
Sass: Fundamentals of Reconfigurable Computing Slide: 211 / 331

Operating Systems

I bootloaders/monitors get the system into a known
state

I the next step is to transfer control to an OS (or a
stand-alone application)

I variety of OSes — depends on need and resources

Sass: Fundamentals of Reconfigurable Computing Slide: 212 / 331

Operating System Choices

I range from very “thin” or “lightweigth” to full-fledged
OS

I thin: requires very little resources (RAM) but doesn’t
provide much application support (typically no
memory management, no networking, no device
drivers, incomplete C library)

I full-fledged: requires more resources (minimum RAM,
MMU hardware) but allows almost any program to be
compiled — from web servers to windowing systems

Sass: Fundamentals of Reconfigurable Computing Slide: 213 / 331

Examples OSes

I AT/Nucleous — a lightweight real-time operating
system

I Symbian — popular in mobile phone markets

I uCos

I µC-Linux — version of Linux for CPUs without memory
management units

I VxWorks — highly configurable Unix implementation

I Linux — same as the one used on desktops and
servers

Sass: Fundamentals of Reconfigurable Computing Slide: 214 / 331

Linux 2.4 — Forked Projects

I many embedded systems are built on 2.4 kernel

I advantages:
I solid, stable
I familiar

I disadvantages:
I no longer being improved
I fewer device drivers

Sass: Fundamentals of Reconfigurable Computing Slide: 215 / 331

Linux 2.6

I with 2.6 many new architectures support (PowerPC)

I advantages:
I device drivers
I stock kernel easier (no patches needed)
I still evolving

I disadvantages:
I still evolving

Sass: Fundamentals of Reconfigurable Computing Slide: 216 / 331

Linux v. Other Choices

I Linux has no licensing fees

I No direct support for Linux (3rd party)

I Linux development environment not geared to
embedded systems

I Linux has momentum (IBM: $100M/year investment;
Nokia, others as well)

Sass: Fundamentals of Reconfigurable Computing Slide: 217 / 331

Compiling Linux

I Step 1. Download kernel source
http://www.kernel.org/

I Step 2. Unpack the archive
tar xfz linux-2.6.16.18.tar.gz

I Step 3. Configure
cd linux-2.6.16.18

make menuconfig

I Step 4. Compile
make

http://www.kernel.org/

Sass: Fundamentals of Reconfigurable Computing Slide: 218 / 331

Learning Ins-and-Outs of Linux

I Two things to familiarize yourself with:
I menuconfig organization (find the options)
I directory structure (find the options)

Sass: Fundamentals of Reconfigurable Computing Slide: 219 / 331

Menuconfig

I simple, ASCII terminal program

I cascading menu items
I top-level: more general
I low-level: specific

I configures both
I build (what files get compiled)
I options (what features are included)

Sass: Fundamentals of Reconfigurable Computing Slide: 220 / 331

Menuconfig — Tri

I options
I yes/no : represented by *=yes, SPACE=no
I build-in/leave-out/module:

*=build-in, SPACE=exclude, M = loadable module

I choices effect...
I features/capabilities (of course)
I resident size of operating system (RAM)
I development time (how long to compile Linux!)

Sass: Fundamentals of Reconfigurable Computing Slide: 221 / 331

Linux 2.4 Menuconfig
Code maturity level options �->

Loadable module support �->

Platform support �->

General setup �->

Memory Technology Devices (MTD) �->

Plug and Play configuration �->

Block devices �->

Multi-device support (RAID and LVM) �->

Cryptography support (CryptoAPI) �->

Networking options �->

ATA/IDE/MFM/RLL support �->

SCSI support �->

Fusion MPT device support �->

I2O device support �->

Network device support �->

Amateur Radio support �->

Sass: Fundamentals of Reconfigurable Computing Slide: 222 / 331

Linux 2.4 Menuconfig (cont’d)
IrDA (infrared) support �->

ISDN subsystem �->

Old CD-ROM drivers (not SCSI, not IDE) �->

Console drivers �->

Input core support �->

Macintosh device drivers �->

Character devices �->

Multimedia devices �->

File systems �->

Sound �->

IBM 4xx options �->

USB support �->

Bluetooth support �->

Kernel tracing �->

Library routines �->

Kernel hacking �->

Sass: Fundamentals of Reconfigurable Computing Slide: 223 / 331

Figuring Out Options

I many options have short (cryptic) help message

I result of menuconfig is a .config file
I Makefile macros
I #-defines in C source code

I don’t understand an option in menuconfig, check
the source (C and Makefiles)

Sass: Fundamentals of Reconfigurable Computing Slide: 224 / 331

2.4 Build Options
I make menuconfig — builds .config file; sets up make

I make oldconfig — sets up make from existing .config

I make dep — builds C/header dependencies for make

I make bzImage — builds an ELF executable, compresses

I make zImage.initrd — builds an ELF executable,
compresses, adds ramdisk

I make modules — builds dynamically loadable modules

I make clean — removes dependencies, object,
executable

I make mrproper — clean and remove .config

Sass: Fundamentals of Reconfigurable Computing Slide: 225 / 331

Linux 2.4 Build Example

(online)

Sass: Fundamentals of Reconfigurable Computing Slide: 226 / 331

2.4 Kernel Directory Structure

at the top level, there are several key directories
I arch — architecture-specific files (PPC, i386, etc.)

I Documentation — text file descriptions

I drivers — support for various peripheral devices

I fs — code for different filesystems

I init — start/stopping kernel

I kernel — scheduler, timer, etc.

I net — TCP/IP networking code

I mm — memory management

Sass: Fundamentals of Reconfigurable Computing Slide: 227 / 331

2.4 Drivers Directory Structure

under the drivers directory
I general support for various (general) high-speed and

low-speed buses

I block — specific block-oriented devices (hard drive)

I char — specific stream-oriented devices (terminals)

I net — specific network interface chips (Ethernet NIC)

I sound and video — specific multimedia chips

Sass: Fundamentals of Reconfigurable Computing Slide: 228 / 331

Linux 2.4 Directory Example

(online)

Sass: Fundamentals of Reconfigurable Computing Slide: 229 / 331

Making Sense of Options

I practice, practice, practice

I learn the PC architecture
I IDE v. SATA
I I2C v. SPI
I 16550 UART v. USB

I look at working .configs (/proc/ikconfig/config)

Sass: Fundamentals of Reconfigurable Computing Slide: 230 / 331

Making Sense of Source Code

I study easy things first
I study a simple driver for familiar hardware
I look at (arch) architecture-specific code
I investigate networking stack
I tackle kernel, memory management, etc.

I make small changes and try to compile

I /proc is your friend!

	Overview

