
Sass: Fundamentals of Reconfigurable Computing Slide: 252 / 331

Accessing Custom Computing Cores

I Standalone C Progams — simple!
I set a pointer (x) to the base address from

xparameters.h file
I read/write registers with *x

I With an OS — a little more complicated



Sass: Fundamentals of Reconfigurable Computing Slide: 253 / 331

OS Issues

I OS provides protection so processes cannot disrupt
each other

I OS manages resources (including custom cores)

I OS turns on Memory Management Unit (MMU) so
processes have execute in a virtual address space
(xparameters.h and custom cores have physical
addresses

I Consequently, we cannot just use physical addresses
in our applications.



Sass: Fundamentals of Reconfigurable Computing Slide: 253 / 331

OS Issues

I OS provides protection so processes cannot disrupt
each other

I OS manages resources (including custom cores)

I OS turns on Memory Management Unit (MMU) so
processes have execute in a virtual address space
(xparameters.h and custom cores have physical
addresses

I Consequently, we cannot just use physical addresses
in our applications.



Sass: Fundamentals of Reconfigurable Computing Slide: 254 / 331

Accessing Hardware with an OS

Application ↔ Operating Systems ↔ Hardware



Sass: Fundamentals of Reconfigurable Computing Slide: 254 / 331

Accessing Hardware with an OS

Application ↔ Operating Systems ↔ Hardware
Or (more precisely)

Application ↔
Operating System

device driver ↔ Hardware



Sass: Fundamentals of Reconfigurable Computing Slide: 255 / 331

Our Job

I create custom hardware core

I create base platform system with custom core

I create a software application

I create root filesystem

I create device driver

I compile kernel

I roll it all into an ACE file



Sass: Fundamentals of Reconfigurable Computing Slide: 255 / 331

Our Job

I create custom hardware core

I create base platform system with custom core

I create a software application

I create root filesystem

I create device driver

I compile kernel

I roll it all into an ACE file



Sass: Fundamentals of Reconfigurable Computing Slide: 255 / 331

Our Job

I create custom hardware core

I create base platform system with custom core

I create a software application

I create root filesystem

I create device driver

I compile kernel

I roll it all into an ACE file



Sass: Fundamentals of Reconfigurable Computing Slide: 256 / 331

Creating a Device Driver for Kernel

I Two Ways of Compiling
I “in-tree” — starting with a Linux kernel, we add our

source code in an appropriate subdirectory
(and update existing Makefiles)

I “out-of-tree” — in our own subdirectory, we add our
source code and create our own Makefile; an
environment variable points to the Linux’s kernel
subdirectory

I Device driver can either be directly compiled in (i.e.
the equivalent of ‘Y’ in menuconfig) or it can be
compiled as a module (a ‘M’ in menuconfig)

I Note: to have your device show up in menuconfig is
another step beyond what we describe here



Sass: Fundamentals of Reconfigurable Computing Slide: 257 / 331

Linux Kernel Modules

I our focus: out-of-tree compilation, always as a
module

I whole classes can be taught about single kernel
subsystems!

I we are going to cherry-pick for this class

I you must read on your own:
http://lwn.net/Kernel/LDD3/

Chapter 3: Char Devices

http://lwn.net/Kernel/LDD3/


Sass: Fundamentals of Reconfigurable Computing Slide: 258 / 331

Kernel Module Commands

I lsmod

I insmod

I rmmod

I modprobe



Sass: Fundamentals of Reconfigurable Computing Slide: 259 / 331

Device Files

I major, minor numbers

I character versus block

I mknod

I /dev

I udev v. MAKEDEV



Sass: Fundamentals of Reconfigurable Computing Slide: 260 / 331

Communication through Files

I application side — system calls

I kernel side — file operations


	Overview

