Fundamentals of Reconfigurable Computing ECGR6090/8090

L_ab

IMPLEMENTING CRC IN HARDWARE

1 Objective

The goal of this lab is to implement the CRC algorithm that you implemented in software, in hardware. With
your understanding of how the algorithm works, you will create a Standalone system (not a Linux system)
and use a two process VHDL state machine to produce the CRC on a string of input from the user. While
this may seem complex, in actuality the solution is relatively straightforward.

The goal is to come away with:

e implementing CRC Checksum in hardware
e implementing a 2 process state machine in hardware

e understanding one method of porting software to hardware

2 Getting Started

To get started you will need to create a new folder called labS. Unlike Lab 4 you will create a new base
system and write a standalone application that will run on the PowerPC. You will not be using Linux,
you will first design the hardware then in Lab 6 you will combine Linux with your hardware via a Device
Driver. If necessary, look back at the Creating an Application tutorial to refresh your memory on how to
create and implement a standalone application with your base system. Read these directions carefully and
completely before you begin.

1. Creating the Base System

Within your lab5 folder create a folder called build. Using Xilinx’s EDK create a new project called
labS.xmp in the build directory with the following Base System configuration:

e PowerPC running at 300 MHz
e Keep JTAG Debugging selected

e 64 KB of Data OCM and 64 KB of Instruction OCM

RS232 _Uart - OPB UARTLITE (No Interrupt)

Uncheck DDR, SPI_.EEPROM, LEDs, LCD, PCI, SysAce, and IIC

Remove PLB Block RAM

Uncheck Memory Test and Peripheral Test

2. Creating the Hardware Core

Next you will need to create a new Hardware Core called: my_crc_calc and add it to the base system. If
necessary review the Creating a Peripheral tutorial. Create a hardware core with the following configuration
(version 1.00.a):

e Attach your core to the OPB

e The core should only have User Logic S/W register support selected (uncheck S/W reset and MIR and
User logic interrupt support)

e Add 3 (32-bit) Registers with Posted Write Behavior Enabled

o The rest of the options are default options (just click Next then Finish)

3 Implementation

Following the Twwo Process Finite State Machine tutorial online you will need to modify the default user_logic.vhd
file. Be very careful when you are making changes. It would be a good idea to make a backup of your
user_logic.vhd file before making any changes.

1. Modifying Hardware Core for CRC Calculation

To begin, rename the slave register signals (slv_regX) to meaningful names. Signals are basically variables
so make sure to rename ALL of the instances of that signal.

e Rename All slv_reg0 to control_reg
e Rename All slv_regl to crc_reg
e Rename All slv_reg2 to data_in_reg
Next, add the following additional User Signals (look in user_logic.vhd and see if you can find the comment):

——-USER signal declarations added here, as needed for user logic

signal table_index : std_.logic_vector (0 to 7);

signal table_data_out : std-logic._vector (0 to 31);

signal crc.reg.next : std_.logic_vector (0 to 31);

type CRC.CNTL_SM.TYPE is (idle, crc.calc) ;

signal current_state, next_state : CRC.CNTL_SM_.TYPE := idle;

You need an 8 bit signal called table_index which will be used to look-up a value in the CRC Table (why is
it 8 bits? Hint, what is 2%). The CRC Table will output table_data_out. Since you are creating a two process
state machine you need to register the signals that change within the finite state machine so you add the
signal crc_reg_next. Finally, you need to create the signals for the state machine (current_state, next_state.
As you can see, the state machine only consists of two states: idle and crc_calc.

2. Adding a Two Process Finite State Machine

Next create two processes which will be your “Two Process Finite State Machine.” The State Process
controls the transition of signals from their current value to their next value. The Logic Process performs
the specific functionality of the FSM.

1. CRC_CALC_FSM_STATE_PROC

2. CRC_.CALC_FSM_LOGIC_PROC
Within STATE_PROC:

o If Reset Set Current State to Idle and reset crc_reg
e Else If There is a Clock Event and Clock is 1

— Set Current State equal to Next State
— Set CRC Register equal to CRC Register Next signal

Within LOGIC_PROC:
e Latch Signals

e Constantly Calculate Table Index
e Case Statement on the Current State

— Idle State

If Control Register(31) =1’ then reset CRC Register

Else If New Data has been written to data_in_reg move to the CRC Calc State
— CRC Calculation State

Perform calculation and then return to Idle State

3. Adding a Table Look-up Process

While there are a variety of methods for implementing a table look-up a common approach for small tables
is to use an asynchronous process with a case statement. Look at the tutorial if you are unfamiliar with case
statements within processes. For example:

case table_index is
when x"00" => table_data_out <= x"00000000";
when x"01" => table_data_out <= x"04clldb7";

when x"ff" => table_data_out <= x"bl1lf740b4";
when others => table_data_out <= x"ffffffff";
end case;

4. Reading Back CRC Result

The result of the CRC calculation is stored within crc_reg and is a software addressable resigster. If you
look at the Slave Read Register Process you will see that when software reads from the core’s base address
+ 0x04 then crc_reg is written to the bus (which in turn is written to the requester). This is fine, but you
will need to modify this line to complete the CRC calculation. (Hint: look at your software implementation
and see what you do to the crc value right before you returned it. You will need to do the same thing here
right before it is written out to the bus). If you miss this step you could have implemented everything else
correctly, but because you didn’t do this one “small” thing you will not get the right answer so be careful
and do not get frustrated, be patient and you will figure it out.

4 Hooking up Hardware Core to Base System

Now you need to add my_crc_cale hardware core to the base system and connect it to the OPB. You also
need to generate the address. For this lab, it is ok to click “Generate Addresses” but make sure you know
what addresses change. If you incorrectly connect your hardware core to the OPB or do not give it an address
range that it (and the OPB) know about, when you try to read or write data to your core it will not respond.

5 Creating Standalone Application

Create a standalone (.elf) application (like you did in Labs 1 and 2). You also will need to Generate the
Linker Script. The program should work as follows:

e Print Your Name and ID

e Repeatedly prompt User to enter a single character

e Write the character to your hardware core’s Data In Register

e Increment a counter keeping track of the number of characters entered

e When the user enters 0 (zero) write the new line character ‘\n’ to your Hardware Core, increment the
counter and then exit the loop

e Write the counter value’s to your hardware core’s Data In Register

e Print the number of characters entered by the user

e Print the final CRC Result from your hardware core’s CRC Register
Example of Output:

Name: Bond, James Bond

ID: 007

Enter Character (0 to Exit):
Entered: H

Enter Character (0 to Exit):
Entered: e

Enter Character (0 to Exit):

Entered: 1

Enter Character (0 to Exit):
Entered: 1

Enter Character (0 to Exit):
Entered: o

Enter Character (0 to Exit):
Entered: !

Enter Character (0 to Exit):
Entered: 0

You Entered 7 Characters
Calculated CRC: 113449826

Finally, create an ACE file and download it to the FPGA. Verify the functionality by looking at the Example
above and reading the Reference Section at the end. Additionally, you could modify the C-code you wrote
for Lab 4 to accept input from the user instead of reading from a file. This is a good exercise (but not
required) if you feel you need more practice with C.

6 Grading

This lab assignment is due Tuesday November 20th, 2007 by Spm (EST). To receive credit, you must meet
with either the T.A. or the instructor and demonstrate that you’ve completed the lab. By default, this can
be done in Woodward Hall room 237 (the Unix lab). Alternative times are possible but need to be arranged
in advance. Be prepared to answer in person any questions in the lab or recompile your program as part of
demonstrating that you completed the lab. Do not wait until the last minute to begin the project; extensions
will not be granted.

7 References

On Homer you can use cksum like you did in Lab 4 to verify functionality, except this time rather than
running cksum on a file, you could run it on Standard Input. To do this simply type cksum and hit enter.
Then type any characters you want to type. Then to calculate the CRC value press control + d. For example:

> cksum
Hello!
113449826 7

You will notice that the string “Hello!” actually consists of 6 characters; however, after the ! character
there is a New Line character “\n’ which then adds up to 7 characters. If you compare the first number
(113449826) to the sample output for the application you will see they are the same.

	Objective
	Getting Started
	Implementation
	Hooking up Hardware Core to Base System
	Creating Standalone Application
	Grading
	References

