Sass: Fundamentals of Reconfigurable Computing

Slide: 23 / 228

Digital Computing Systems

» Overview of Computing Systems
» Combinational Circuits

» Sequential Circuits

Sass: Fundamentals of Reconfigurable Computing Slide: 24 / 228

Abstract View of Computer System

/\,\jr:irgy

— —
inputs —» — outputs

—> system —

environment

Sass: Fundamentals of Reconfigurable Computing Slide: 24 / 228

Abstract View of Computer System

/\,\jr:irgy

inputs —»> — outputs
: M :

—> system —

environment

Sass: Fundamentals of Reconfigurable Computing Slide: 25 / 228

Mechanical Computing Machine

» input on the left,
oufput on the right

UP

DOWN

Sass: Fundamentals of Reconfigurable Computing Slide: 25 / 228

Mechanical Computing Machine

» input on the left,
oufput on the right

» valve, water wheel,
weight

Sass: Fundamentals of Reconfigurable Computing Slide: 25 / 228

Mechanical Computing Machine

» input on the left,
oufput on the right

» valve, water wheel,
weight

» change input and
output changes
Z What have we built?
DOWN

Sass: Fundamentals of Reconfigurable Computing Slide: 25 / 228

Mechanical Computing Machine

» input on the left,
oufput on the right

» valve, water wheel,
weight

» change input and
output changes

What have we built? an in-
verter

Sass: Fundamentals of Reconfigurable Computing Slide: 26 / 228

Babbage Analytical Machine — An Early
Example

» first general-purpose
computer (1833)

» used punch cards to
encode instructions

» first programmer: Lady
Ada Byron, Countess of
Lovelace (1842)

» note: Boolean Logic
didn’t arrive until 1854

Sass: Fundamentals of Reconfigurable Computing Slide: 27 / 228

Commonality of All Computing Systems

Think about the basic components:
» input

» outfput

» function or operation

Sass: Fundamentals of Reconfigurable Computing

Slide: 28 / 228

Inputs And Output Mechanisms

Inputs and ouputs have some mechanism:

» inputs: sensing
» outputs: signaling
» encoding

» semantics

Sass: Fundamentals of Reconfigurable Computing Slide: 29 / 228

Sensing/Signalling

» sensing/signaling are
physical phenomenon

DC voltage

light

» sound waves

current

vy

v

Sass: Fundamentals of Reconfigurable Computing

Slide: 29 / 228

Sensing/Signalling

» sensing/signaling are
physical phenomenon
» DC voltage
> light
» sound waves
» current

» or a waving flag: input
mechanism does NOT
have to be the same as
output mechanism!

DOWN

:

Sass: Fundamentals of Reconfigurable Computing

Slide: 30 / 228

Encoding

Lots of standard encoding:
» DC voltage OV and 5V (for0 and 1)

» DC voltage -12V and +12V (for 1 and 0)
» LEDs: on or off

» pushbuttons: depressed or not

Sass: Fundamentals of Reconfigurable Computing Slide: 31/ 228

Encoding (2)

once the input/output has been encoded to O or 1, we
might do another layer of encoding; groups of bits:

» aninteger (binary; i.e. x; x 27 + x4 x 2%+ --.)
» an infeger (BCD)
» a character (ASCII)

» a non-standard encoding

Sass: Fundamentals of Reconfigurable Computing Slide: 32 / 228

Combinational Circuits

to make designing these systems reasonable, we
represent

» inputs and outputs with Boolean variables
Xy z

» semantics of complex ideas with Boolean expressions
Xy+z

» connection between inputs and outputs with Boolean
functions
f=xy+z

Sass: Fundamentals of Reconfigurable Computing Slide: 34 / 228

Combinational Circuits in VHDL

» the function
f=xy+z

» in VHDL would be

entity fun is
port (x, y, z: in bit;
f: out bit);
end entity fun ;
architecture dataflow of fun is
begin
f <= not(x) and y or z ;
end dataflow ;

Sass: Fundamentals of Reconfigurable Computing Slide: 35 / 228

Characteristics of Combinational Circuits

» outputs depend only on the current set of inputs
» expressed strictly as a set of Boolean functions
A=xXy+z

B=x'yz+ xy

Sass: Fundamentals of Reconfigurable Computing Slide: 36 / 228

(Synchronous) Sequential Circuits

» superset of combinational circuits

» outputs depend not only on the current set of inputs
but all previous inputs since reset

» includes memory elements (flip-flops or latches)
these hold the “current state” of the machine

» includes a clock and reset

» derived from a Finite State Machine (FSM)

Sass: Fundamentals of Reconfigurable Computing Slide: 37 / 228

State Chart

» FSM can be draw with
a state chart

» also known as state
diagram

» Moore-type: outputs
are based on state

» Mealy-type: outptus
are based on transition

Sass: Fundamentals of Reconfigurable Computing Slide: 38 / 228

Sequential Circuit (Assemble)

from the state chart we can build a sequential circuit

1.

franslate chart into state table (present state, next
state, output)

start with template (next state function, memory,
output function)

derive functions from state table; minimize

assemble circuit

Sass: Fundamentals of Reconfigurable Computing Slide: 39 / 228

Sequential Circuit (VHDL)

1. decide whether to code in 1, 2, or 3 VHDL processes

» 2is most common, 3 is a reasonable choice
» all synthesize; decision is based on what’s easier to
understand and code

2. create a type for each state

3. write process 1: a CASE statement with a WHEN for each
state; infer memory

4. write process 2: a CASE statement that drives output
signals

Sass: Fundamentals of Reconfigurable Computing Slide: 41 / 228

Example: Sequential Circuit (VHDL) — 1

As with all VHDL, we start with an entity:

library IEEE;
use IEEE.std_logic_1164.all;
entity fsm_2 is
port (clk, reset, x1 : IN std_logic;
outp : OUT std_logic);
end entity;

Sass: Fundamentals of Reconfigurable Computing

Slide: 43 / 228

Example: Sequential Circuit (VHDL) — 2

architecture behl of fsm_2 is
type state_type is (s1,s2,s3,s4);
signal state: state_type ;
begin
processl: process (clk,reset)
begin
if (reset =’1’) then state <=s1;
elsif (clk=’1’ and clk’Event) then
case state is
when s1 => if x1=’1’ then
state <= s2;
else
state <= s3;
end if;
when s2 => state <= s4;
when s3 => state <= s4;
when s4 => state <= sl;
end case;
end if;
end process processl;

Sass: Fundamentals of Reconfigurable Computing Slide: 45 / 228

Example: Sequential Circuit (VHDL) — 3

... then the second process.

process2 : process (state)
begin
case state is
when sl => outp <= ’17;
when s2 => outp <= ’17;
when s3 => outp <= ’0’;
when s4 => outp <= ’07;
end case;
end process process2;
end behil;

(last line ends the architecture blocked started on previous
slide)

Sass: Fundamentals of Reconfigurable Computing Slide: 46 / 228
Moore-type Machine
reset %
;] CIR - > a
fnext_state M > output [>b
- H—»C

cycle

Sass: Fundamentals of Reconfigurable Computing

Slide: 47 / 228

Mealy-type Machine

reset

>
|
—
I
—

f

next_state

cycle

output

- a
- b

- C

Sass: Fundamentals of Reconfigurable Computing

Slide: 48 / 228

Example: Compute ‘next day’

» given the current day of the week, compute the next

day

» start by defining semantics and encoding the inputs

and outputs

Day Encoding
MONDAY 000
TUESDAY 001
WEDNESDAY 010
THURSDAY 011
FRIDAY 100
SATURDAY 101
SUNDAY 110

Sass: Fundamentals of Reconfigurable Computing Slide: 49 / 228

Determine Equations

» next, define the operation by relating the inputs and
outputs with Boolean functions
» (Minimize)
Governing Equations
x = ab +bc
y = bc+dbc
z = bd+dbcd

Sass: Fundamentals of Reconfigurable Computing Slide: 50 / 228

Next-Day Circuit

bc X

Sass: Fundamentals of Reconfigurable Computing

Slide: 51 /228

What If We Changed the Encoding?

Day Output Encoding
MONDAY 110
TUESDAY 000
WEDNESDAY 001
THURSDAY 010
FRIDAY 011
SATURDAY 100

SUNDAY

101

Sass: Fundamentals of Reconfigurable Computing Slide: 52 / 228

Block Diagrams

» as the number of states grows from 0 to 5 — 10, this
analysis tends to overwhelm the human mind

» the solution is abstract and build hierarchically

1. design a simple component and give it a name
2. assemble systems from components

Sass: Fundamentals of Reconfigurable Computing Slide: 53 / 228

Example: Block Diagram

» o common example... recognize it?

12

Sass: Fundamentals of Reconfigurable Computing Slide: 53 / 228

Example: Block Diagram

» o common example... recognize it?

state machine

» (a somewhat customized) a datapath

Sass: Fundamentals of Reconfigurable Computing

Slide: 54 / 228

Hierarchy

» Lastly, we can take systems designed from
components and give them names to make new

compoents

—>

ul :seqsum

» and so on...

Sass: Fundamentals of Reconfigurable Computing Slide: 56 / 228

Structural VHDL

insert VHDL example here!

library IEEE;
use IEEE.std_logic_1164.all;
entity sumseq is
port (clk, reset, x : IN std_logic_vector(31 downto 0);
sum : OUT std_logic_vector(31 downto 0));
component ...
component ...
component ...
end entity;

	Overview

