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ABSTRACT 
Aim of this paper is to  propose a methodology for the defini- 
tion of an instruction-level energy estimation framework for 
VLIW (Very Long Instruction Word) processors. The power 
modeling methodology is the key issue to  define an effec- 
tive energy-aware software optimisation strategy for state- 
of-the-art ILP (Instruction Level Parallelism) processors. 
The methodology is based on an energy model for VLIW 
processors that exploits instruction clustering to achieve an 
efficient and fine grained energy estimation. The approach 
aims at reducing the complexity of the characterization prob- 
lem for VLIW processors from exponential, with respect to 
the number of parallel operations in the same very long in- 
struction, to  quadratic, with respect to  the number of in- 
struction clusters. Furthermore, the paper proposes a spa- 
tial scheduling algorithm based on a low-power reordering 
of the parallel operations within the same long instruction. 
Experimental results have been carried out on the Lx pro- 
cessor, a 4-issue VLIW core jointly designed by HPLabs and 
STMicroelectronics. The results have shown an average er- 
ror of 1.9% between the cluster-based e s t i m a t i o n  model and 
the reference design, with a standard deviation of 5.8%. For 
the Lx architecture, the spatial instruction scheduling algo- 
rithm provides an average energy saving of 12%. 

Categories and Subject Descriptors 
B.7.0 [Design Aids]: General; B.6.0 [Logic Design]: Gen- 
eral 

General Terms 
Experimentation 
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power estimation, vliw architectures 
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1. INTRODUCTION 
The overall goal of this work is to  propose a methodology 

for the definition of an iiistruction-level energy estimation 
framework for VLIW processors. This methodology is the 
key issue to enable an effective low-power hardware and soft- 
ware exploration framework for state-of-th'z-art ILP proces- 
sors. The approach presented in this paper aims at extend- 
ing and integrating into an overall power estimation and op- 
timisation framework our work previously proposed in [l-31, 
targeting an instruction-level energy model to  evaluate the 
energy consumption associated with a software execution 
on a pipelined VLIW core. A pipelined VLIW proce:;sor 
executes a set of explicitly parallel operations (also called 
syllables) during each clock cycle; this set of operations are 
statically scheduled to  constitute the Very Long Instmchion 
Word (also called instruction or bundle). 

The proposed strategy is based on the combination .and 
interaction of different well known techniques such as clus- 
tering and instruction scheduling to obtain an overall hard- 
warelsoftware power optimization for VLI7N embedded :jys- 
tems. 

First, we aim at increasing the efficiency $of the power mti- 
mation by reducing the complexity of the VLIW instruction- 
level model. With this purpose, we apply the instruction 
clustering concept to the VLIW instruction set, by charac- 
terizing only each single operation in isolation, then by clus- 
tering operations considering their average energy cost and 
by characterizing the inter-instruction effects on the clusters. 

Second, the power optimization methodlology acts at the 
software level through the definition of a technique to stat- 
ically optimize the executable application:;. The proposed 
technique consists of a spakial scheduling algorithm basecl on 
the reordering of parallel operations within the same bun- 
dle with respect to  the previous bundle. 'The algorithm is 
based on the minimization of a cost function that considers 
inter-instruction effects and power figures carried out from 
the power characterizati0.n phase. 

The experimental results validating the characterization 
and scheduling approaches have been carried out on the Lx 
architecture, a scalable arid customizable processor technol- 
ogy [4] designed for multimedia and signal processing em- 
bedded applications. The Lx processor is a statically sched- 
uled VLIW multi-clustered architecture jointly designed by 
Hewlett-Packard and STMicroelectronics, based on a multi- 
ple-issue VLIW core. 

The paper is organized as follows. Some relevant back- 
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ground works on instruction-level power analysis and opti- 
mization are summarized in Section 2. An overall descrip- 
tion of the proposed VLIW power model is given in Section 
3,  while Section 4 introduces the methodology to cluster op- 
erations with the same power behavior. Some experimental 
results are reported in Section 5, while Section 6 contains 
some concluding remarks and outlines some future research 
directions. 

2. PREVIOUS WORK 
Instruction-level power estimation techniques are based 

on the functional simulation of the application software on 
the target ISA (Instruction Set Architecture). During the in- 
struction set simulation (ISS), a black-box instruction-level 
model correlates the power cost to each individual instruc- 
tion, by considering both internal state effects, pipeline stalls 
and cache misses occurred at run time. One of the most sig- 
nificant works on instruction-level power analysis ( ILPA,  
for brevity) is based on electrical measurements techniques 
[5-71 to characterize the average energy per instruction and 
an average inter-instruction effect energy. The work out- 
lines that the spatial complexity of an instruction-level en- 
ergy model that considers y inter-instruction effects (i.e., 
between instruction i and i - y) and x instructions in the 
ISA is O(xyfl). The authors recognized that instruction 
clustering could be a feasible way to reduce this complex- 
ity: grouping the instructions in c clusters, the complexity 
is reduced to  O(cy+'). 

The instruction-level power model proposed by Russel et 
al. [8] considers the average instruction energy as invariant 
for all instructions in the ISA. More specifically, this model 
is based on the observation that, for a given class of proces- 
sors, the energy per instruction shows a very small variance. 
Sarta et al. [9] propose a processor power model by consid- 
ering possible inter-instruction effects as well as the actual 
data statistics. Although the developed power model is quite 
accurate, it lacks general applicability, being developed only 
for a specific embedded processor. Klass et al. [lo] propose a 
power model in which inter-instruction effects are measured 
by considering only the additional energy consumption ob- 
served when a generic instruction is executed after a NOP 
(the proposed power model is also called the NOP model). 
This model could he an effective solution to  the problem of 
spatial complexity proper of instruction-level power models. 

Concerning low-power scheduling algorithms, some ap- 
proaches have been proposed by Tiwari et al. [5-71, but these 
works target either scalar or DSP processors with packed op- 
erations and their extension to VLIW code generation is not 
straightforward. Other authors [ll, 121 introduced power op- 
timization methodologies from a software-level perspective, 
such as pre-processing and restructuring the source code to 
reduce the power consumption of the executable code. Other 
techniques, such as spatial and temporal scheduling, have 
been proposed by Lee e t  al. [13]. Spatial scheduling tries 
to  directly minimize the switching activity on the instruc- 
tion bus by choosing suitable pairs of instructions through 
a bipartite matching scheme. Since the temporal scheduling 
algorithm is an NP-hard problem, it is heuristically solved 
by reducing it to  a bipartite matching scheme on a limited 
instructions window. Finally, Parikh et al. [14] modified list- 

scheduling by trading-off energy and speed simultaneously. 

3. VLIW POWER MODEL 
Concerning k-issue ILP processors, where each instruction 

is composed of k parallel.operations, we have that, consid- 
ering x operations in the ISA, and y inter-instruction ef- 
fects, the complexity of the instruction-level energy model 
is O(xk*(v+')). In [3], we introduced the temporal and spa- 
tial additave properties, to deal with such a complexity. The 
temporal additive property enables the decomposition of the 
instruction energy into the pipeline stages of the processor. 
The spatial additive property enables the decomposition of 
the energy dissipated by the processor in the single energy 
dissipated by the processor parallel paths followed by the 
operations. 

More in detail, the model considers the energy associated 
with the n-th instruction wn as dependent on its own prop- 
erties (e.g., class of the instruction, addressing mode and so 
on) as well as on its execution context, i.e., the previous in- 
struction wn-l and the additional stall/latency cycles intro- 
duced during the execution of the instruction. Besides, the 
inter-instruction effect between wn and wn-l can be decom- 
posed into the sum of the inter-operation effects (wklwk-1) 
on the k-th parallel path (or lane) of the processor [3]: 

+m:*p:*ss+l :*q:*Ms]  (1) 

where the term S is the set of pipeline stages of the 
processor, U,(OlO) is the base energy cost that represents 
the energy consumed by stage s during an execution of 
a bundle constituted entirely by NOPs (0 = [NOP.. . NOPIT), 
v,(~fIw:-~) is the additional energy contribution due to 
the change of operation ( ~ k - ~  + wk) on the same lane I C ,  
m: ( I : )  is the average number of additional cycles due to  a 
data (instruction) cache miss during the execution of the wn 
in s, p y  (q:) is the probability that this event occurs, and S, 
(M,) is the energy consumption per stage of the processor 
modules that are active due to  a data (instruction) cache 
miss. 

The term E, U,(OlO) corresponds to the power consump- 
tion of the core during NOPs and and we assume it can 
be substituted by the average base cost U(Ol0) (as con- 
firmed by the experimental results where this approach has 
been applied). Besides, E, E k  vs(wk/wk-l) can be substi- 
tuted by a cost dependent only on the pair of instructions 
(Ek  v(wk l ~ k - ~ ) )  that corresponds to  the energy consump- 
tion of the core while it is executing the same pair of instruc- 
tions (wn, wn-l). For instruction and data cache misses, we 
assume that the probabilities per stage ( p  and q )  and their 
penalties (m  and I )  can be averaged for each instruction of 
the stream: 

* P Y  * s, + 1: * 4s" * M,) + (m * p *  s+ 1 * q * M )  
S 

(2) 
where m(l)  is the average data (instruction) cache miss 

length, p ( q )  is the average probability per stage and per in- 
struction that a data (instruction) cache miss can affect one 
instruction and S ( M )  is the average energy consumption of 
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the entire processor during these events. 

duced to: 
Based on these assumptions, the equation (1) can be re- 

+ m * p  * s + 1 * q * M ]  (3) 

For a k-issue VLIW core, the complexity of the model 
is now quadratic with respect to the number of operations 
into the instruction set (O(k * (ISAI')), while a black-box 
model would have a complexity O(IISAIk). This implies a 
significant reduction of the characterization effort, since the 
number of experiments to be done is reduced exponentially. 

In the next section, we show how this model can be fur- 
ther simplified by clustering the operations of the ISA with 
respect to their average energy consumption to achieve a 
faster and more effective characterization of the core's power 
consumption, while preserving the model accuracy. 

4. CLUSTERING OF THE OPERATIONS 
In this work, we consider two operations in the I S A  as 

"different" if they differ either in terms of functionality (i.e., 
opcode) or in terms of addressing mode (immediate, regis- 
ter, indirect, etc.). Even without considering data differ- 
ences (in terms of register names or immediate values), the 
number of operations pairs to be considered in equation (3) 
would be too large to be characterized with a transistor- 
level or even gate-level simulation engine. In the case of the 
Lx processor, for example, the I S A  is composed of about 
70 operations, but considering also the possible addressing 
modes for each operation, we would need to characterize 
6126 pairs of operations to completely define our model (see 
the characterization of the matrix v in equation (3)). 

To give a rough idea of the time required for the character- 
ization phase, a Sun Ultra Sparc 60 workstation at 450MHz 
with 1GB RAM performs a gate-level power simulation of 
the Lx core in 25 minutes. Given such simulation time, we 
would need approximately 108 days to perform the complete 
characterization phase on a single workstation. 

To reduce the number of experiments to be generated dur- 
ing the characterization phase, we propose to apply the well 
known cluster analysis on the operations of the ISA. The 
basic idea of the cluster analysis consists of grouping into 
the same cluster the operations showing a power cost close 
to each other. The power cost of an operation is defined as 
the power consumed by the processor when it executes that 
operation. 

Among the various clustering algorithms appeared in lit- 
erature so far (see [15,16] for a survey), we have chosen the 
k-mean clustering algorithm since it requires a lower com- 
putational cost. 

Given a set of energy values 0 = { e l . .  . e t . .  . eo} ,  where 
et is the energy consumption of instruction t measured by 
executing a loop composed of only t instructions, the k- 
mean clustering algorithm tries to partition 0 into a set of 
K clusters (C1 . . . C K )  to minimize the mean-square error: 

K ni 

(4) 
,=12=1 

where n, is the number of elements of cluster C,, xz,, is 

the i-th element of cluster j and cj is the center of gravity of 
the j- th cluster. The k-mean clustering algorithm receives 
as input the number K of classes in which the original popu- 
lation must be partitioned, and it randomly splits the whole 
set into K subsets. Then, each element is moved into the 
subset j whose center of gravity is closest. This procediire 
iterates until the stopping criterion is met. 

To provide experimental evidence on the accuracy of i;he 
clustering algorithm applied on the instructions of the Lx 
ISA, Figure 1 shows the mean and the variance of the ,en- 
ergy values associated with each instruction in the ISA and 
the clusters in which they have been grouped. In the ex- 
perimental section of this paper, we have proved that Iche 
maximum variance in a cluster for the Lx architecture can 
be considered very limited. (within 13% for 11 clusters). 

Once the instructions have been clustered into a set of 
C1 . . . Cj clusters, we compute the matrix 11 in equation (3) 
in the following way: 

Ei if 1"; = wk-l A wk, wk-l E Ci 

(5) 
{ k k  

v(wnlwn-l) = Dt, j  if 10; # wk-l A WE 85 c,, wk-l E C, 

Without considering the switching activity due to data 
dependency, this decomposition tries to model the fact t'hat 
when operations are equat (wk = w;-~), they generate the 
least switching activity possible (first case:). In the second 
case, when the operations are different, they generate an in- 
creased switching activity (even if they are in the same clusiter 
(accounted by the matrix Di, j ) .  Note thai; the complexity 
of matrix v has been reduced from O(lISA21) to O(lC'l), 
which represents the upper bound on complexity given by 

To successfully apply the clustering algorithm, one of the 
most crucial parameters to  choose is the number of clusters. 
In general, a small number of clusters implies a high variance 
within them (i.e., poor accuracy of the model), though it also 
implies a small number of experiments during the regression. 
On the contrary, a large number of clusters implies good 
accuracy, but would result in a huge numbe!r of experiments. 

In our methodology, the number of clusters is automati- 
cally determined by a tradeoff between the maximum stan- 
dard deviation of the elements within the same cluster and 
the number of experiments that must be done to Characterize 
the model. Section 5.2 reports the application of the trade- 
off analysis performed on -the Lx processor to determine the 
number of clusters. 

The minimum number of experiments necessary to  charac- 
terize the energy model is a typical cost function that must 
be reduced during the design of the expe:riments. In tfhis 
work, we assume that the linear regression [17] is used to 
perform the characterization of the model. In this case, the 
minimum number of experiments is linearly dependent on 
the number of parameters of the model. Thus, the charac- 
terization cost has the foll.owing upper bound: 

q j .  

O (" ' ( K  2 - ) 
where K is the number of clusters. 

5. LX CASE STUDY 
In this section, we describe how the proposed methodology 

for power estimation and optimization has been applied. to 
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Figure 1: Energy values associated with each instruction and the corresponding clusters (where cluster CO 
corresponds to  the NOP operation). 

the Lx processor. The Lx architecture is a scalable and cus- 
tomizable processor technology [4] designed for multimedia 
and signal processing embedded applications. The Lx pro- 
cessor is a statically scheduled VLIW architecture designed 
by Hewlett-Packard and STMicroelectronics, that supports 
a multi-cluster organization based on a single PC and a uni- 
fied I-cache. The basic processor is 4-issue VLIW core fea- 
turing four 32-bit integer ALUs, two 16x32 multipliers, one 
load/store unit and one branch unit. The cluster also in- 
cludes 64 32-bit GPRs an 8 1-bit Branch Registers. Lx has 
an in-order 6-stage pipeline and a very simple integer RISC 
ISA.  For the first generation, the scalable Lx architecture 
is planned to span from one to four clusters (i.e., from 4 to  
16 instructions issued per cycle). 

Lx comes with a complete software tool-chain, where no 
visible changes are exposed to the programmer when the 
core is scaled and customized. The tool-chain includes a 
sophisticated I L P  compiler technology (derived from the 
Multiflow compiler [l8]) and GNU tools and libraries. The 
Multiflow compiler includes both traditional high-level opti- 
mization algorithms and aggressive code motion technology 
based on trace scheduling. 

A mix of synthesizable RTL and gate-level netlist of the 
core processor has been used to perform the characterization 
needed for the power model presented in this work. The ex- 
periments have been carried out by using Synopsys VCS 
5.2 and a set of PLI routines to elaborate toggle statistics 
over the whole gate-level netlist. Powercompiler (by Syn- 
opsys) has been used to  combine the toggle statistics with 
the power models of the standard cells library provided by 
STMicrolectronic, to compute the power figures of the entire 
core. 

5.1 Lx Power Characterization 
To characterize the power consumption model expressed 

by equation (3), we first proceed to group the operations into 
clusters through the k-mean clustering algorithm. For each 
operation 0,  we generated a set of assembly programs com- 

posed of repeated cycles of o operations (by varying register 
names and values) and we measured the energy consump- 
tion of the core at the gate-level. Then we applied, to the 
measured values, the k-means clustering algorithm for sev- 
eral values of K .  In order to determine the most suitable 
number of clusters, we analyzed the minimum number of ex- 
periments that would be needed t o  characterize the energy 
model with K clusters and we performed a tradeoff analysis 
with respect to  the maximum variance within the clusters. 
As mentioned above, the minimum number of necessary ex- 
periments depends linearly on the number and the size of the 
parameters involved in the model. In our case, the shape of 
the curve defining the number of experiments is quadratic, 
due to the quadratic dependence of the size of the matrix v 
with respect to the number of clusters K .  

Figure 2 shows the results concerning the maximum vari- 
ance within the operations clusters and the number of exper- 
iments required to  characterize each corresponding model. 
From the reported results, we can note how, for a number 
of clusters equal to 11, we can obtain a good tradeoff be- 
tween the maximum variation (that drops to  13%) and the 
minimum number of experiments (that reaches 78). For this 
reason, we selected 11 clusters to characterize the Lx power 
model. 

Once selected the number of clusters and, therefore, the 
number of coefficients in the model (i.e., the size of the v 
matrix), we realized a set of experiments in which each pos- 
sible pairs of clusters have been generated several times by 
varying register names and immediate values. 

These experiments have been performed by keeping the 
value of p and q (the data and instruction cache miss proba- 
bilities per instruction) as lowest as possible to  characterize 
by regression only the terms U(Ol0) and v(wkl~k-~). The 
values of A4 and S (the energy consumed per cycle during 
an I-cache and D-cache miss) have been characterized by 
generating a set of experiments with a large number of data 
and instruction cache misses, and by measuring the power 
only during these events. Finally the m and 1 miss penalties 
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have been extrapolated by looking at the behavior of the 
microarchitecture during these events. 

The model has been tested against a set of validation 
benchmarks that are different from the experimental setup 
used to perform the characterization. The validation bench- 
marks include a set of the Mediabench applications [19] 
(namely, G721 encoder and decoder, EPIC encoder and de- 
coder, MPEG2), a set of finite impulse response filters, dis- 
crete cosine transforms and matrix elaboration algorithms. 
Figure 3 shows the scatter plot of the measured power val- 
ues for the validation benchmarks and the power values esti- 
mated with our model. The power model has shown, on the 
validation benchmarks, a mean error of 1.9% and a standard 
deviation on the error of 5.8%. The multiple correlation co- 
efficient, that explains the percentage of the total variation 
exploited by the model, has been computed as in [17] and is 
equal to: 

JT SSR + SSE = 90% (7) 

minimize the cost function: 

V ( W ~ ~ W ~ - ~ ) ,  b ’ ( w k I ~ t - ~ )  E Basic block 
k 

being wEP1 fixed (see equation 3). This step is iterated 
on all the adjacent bundles wn of the basic block. All the 
possible permutations of operations within the bundle are 
evaluated, according to  architectural constraints. In actual 
VLIW processors, the complexity of this approach is accept- 
able, since the number of I‘ parallel operati,ms ranges from 
2 t o  8, requiring the evaluation of k!  permu1,ations (neglect- 
ing architectural constrains that decrease this number). Epor 
example, for the 4-issue VLIW Lx processor core, the total 
number of permutations to be checked is limited to 4! = 24. 

The choice of experimental benchmarks ircludes the com- 
piled code of two FIR filters ( f i r l  and firs), the fast dis- 
crete cosine transform ( fastdct ) ,  the matri K multiply algo- 
rithm ( m a t r i x )  and the bubble sort algorithm (sort). Figure 
4 shows the power and energy savings obtained by apply- 

As a matter of fact, there are only three benchmarks whose 
error on the prediction is in the neighborhood of 10% prob- 
ably because of the high switching activity of the data con- 
sumed by instructions that is not captured by the model. 
Note that for high-level/instruction-level power macro mod- 
els (whose main concern is efficiency), this can be considered 
an acceptable value in terms of accuracy. 

5.2 Low-Power Spatial Scheduling 
Once the model has been fully characterized, our basic 

idea consists of using it as a cost function to statically re- 
order instructions to minimize the power associated with the 
executable application. 

The basic idea consists of defining an algorithm that con- 
siders each basic block of the code generated by the compiler 
and aims at rescheduling operations within the same bundle 
(spatially). The algorithm starts from bundle wn=l and at- 
tempts to find a suitable reordering of each WE in order to  

153 53% 
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Figure 3: Scatter plot of the measured power values 
with respect to the estimated power values 
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Figure 2: Tradeoff between the number of exper- 
iments required to characterize the model for a 
given number of clusters and the maximum variance 
within each cluster. 

Figure 4: Power and energy saving:: obtained by 
our spatial rescheduling algorithm apydied to the :Lx 
processor executing the selected set of benchmarks. 
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ing the rescheduling algorithm to the selected set of bench- 
marks. The power savings have been computed by sim- 
ulating, on the reference description of the processor core 
(gate-level), both the original and the rescheduled code of 
the benchmarks. 

The average power consumption decreases by 17%, while 
the average energy consumption decreases only of 12%, since 
the rescheduling algorithm slightly increases the latency of 
the code. This is due to the fact that operation rescheduling 
could impact the efficiency of the Lx’s instruction compres- 
sion mechanism, leading to an increment of cache misses. 
However, in some cases ( f i r 2  and m a t r i x )  the instruction 
cache misses are reduced since, due to  the particular struc- 
ture of the code, the rescheduling algorithm can lead to a 
more regular code in terms of instruction cache access pat- 
terns. 

6. CONCLUDING REMARKS 
We have presented an instruction-level methodology to  

estimate and to optimize the energy consumption in embed- 
ded systems based on VLIW architectures. The first goal 
of the proposed work is the reduction of the complexity of 
the energy model for VLIW cores, while preserving a good 
level of accuracy. The second goal of the work is to  show 
how the proposed energy model can be further simplified by 
automatically clustering the operations in the I S A ,  based 
on the average energy behavior of the operations. Moreover, 
we have also shown how the general power-aware methodol- 
ogy has been successfully applied to the Lx VLIW embedded 
core. Some results have also been discussed derived from the 
application of the proposed low-power instruction schedul- 
ing algorithm. Future directions of our work target more 
complex dynamic instruction scheduling algorithms taking 
advantage of the accurate results derived from the proposed 
power characterization methodology. 
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