
Sass: Fundamentals of Reconfigurable Computing Slide: 87 / 228

Design Tools & Core Library
Or, Brace yourself for deluge of facts.

Sass: Fundamentals of Reconfigurable Computing Slide: 88 / 228

Outline for Today

I Pre-Made Peripherals Cores

I Online Demo
I adding a core in XPS
I command-line tools

I System Architectures

Sass: Fundamentals of Reconfigurable Computing Slide: 89 / 228

System Cores

I Platform FPGA assemble systems from cores such as
I processors
I buses
I memory (controllers and on-chip memory)
I peripherals/devices

Sass: Fundamentals of Reconfigurable Computing Slide: 90 / 228

Where Do Cores Come From?

I cores can be implemented in CMOS or CLBs
I diffused (implemented in CMOS, license comes with

chip)
I pre-defined (provided by Xilinx)
I third-party (buy license from vendor)
I open source
I custom

Sass: Fundamentals of Reconfigurable Computing Slide: 91 / 228

IBM CoreConnect

I Xilinx Development Kit for Platform FPGAs heavily uses
a collection of cores from IBM

I designed for System-on-Chip (SoC)
I many of the cores have been reimplemented for CLBs
I use a subset of the features

I WARNING: acronym soup coming...

Sass: Fundamentals of Reconfigurable Computing Slide: 92 / 228

Processor Cores

I PPC405 – PowerPC processor; diffused IP

I microblaze – Microblaze soft processor
(implemented in CLBs)

Sass: Fundamentals of Reconfigurable Computing Slide: 93 / 228

Bus Cores

I PLB – Processor Local Bus (for PPC)

I LMB – Local Memory Bus (for Microblaze)

I OPB – On-Chip Peripheral Bus

I FSL – Fast Simplex Link Bus

I DCR – Device Control Register (a bus)

I OCM – On-Chip Memory Bus

Sass: Fundamentals of Reconfigurable Computing Slide: 94 / 228

Why So Many Bus Cores?

I different characteristics and trade-offs
I bandwidth and latency
I size (in CLBs)
I number of masters and slaves

I different intended uses

Sass: Fundamentals of Reconfigurable Computing Slide: 95 / 228

PLB

I 64-bit data, 100 MHz full-featured bus

I + 1600 MB/s peak bandwidth (533 MB/s typical)

I + multiple masters/slaves

I - complex interface

I - requires a relatively large amount of CLBs

Sass: Fundamentals of Reconfigurable Computing Slide: 96 / 228

LMB

I 32-bit data, 125 MHz processor/memory bus

I + 500 MB/s peak bandwidth (333 MB/s typical)

I - one master, one slave

I + requires a relatively few CLBs

Sass: Fundamentals of Reconfigurable Computing Slide: 97 / 228

OPB

I 32-bit data, 100 MHz “compromise” bus

I + 500 MB/s peak bandwidth (167 MB/s typical)

I + simple interface

I + requires fewer CLBs than PLB

Sass: Fundamentals of Reconfigurable Computing Slide: 98 / 228

FSL

I 32-bit data, 100 MHz point-to-point bus

I + fast, FIFO interface

I + direct connection to Microblaze

I + low CLB usage

Sass: Fundamentals of Reconfigurable Computing Slide: 99 / 228

DCR

I 32-bit data but only 10-bit address special-purpose
bus

I provides simple interface for low-bandwidth
communication between processor and peripherals

I avoids taking cycles from high-speed busses like PLB

I very low CLBs usage

Sass: Fundamentals of Reconfigurable Computing Slide: 100 / 228

OCM

I 32-bit data, memory bus

I comes in two flavors (D and I) for data and instruction
requests

I + 500 MB/s typical bandwidth

I + very low latency

I + directly connects PPC with Block RAMs

I provides predictable memory performance for a
range of address spaces

Sass: Fundamentals of Reconfigurable Computing Slide: 101 / 228

Simple Process/Memory System

PLB

PPC405 MEMORY

I let memory be abstract for the moment

Sass: Fundamentals of Reconfigurable Computing Slide: 102 / 228

Expanding Simple System

I if we were to add a simple peripheral (say a UART for
a serial port)

I peripheral does not need all the PLB features
I PLB interface takes a relatively large number of CLBs
I PLB is limited in the number of peripherals

thus adding an OPB is a good solution

Sass: Fundamentals of Reconfigurable Computing Slide: 103 / 228

Adding OPB to Process/Memory System

PLB

OPB

PPC405 MEMORY

OPB2PLBPLB2OPB

UART

Sass: Fundamentals of Reconfigurable Computing Slide: 104 / 228

Bridges

I notice that this design introduces two more cores
I PLB2OPB bridge — slave on PLB to translate PLB

requests to OPB requests
I OPB2PLB bridge — master on PLB to translate OPB

requests to PLB requests

I as the number of on-chip peripherals rise, this
organization offers space savings and performance
gains

Sass: Fundamentals of Reconfigurable Computing Slide: 105 / 228

Other Bridges

I OPB2DCR

I OPB_OPB

I OPB_PCI

Sass: Fundamentals of Reconfigurable Computing Slide: 106 / 228

Bus and Bus Arbiter

I some buses have an arbiter built-in to the core

I for others it comes in two cores; the bus itself and an
arbiter (the latter is only needed if there is more than
one master)

Sass: Fundamentals of Reconfigurable Computing Slide: 107 / 228

External (Off-Chip) Bus

I ML-310 has a PCI (Peripheral Component
Interconnect) bus slots on the board

I a multi-function PCI core is available
I simple OPB to PCI bridge
I to the PCI slots, the FPGA appears as a PC’s North

bridge

I a PCI arbiter is also available

Sass: Fundamentals of Reconfigurable Computing Slide: 108 / 228

Memory and Memory Controllers

I plb_bram_if_cntlr — interface between PLB and a

collection of BRAM resources
(note: a second core, bram_block , is a core that is

the collection of BRAMs)

I opb_bram_if_cntlr — interface between OPB and

bram_block

I plb_ddr (opb_ddr) — interface between PLB

(OPB) and external DDR SDRAM

Sass: Fundamentals of Reconfigurable Computing Slide: 109 / 228

Memory Controller Options

Several more options related to memory...
I Multi-Ported Memory Controller — interfaces one

external RAM resource to multiple on-chip entities
for example, one port on PLB another port may be a
custom core

I OCM has BRAM interface core

I newer technologies have cores as well (DDR2, QDR,
RAMBUS)

Sass: Fundamentals of Reconfigurable Computing Slide: 110 / 228

Peripherals

I communication
I low-speed, local
I high-speed/remote networking

I Digital I/O (GPIO) and Analog I/O

I Clock and Clock control

I Timers

I Multimedia drivers (video, touchscreens, etc.)

I Function Units (Computation)

Sass: Fundamentals of Reconfigurable Computing Slide: 111 / 228

Low-Speed Communication Protocols

I UART – Universal Asynchronous Receiver/Transmitter
a parallel-to-serial and serial-to-parallel converter

I RS-232C (UART16550)
I commonly known as a serial port
I remote networking

I IIC or I2C – Inter-Integrated Circuit
simple 2-wire bus for communication with multiple
peers

Sass: Fundamentals of Reconfigurable Computing Slide: 112 / 228

Low-Speed Communication Protocols (cont’d)

I SPI – Serial Peripheral Interface
a 4-wire solution developed by Motorola

I Dallas 1-wire – another simple serial interface

I I2O – Intelligent I/O
designed to work with PCI to off-load some I/O
processing (hardware RAID cards, for example)

Sass: Fundamentals of Reconfigurable Computing Slide: 113 / 228

Contrasting Low-Speed Communication Protocols

I UARTs, like RS-232C, were designed to interface a
computer and communication equipment (i.e.,
1-to-1)

I IIC – very small, lots of chipsets (used in TV InfraRed
remotes and other applications), ideal for talking to
slow EEPROMs

I SPI – alternative to IIC; large number of embedded
devices (like LCD, sensors, audio chips, etc.)

I I2O – not ‘open’ and not often used in embedded
systems

Sass: Fundamentals of Reconfigurable Computing Slide: 114 / 228

High-Speed Communication Protocols

I CAN – Controller Area Network
used in relatively large embedded systems (vehicles)

I Ethernet family
I original – 10 Mb/s eight-wire packet based
I FastEthernet – 100 Mb/s compatible with Ethernet
I GigE – 1000 Mb/s compatible with FastEthernet

switched or point-to-point

Sass: Fundamentals of Reconfigurable Computing Slide: 115 / 228

High-Speed Communication Protocols (parallel)

I SCSI – Small Computer System Interconnect
parallel bus, originally designed for high-speed
peripherals (like disk drives)

I ATA(IDE) – Advanced Technology Attachment

(Integrated Drive Electronics) developed during PC
era for inexpensive high-speed disk drives

Sass: Fundamentals of Reconfigurable Computing Slide: 116 / 228

High-Speed Communication Protocols (Serial)

I HDLC – standard version of SDLC; point-to-point
high speed serial link

I Aurora – Xilinx-specific serial protocol

I InfiniBand – another high-speed serial protocol

I PCI-Express – (PCI-e) another high-speed serial

protocol

Sass: Fundamentals of Reconfigurable Computing Slide: 117 / 228

EDK: System Components + Tools

I in addition to providing large catalog of IP cores to
use in your system, EDK includes several tools

I software tools (applications) read in hardware and
software specification files, then produce all of the
“glue” code (VHDL, C libraries, board constraint files)
needed to assemble the system

Sass: Fundamentals of Reconfigurable Computing Slide: 118 / 228

Hardware And Software Specification

I MHS – Microprocessor Hardware Specification file;
a simple ASCII text file that lists the hardware
components and their parameters

I MSS – Microprocessor Software Specification file;
lists the device drivers needed for each of the
hardware components

Sass: Fundamentals of Reconfigurable Computing Slide: 119 / 228

EDK Command-Line Tools

I in addition to providing large catalog of IP cores to
use in your system, EDK includes several tools

I platgen – reads MHS file and generates VHDL code

that connects up the IP of the system

I libgen – reads MSS file and creates C libraries for

the device drivers associated with the IP cores in the
system

Sass: Fundamentals of Reconfigurable Computing Slide: 120 / 228

Xilinx Platform Studio

I EDK is just handful of IP cores and command-line tools

I How do build a system from these cores?
I manually create a netlist (schematic capture)
I use structural VHDL and instantiate systems
I EDK: platgen, libgen, ...
I XPS: graphical user interface to EDK

Sass: Fundamentals of Reconfigurable Computing Slide: 121 / 228

EDK to XPS

I just like before (with the netlist to bitstream flow) all of
this can be manually executed one step at a time

I however, it is much easier to set up a Makefile that
does each step for you

I it is even easier to use a graphical user interface —
Xilinx Platform Studio (XPS) does just that

I XMP – GUI settings for XPS

	Overview

