
Sass: Fundamentals of Reconfigurable Computing Slide: 137 / 228

ISE

I ISE is ...

Sass: Fundamentals of Reconfigurable Computing Slide: 138 / 228

How Do You ‘Program’ a Platform FPGA?

I software reference design

I decompose application into
I FPGA components
I Processor components

I implement FPGA component(s)

I implement FPGA/Processor interface(s)

I cross your fingers and type a.out

Sass: Fundamentals of Reconfigurable Computing Slide: 139 / 228

Schematic Capture

I technically possible but consider a 64 bit PLB bus and
one PPC core — several hundred signals to connect!

I address, data, control lines
I memory controller has to be added
I ...

Sass: Fundamentals of Reconfigurable Computing Slide: 140 / 228

ngdbuild

Sass: Fundamentals of Reconfigurable Computing Slide: 141 / 228

ngdbuild

Sass: Fundamentals of Reconfigurable Computing Slide: 142 / 228

Basic Terms

I configuring an FPGA means loading all of the

individual SRAM cells

I an FPGA is configured either at power-on or at

run-time

I the configuration is called a bitstream or a .bit file

(for its file extension)

I a tool chain is used to generate the configuration

Sass: Fundamentals of Reconfigurable Computing Slide: 143 / 228

Tool Chain

I a tool chain is used to generate the configuration
I Synthesize⇒
I Technology Mapping⇒
I Place & Route⇒
I Bitstream Generation

Sass: Fundamentals of Reconfigurable Computing Slide: 144 / 228

Synthesis Options

I MAP/PAR/BITGEN three steps are FPGA
vendor-specific; use vendor-supplied tools

I synthesis tools
I vendor-supplied synthesis tools: xst
I third-party synthesis tools: Synopsis, Synplicity

I input to synthesis tools
I FPGA Editor
I Schematic Capture
I Hardware Description Languages
I High-Level Languages (software)

Sass: Fundamentals of Reconfigurable Computing Slide: 145 / 228

FPGA Editor

I the lowest abstraction level is the FPGA Editor;
vendor-specific tool

I graphical/script tool that allows the user to set LUTs,
Flip-Flops, routes individually

I closest to designing in terms of AND, OR, NOT
I least productive

I forgoes the MAP and PAR steps

Sass: Fundamentals of Reconfigurable Computing Slide: 146 / 228

Schematic Capture

I only slightly higher level than FPGA Editor; CAD tool
allows designer to describe AND/OR/NOT gates
graphically

I tools may or may not perform minimization

I CAD tool groups gates and maps to LUTs, handles
place-and-route

Sass: Fundamentals of Reconfigurable Computing Slide: 147 / 228

Hardware Description Langauges

I Hardware Description Languages (HDLs) — use

strings of characters (text-based files) that follow
some language’s syntax and semantics

I informally, describes hardware with words

I Traditional HDLs:
I Verilog
I VHDL

Sass: Fundamentals of Reconfigurable Computing Slide: 148 / 228

HDLs and Productivity

I HDLs are widely used for...
I documenting behavior
I testing and verifying circuits (simulation)
I bulk of custom circuit layup
I ASIC design
I FPGA design

I for larger projects, far more productive than other
techniques

I higher level of abstraction

Sass: Fundamentals of Reconfigurable Computing Slide: 149 / 228

Traditional HDL History

I goals, use, and capability of HDLs and HDL CAD tools
has metamorphized over the last 25 years

I originally: just used to document
I simulation came next
I synthesizing structural design
I “high level synthesis” (HLS) or synthesizing behavior

design is current

Sass: Fundamentals of Reconfigurable Computing Slide: 150 / 228

Alternative HDLs

although VHDL/Verilog are the most common;
alternatives exist

I object-oriented circuit generators

I system-level (or co-design) languages

Sass: Fundamentals of Reconfigurable Computing Slide: 151 / 228

Object-Oriented Circuit Generators

I different approach to high-level languages and
synthesis:
use a modern high-level language (Java, C++) to
describe circuits

I PAM-Blox — uses C++ for PCI PAM board
I JHDL — Java to generate netlists

I primarily structural

Sass: Fundamentals of Reconfigurable Computing Slide: 152 / 228

System-Level Description and Verification

I Examples:
I SystemC — C++ and behavioral descriptions
I SystemVerilog — extends Verilog to add C structures

I Goals: support co-design; that is, large systems that
include hardware and software

Sass: Fundamentals of Reconfigurable Computing Slide: 153 / 228

Introduction to VHDL

I two major forms/styles of expressing logic
I structural / data flow
I behaviorial

Sass: Fundamentals of Reconfigurable Computing Slide: 154 / 228

Be Aware

I every VHDL code can be simulated

I two logically equivalent codes may perform
completely different in simulation

I not every valid VHDL code can be synthesized!

Sass: Fundamentals of Reconfigurable Computing Slide: 155 / 228

VHDL Syntax

I shares a lot of conventions with Ada

I two major parts
I entity declaration
I followed by one or more architecture declarations

Sass: Fundamentals of Reconfigurable Computing Slide: 156 / 228

Entity

I describes the interface of the component
I similar to the role of a function prototype in C
I include file/class declaration in C++

Sass: Fundamentals of Reconfigurable Computing Slide: 157 / 228

Architecture

I provides and implementation of the component
I a function (or method) in C (C++)

I may have multiple implementations for different roles
(simulation v. synthesis; ASIC v. FPGA)

Sass: Fundamentals of Reconfigurable Computing Slide: 159 / 228

(Dataflow) Example

�����������������������������

library ieee;

use ieee.std_logic_1164.all;

entity fa is port (

a, b, cin : in std_logic ;

s : out std_logic ;

cout : out std_logic) ;

end fa ;

architecture fa_df of fa is

begin

s <= a xor b xor cin ;

cout <= (a and b) or (b and cin) or (a and cin) ;

end fa_df ;

�����������������������������

Sass: Fundamentals of Reconfigurable Computing Slide: 160 / 228

Structural VHDL

I previous example is sometimes called ‘dataflow’
approach

I structural is conceptually similar
I both are spatial design that can describes networks of

gates
I structural can describe networks of larger components
I different syntax

Sass: Fundamentals of Reconfigurable Computing Slide: 161 / 228

Structural Syntax

I declare entity as before

I in architecture
I declare components and signals
I instantiate units in begin/end block

Sass: Fundamentals of Reconfigurable Computing Slide: 163 / 228

Structural Example (1 of 2)

�����������������������������

library ieee;

use ieee.std_logic_1164.all;

entity fa is port (

a, b, cin : in std_logic ;

s : out std_logic ;

cout : out std_logic) ;

end fa ;

Sass: Fundamentals of Reconfigurable Computing Slide: 165 / 228

Structural Example (2 of 2)

architecture fa_struct of fa is

component xorgate port (x,y : in std_logic ;

f : out std_logic) ;

end component;

component andgate port (x,y : in std_logic ;

f : out std_logic) ;

end component;

component or3gate port (x,y,z : in std_logic ;

f : out std_logic) ;

signal t1, t2, t3, t4 : std_logic ;

begin

u0: xorgate port map (a,b,t1) ;

u1: xorgate port map (t1,cin,s) ;

u3: or3gate port map (t2,t3,t4,cout) ;

u4: andgate port map (a,b,t2) ;

u5: andgate ...

end fa_struct ;

�����������������������������

Sass: Fundamentals of Reconfigurable Computing Slide: 166 / 228

Behavioral VHDL

I in dataflow and structural; the order of the statements
in begin/end doesn’t matter

I in contrast, in behavioral VHDL uses a process block
and the statements are executed sequentially

I provides full-powered procedural language (Ada)
I the last value ‘assigned’ to a signal is the one

produced by the process
I if a signal is not assigned a value; it retains its previous

value

Sass: Fundamentals of Reconfigurable Computing Slide: 168 / 228

Behavioral Example

�����������������������������

library ieee;

use ieee.std_logic_1164.all;

entity fa is port (

a, b, cin : in std_logic ;

s : out std_logic ;

cout : out std_logic) ;

end fa ;

architecture fa_behav of fa is

signal result : std_logic_vector(1 downto 0);

process(a,b,cin) begin

result = ('0'&a) + ('0'&b) + ('0'&cin) ;

s <= result(0) ;

cout <= result(1) ;

end process ;

end fa_behav ;

�����������������������������

Sass: Fundamentals of Reconfigurable Computing Slide: 169 / 228

Behavioral to Logic Network

I behavioral can be directly used in simulation

I in contrast, in behavioral VHDL uses a process block
and the statements are executed sequentially

I provides full-powered procedural language (Ada)
I the last value ‘assigned’ to a signal is the one

produced by the process
I if a signal is not assigned a value; it retains its previous

value

Sass: Fundamentals of Reconfigurable Computing Slide: 170 / 228

Modelsim

demo modelsim and simulation

Sass: Fundamentals of Reconfigurable Computing Slide: 171 / 228

Custom Core Diagram
Using Xilinx’s Create or Import Peripheral Wizard we create
a custom hardware core and connect it to the OPB.

Figure 1: Custom Core Connected to OPB

Sass: Fundamentals of Reconfigurable Computing Slide: 172 / 228

Hardware Core’s Slave Registers

Create a hardware core with four slave registers.

Figure 2: Custom Core Connected to OPB

Sass: Fundamentals of Reconfigurable Computing Slide: 173 / 228

Hardware Core’s Address Range
When hooking up the hardware core we specify the
address range to be 0x78000000 - 0x7800FFFF. The Slave
Registers are 32-bits wide. Now, each register is
addressible.

Figure 3: Custom Core Connected to OPB

Sass: Fundamentals of Reconfigurable Computing Slide: 174 / 228

Modifying Hardware Core’s Functionality
Create Process to add 5 to the value in Register 1 then
store the result in Register 3.

Figure 4: Custom Core Connected to OPB

Sass: Fundamentals of Reconfigurable Computing Slide: 175 / 228

User Logic File - user_logic.vhd
In build directory:

I

pcores/my_test_core_v1_00_a/hdl/vhdl/user_logic.vhd

I Four important parts:
1. at line 84: entity user_logic

I Used to Connect User Logic to IP Interface (then to Bus)
2. lines 131 - 134: Slave Registers assessible by other cores

I Number of registers depends on choice during the
Wizard

3. at line 170: SLAVE_REG_WRITE_PROC
I Process which stores data on the bus into specific

register
I For Example: PPC writes 0x10 to slv_reg0

4. at line 213: SLAVE_REG_READ_PROC
I Process which puts value in specific register onto bus
I For Example: PPC reads data in slv_reg0

Sass: Fundamentals of Reconfigurable Computing Slide: 176 / 228

Adding A Process

We want to add 5 to the value in Register 1 and store the
result in Register 3.

1. Create a new Process: ADD_5_PROC

2. Process only depends (sensitive) to Register 1
changing

3. Store Result in Register 3
I Only one process can modify register value
I Register 3 has two other places where it is being

written to it

Sass: Fundamentals of Reconfigurable Computing Slide: 177 / 228

Sample Code

Process to Add 5 to Slave Register 1 and store result in
Slave Register 3:

Sass: Fundamentals of Reconfigurable Computing Slide: 178 / 228

C Code

From the PowerPC create an application (in C) that can
write a value to Slave Register 1 and then read back the
result of the calculation which is stored in Slave Register 3

1. How do you write data to Slave Register 1?

2. How do you read data from Slave Register 3?

3. What is the Address of Slave Register 1?

4. What is the Address of Slave Register 3?

Sass: Fundamentals of Reconfigurable Computing Slide: 179 / 228

C Code Example

add example standalone C code here

	Overview
	FPGA System Architectures

