRC)
you will see some implementations use tables and others do not. We will be implementing a Table based
CRC since it is the current IEEE standard. For more information read about cksum. Changing the table will
change your CRC calculation (which is bad).

The Assignment Section outlines the application you will need to implement along with references
that can be used to help guide you while creating your application. When compiling your application, first
compile it to run on Homer and call the program sw_crc_homer. Once you can verify its functionality on
Homer, cross-compile the application to run on the PowerPC405 on the ML310. Name this application
sw_crc_ppc.

Writing this software by yourself will greatly improve your understanding of CRC and significantly help
your design when you have to implement the CRC in hardware in the next lab.

2. Recompiling Linux

Since you have already configured Linux in Lab 3 you will only need to modify the RAM Disk and recompile
Linux. This subsection assumes you have already written your software CRC implementation and cross-
compiled it for the PowerPC405. Begin by copying your sw_crc_ppc application into your rootfs/root. You
will also need to copy some small test file so that you can run your CRC on that file.

cp “/lab4d/sw.crc/sw.crc_ppc ~/labd4/mkrootfs/rootfs/root/.
cp <some test file> ~/lab4/mkrootfs/rootfs/root/.

Following lab 3, recreate the RAM Disk Image by running mkext2.sh. This will write over your previous
ramdisk.image.gz. Since you copied your linux-base folder from your lab3 folder you will need to reset the
symbolic links. You will also need to clean your Linux Compilation. Run the following commands (you
need to run each command individually, don’t try and group them together or you will get an error about
missing /include/asm files):

make clean

make symlinks

make dep

make zImage.initrd

This will recompile Linux with your new RAM Disk resulting in a new zlmage.initrd.elf.

Change Directories to images and copy over your new zlmage.initrd.elf (overwriting your Lab 3 elf).
Using XMD create lab4.ace then use m/310-session to download and run on an ML310. Once you have
booted into Linux run your sw_crc_ppc on your test file.

Helpful Hints: Before running anything on an ML310 it is strongly encouraged that you can first run
your Software CRC on Homer. If it doesn’t work on Homer, it isn’t going to work on the PowerPC and you
will just waste your time creating a new RAM Disk, new ELF, new ACE, and transferring / running your
ACE file.



Homer (and most Linux distributions) have a program called: cksum which takes one parameter (a file
name) and returns the CRC checksum. Compare your output with this cksum.

3 Assignment

Your assignment is to develop a C program that implements the Cyclic Redundancy Check (cksum) algo-
rithm. You will write the program on Homer, compile it on Homer, and test it on Homer. Once you have a
working program you will then cross-compile it for the ML310 and run it just like you ran lab3_ppc.

This will require you to recreate the RAM Disk to include you new program and any test file(s). Keep
in mind the larger the test file or the more test files you include, the longer it will take to uncompress the
Linux Kernel so try and keep them somewhat small.

There are many implementations of CRC, we are implementing cksum. From the man page of cksum:

The cksum utility shall calculate and write to standard output a
cyclic redundancy check (CRC) for each input file, and also write to
standard output the number of octets in each file. The CRC used is
based on the polynomial used for CRC error checking in the ISO/IEC
8802-3:1996 standard (Ethernet).

The program cksum is already on Homer and available for you to use to compare your results. You will
know you have a working implementation when you can run your CRC cksum program on the same file as
cksum and get the same checksum. It is recommended that you read the manual page(s) for cksum. Try
running cksum on some file you have and see what is output.

Since there are many different algorithms available online we will give you the basic algorithm. It is up
to you to fully understand how the CRC works. You may (will) be tested on the functionality and might even
be asked to write it on an exam. The algorithm is given in the cre.c file described earlier in the handout.

The test data can come from anywhere — a old ACE file, a list of words (/usr/share/dict/words,
a C executable. However, you will want to compile the program with a native compiler first and test it on
the host so that you know what to expect as output from the FPGA-implementation. The TA or instructor
will give you another data file to test when you are ready to demo. So you will want to make sure you can
test different files easily.

Sample Output:

ffffffffffff Beginning Program —————————————
Name: Bond, James Bond

ID: 007

Enter File: test.data

Opening: test.data

Calculated CRC: 918749774

————————————— Exiting Program —-—————————————

The aim of learning this particular algorithm is three-fold. First, it is intended to help you exercise your
C skills. Second, it is an algorithm with an obvious hardware implementation. It also highlights one of the
common problems that crop up in reconfigurable systems when the host architecture and target architecture
are different.

(Hint: Think about (draw block diagrams) how this would be implemented in hardware. For Lab 5 you
will be required to only do the CheckSum (not opening files). The more you think about it the better you
will understand it and the more prepared you will be for Lab 5 and Lab 6.



4 Grading

This lab assignment is due Friday November 9th, 2007 by Spm (EST). To receive credit, you must meet
with either the T.A. or the instructor and demonstrate that you’ve completed the lab. By default, this can
be done in Woodward Hall room 237 (the Unix lab). Alternative times are possible but need to be arranged
in advance. Be prepared to answer in person any questions in the lab or recompile your program as part of
demonstrating that you completed the lab. Do not wait until the last minute to begin the project; extensions
will not be granted.

References

For more information about CRC-32 (and CRC’s in general), search google with the keywords crc cyclic
and cksum. Wikipedia has a solid (but very mathematical) description. This is a often-used programming
assignment, so there are lots of individual implementations. Be aware, though, that there are several incor-
rect solutions posing as correct solutions on the web. Many a student have been tripped up by this code!

To verify your programs functionality use cksum which is installed on Homer. It should be available on
most standard Linux distributions. Once you have verified it works on Homer Cross-Compile it to run on
the ML310. When running it on the ML310 you should get the same Checksum (assuming you are using
the same data file).



	Objective
	Lab Setup
	Assignment
	Grading

