
Two Process FSM Tutorial

November 4, 2007

1 Objective

The goal of this tutorial is to explain how to create a Two Process Finite State Machine (FSM). While there
are a variety of methods to creating finite state machines, this method provides synthesizable VHDL for use
with FPGAs. The tutorial will explain the steps of modifying an existing IP Hardware Core template (look
at Creating a Hardware Core tutorial).

2 Getting Started

This tutorial assumes you have already built a base system and have gone through and created a Hardware
Core through Create or Import Peripheral. Make sure your core has at least 3 Software Accessible Reg-
isters (32-bits each) as we will use 3 for our example. If you have more that is ok, if you have less, go and
create a new hardware core. Navigate to the core’s VHDL folder which contains user logic.vhd. Make a
backup copy of the file.

cp user logic.vhd user logic.vhd bkup

This tutorial will create a hardware core that will perform a look-up from a table, increment the value by 5
and store the result in a software addressable register. This requires a state machine because we will either
be in some idle state, waiting for the processor to write a look-up value (the index for the table) or processing
the data (adding 5 to the output of the table).

3 Modifying Signals Name

Using your favorite Text Editor (cough - Emacs!) open user logic.vhd. Xilinx’s Hardware Core template
provides basic read and write functionality to your three software addressable registers. Xilinx’s names
these registers slv reg0, slv reg1, slv reg2. These names don’t provide a lot of meaning so we will rename
them to be more meaningful.

• Rename slv reg0 to control reg

• Rename slv reg1 to data in reg

• Rename slv reg2 to calc reg

It is important to rename all instances of the signals. The signals are like variables in C. Feel free to rename
these registers to whatever makes the most sense to you or fits within your own coding style. Understand
that these were renamed for this specific example.

1

4 Adding Additional Signals

It is possible to add additional signals to your User Logic. These signals; however, will not be software
accessible. You can think of them as local variables to your hardware core. The first three software accessible
registers are more like global variables. The local signals will allow us to register the transition between
signals in order to synchronize them to the clock.

We will add these signals within the user logic.vhd under the Architecture IMP declaration (hint, look
around line 124). You will see the following comment:

--USER signal declarations added here, as needed for user logic

Add your own signals below this line. The signals we need for this example are:

signal table index : std logic vector(0 to 3);
signal table data out : std logic vector(0 to 31);
signal calc reg next : std logic vector(0 to 31);
type CALC CNTL SM TYPE is (idle, calc) ;
signal current state, next state : CALC CNTL SM TYPE := idle;

Table Index will be a number between decimal 0 and 7 that we calculate based on the user’s Data In value.
It will be used by a separate process that will calculate the Table Data Out value. We will then add 5 to
this Table Data Out value. Calc Reg Next is the registered value of the calculation. In order to synchronize
the transition between calc reg and the clock we need to explicitly state the value for calc reg (the current
value) and calc reg next (the value of calc reg during the next clock cycle).

Finally we need to create a State Machine type. This is like an enumeration in C. The CALC CNTRL SM TYPE
(Calculation Control State Machine Type) can either be in the idle or calc state. That means we have two
states in our state machine. This is; however, only the type of the state machine. We need to create two
signals that will actually hold the current state and next state of the state machine. They will both be of type
CALC CNTL SM TYPE and be initialized to idle.

5 Adding FSM Functionality

If you look over the user logic.vhd file you will see that there are currently two processes created:

1. SLAVE REG WRITE PROC

2. SLAVE REG READ PROC

We want to add two processes of our own under these two processes. Look for the line (around line 221):

end process SLAVE REG READ PROC;

After this line you will need to create the first Process of our Two Process Finite State Machine. The first
process is going to control the state transitions and the current signal value to their next value. This will
happen every clock cycle. To begin we need to create the process (Look at Figure 1).

The first line says we will create a process called CALC FSM STATE PROC. It will be sensitive to the
Clock and Reset signals from the Bus into our IP hardware core, the next state signal and the calculation
register’s next signal. Within the process you see the If statement on the Reset signal. This means if there

2

CALC FSM STATE PROC : process (Bus2IP Clk, Bus2IP Reset,
next state, calc reg next) is

begin
if Bus2IP Reset = ’1’ then
-- Reset Calculation Register (Hardware Reset)
calc reg <= (others => ’0’);
current state <= idle;

elsif Bus2IP Clk’event and Bus2IP Clk = ’1’ then
-- Update Signals
current state <= next state;
calc reg <= calc reg next;

else
-- Latch Signals (keep them the same value)
current state <= current state;
calc reg <= calc reg;

end if;
end process CALC FSM STATE PROC;

Figure 1: Calculation Finite State Machine State Process

is a Reset issued from the Bus to our core it should set the value of the calculation register to all 0’s (zeros)
and set the current state back to the idle state.

The Else If clause is what is doing the synchronization (registering the signals). If there is a Bus Clock
Event (meaning the Clock has either changed from low to high or high to low) and the value is 1 then that
means we should update the signals to their “next” value. Otherwise we should keep them the same.
Next we need to write the Logic part of the Finite State Machine. This is the implementation portion of the
FSM. We are telling the hardware what to do. We will create the second process of our Two Process Finite
State Machine (look at Figure 2).

The Logic Process is in charge of doing the “work” of the FSM. Here we begin by assigning the next
value of the signal to its current value. This is done with a Flip Flop. We do this for all signals that will
change in the State Process. We also calculate the table index by taking the data in registers 24 to 31 bits.
We do not need to register the table index because we constantly are calculating it and want it to calculate
the next value immediately after data in reg changes.

The Case Statement looks at the current state and depending on which state it is, performs some logic.
We will begin by discussing what each state is doing.
First the Idle state:

First we check the control register. This register allows the user reset the Calc Register by writing a ’1’
to control register 31st bit. Otherwise, if that bit isn’t set we will check to see if slv reg write select has a
value of “010” which means that data has been written to the Data In Register. If data has been written then
we want to jump to the Calc State and perform the calculation. Otherwise we want to remain in the Idle
State waiting for data to be written.
Second the Calc State:

Now all we have to do is perform the calculation. Since we are constantly calculating the Table Look-up
value we know that the Table Data Out register contains the value we want to add 5 to. We simply add 5 and
store it into the calc reg next register. This will update calc reg on the next clock cycle. Then since calc reg

3

CALC FSM LOGIC PROC : process(current state,
control reg, data in reg) is

begin
-- Flip-Flop Signals
next state <= current state;
calc reg next <= calc reg;
-- Constantly Calculate the Table Index
table index <= data in reg(28 to 31);
-- State Machine
case current state is
-- Idle State
when idle =>
if control reg(31) = ’1’ then
-- Reset calc (Software Reset)
calc reg next <= (others => ’0’);
next state <= idle;

elsif slv reg write select = ‘‘010’’ then
-- Else If Data is written to Data In Register
next state <= calc;

else
-- Else Stay in Idle State
next state <= idle;

end if;
-- Calc State
when calc =>
calc reg next <= table data out + 5;
next state <= idle;

-- Other Case (Something Crazy Happened)
when others =>
calc reg next <= x’’DEADDEAD’’;
next state <= idle;

end case;
end process CALC FSM LOGIC PROC;

Figure 2: Calculation Finite State Machine Logic Process

4

TABLE LOOKUP PROC : process(table index) is
begin
case table index is
when x’’0’’ => table data out <= x’’00000000’’;
when x’’1’’ => table data out <= x’’00000001’’;
when x’’2’’ => table data out <= x’’00000002’’;
when x’’3’’ => table data out <= x’’00000003’’;
when x’’4’’ => table data out <= x’’00000004’’;
when x’’5’’ => table data out <= x’’00000005’’;
when x’’6’’ => table data out <= x’’00000006’’;
when x’’7’’ => table data out <= x’’00000007’’;
when others => table data out <= x’’ffffffff’’;

end case;
end process TABLE LOOKUP PROC;

Figure 3: Table Look-up Process

is software accessible it will be able to be read from the PowerPC.
Others:

We need an others state just in case something crazy happens (we should never transition to this state,
but if we ever read back DEADDEAD we should be suspicious of our hardware core’s code.

6 Adding Look-up Table

Now before we can put it all together we need to add a process that will contain the Look-up Table. We
do this by simply creating another process called TABLE LOOKUP PROC which will only be sensitive to
table index. Then depending on the table index we will output a specific value to table data out which will
be used by our FSM (Look at Figure 3).

7 Putting It All Together

Now you could connect your hardware core to your base system, generate addresses, and write an application
to drive it. Your application could write data to the Data In Register and then Read back from the Calc
Register and you should see a result you expect.

5

	Objective
	Getting Started
	Modifying Signals Name
	Adding Additional Signals
	Adding FSM Functionality
	Adding Look-up Table
	Putting It All Together

