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Abstract 

 

In hands-free telephony and in teleconference systems, the main aim is to provide a 

good free voice quality when two or more people communicate from different places. 

The problem often arises during the conversation is the creation of acoustic echo. This 

problem will cause the bad quality of voice signal and thus talkers could not hear 

clearly the content of the conversation, even thought lost the important information. 

This acoustic echo is actually the noise which is created by the reflection of sound 

waves by the wall of the room and the other things exist in the room. The main 

objective for engineers is the cancellation of this acoustic echo and provides an echo 

free environment for speakers during conversation. For this purpose, scientists design 

different adaptive filter algorithms. Our thesis is also to study and simulate the 

acoustics echo cancellation by using different adaptive algorithms. 
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CHAPTER ICHAPTER ICHAPTER ICHAPTER I : INTRODUCTIO: INTRODUCTIO: INTRODUCTIO: INTRODUCTIONNNN    

 

 

 

1.1. OVERVIEW 

In hands-free telephony and in teleconference systems, the main aim is to provide a 

good free voice quality when two or more people communicate from different places. 

The problem often arises during the conversation is the creation of acoustic echo. This 

problem will cause the bad quality of voice signal and thus talkers could not hear 

clearly the content of the conversation, even thought lost the important information. 

This acoustic echo is actually the noise which is created by the reflection of sound 

waves by the wall of the room and the other things exist in the room. The main 

objective for engineers is the cancellation of this acoustic echo and provides an echo 

free environment for speakers during conversation. For this purpose, scientists design 

different adaptive filter algorithms. Our thesis is also to study and simulate the 

acoustics echo cancellation by using different adaptive  filter algorithms. 

 

1.1.1. Echo  

In principle, “Echo is the phenomenon in which delayed and distorted version of an 

original sound or electrical signal is reflected back to the source” [4]. There are two 

types of echo : 

1. Electrical echo: caused by the impedance mismatch at the hybrids transformer 

which the subscriber two-wire lines are connected to telephone exchange four-

wire lines in the telecommunication systems. 
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2. Acoustic echo: caused by the reflection of sound waves and acoustics coupling 

between the loudspeaker and the microphone. 

In teleconference system (figure I-1), the speech signal from far-end generated from 

loud speaker after directing and reflecting from the wall, floor and other objects inside 

the room is receipt by microphone of near-end, as the result, this makes the echo that is 

sent back to the far-end. The acoustic echo problem will disturb the conversation of the 

people and reduce the quality of system. This is a common problem of the 

communication networks. 

 

Figure I-1: A teleconference system with echo paths of room 
 

Two main characteristics of echo are reverberation and latency. Reverberation is the 

persistence of sound after stopping the original sound. This sound will slowly decay 

because of the absorption by the materials constructing the environment. Latency or 

delay is the different time of the signal between the transmitter and receiver. In the 

case of teleconference system, the sound is generated from loud speaker and received 

by microphone, the delay can compute base on the distance between them (i.e., the 

length of the direct sound). 

Delay = distance/speed of sound 
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1.1.2. Acoustic Echo Cancellation (AEC) 

To handle with the acoustic echo problem above in teleconference systems, one can 

use voice switches and directional microphones but these methods have placed 

physical restriction on the speaker. The common and more perfective method is 

implementing the Acoustic Echo Cancellation (AEC) to remove the echo. AEC 

enhances greatly the quality of the audio signal of the hands-free communication 

system. Due to their assistance, the conferences will work more smoothly and 

naturally, keep the participants more comfortable.  

Some echo cancellation algorithms are used for this purpose. All of them process the 

signals follow the basic steps below: 

1. Estimate the characteristics of echo path of the room. 

2. Create a replica of the echo signal. 

3. Echo is then subtracted from microphone signal (includes near-end and echo 

signals) to obtain the desired signal. 

Adaptive filter is a good supplement to achieve a good replica because of the echo path 

is usually unknown and time-varying. The figure below illustrates about three step of 
the AEC using adaptive filter.  

In the Figure (I-2), by using adaptive filter for AEC follows three basic steps above: 

1. Estimate the characteristics of echo path ( )h n  of the room: ˆ( )h n  

2. Create a replica of the echo signal: )(ˆ ny  

3. Echo is then subtracted from microphone signal (includes near-end and echo 

signals) to obtain the desired signal: clear signal ˆ( ) ( )d n y n= −  

In the modern digital communication system such as: Public Switched Telephone 

Network (PSTN), Voice over IP (VoIP), Voice over Packet (VoP) and cell phone 

networks; the application of AEC is very important and necessary because it brings the 

better quality of service and obtains the main purpose of the communication service 

providers.  
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Figure I-2: Implement Acoustic Echo Canceller using adaptive filter 

 

1.2. THESIS ORGANIZATION  

In this thesis, we will perform the works related to the Acoustic Echo cancellation. It 

contains 4 chapters that focuses on two main parts are theory and simulation. All of 

them try to express and discuss about two main issues of acoustic echo cancellation, 

namely the adaptation algorithms and the control of adaptation in double-talk situation.  

Chapter 1: give the general information and introduction of the problems and 

solutions related to the thesis’ topic. And mention the brief descriptions of echo theory 

and acoustic echo problem in teleconference system and other telecommunication 

systems. 

Chapter 2: presents all the theory backgrounds. The adaptive filter which is used to 

model the acoustic echo path is the central part of the AEC. Hence much effort and 

researches have been devoted to it. Least Mean Square (LMS) algorithm is an old, 

simple and proven algorithm which has turned out to work well in comparison with 

newer more advanced algorithms. In this project, we use the normalized LMS (NLMS) 

for the main filter in AEC, since NLMS is so far the most popular algorithm in practice 

for its computational simplicity. After that, the generic double talk detection scheme is 

outlined and then several well-known double talk detectors are discussed. The Geigel 

algorithm is simple and works well when the far-end signal is sufficiently smaller than 

Near-end room 

+ 
         Microphone signal 

       ( ) ( ) ( )d n y n v n= +  

Near-end talker 
       )(nv  

 -       
 

  Estimate echo 
  )(ˆ ny  echo: )(ny  

Far-end signal 
)(nx  

Subtract echo from ( )d n : 
ˆ( ) ( )d n y n−  

Adaptive filer 
Estimate echo path 

)(ˆ nh  echo path 
h(n) 

Step 1 

Step 2 Step 3 
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the near-end speech, namely it has assumption of the echo path, so in practice not 

widely applied to the echo cancellation algorithms. The Normalized Cross-correlation 

method uses the correlation value between the error signal and the microphone signal 

which would bring more promising results compared to the Geigel algorithm.  

Chapter 3: is devoted to the evaluation of all the algorithms discussed above. Through 

a bunch of recordings and simulations in MATLAB, we try to find out which adaptive 

filtering and double talk detection algorithms suit better for the PC application.  

Chapter 4: the conclusion is drawn and also the possible future work is presented. 
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2.1. SYSTEM OVERVIEW 

Acoustic echo cancellation is required in different fields of communication for 

removing the echo of the coupling between the loudspeaker and the microphone. In 

case of not doing this, then this coupling results in an undesired acoustic echo which 

degrades the quality of sound.  

 

Figure II-1: Block diagram of AEC 

 

We describe a block diagram of an AEC system as in Figure (II-1). This system 

consists of following three components: 

 Reference signals           

Far-end signal (Input signal) 

Desired 
signal                       

Filtered 
signal                       

Double-talk                             
decision 

Double-talk     
Detector 

Adaptive 
filter 
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processor 
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1. Adaptive filter. 

2. Doubletalk detector. 

3. Nonlinear processor. 

2.1.1. Adaptive Filter 

Adaptive filter is the most important component of acoustic echo canceller and it plays 

a key role in acoustic echo cancellation. It performs the work of estimating the echo 

path of the room for getting a replica of echo signal. It requires an adaptive update to 

adapt to the environmental change. Another important thing is the convergence rate of 

the adaptive filter which measures that how fast the filter converges for best estimation 

of the room acoustic path.  

 

2.1.2. Double-talk detector (DTD) 

It is rather difficult to predict when the adaptation of the filter should stop or slow 

down and it is also important to know that the near-end speech signal exists or not in 

the presence of far-end signal. In the situation when both ends talk (near-end and far-

end), this is known as double-talk. In case of double-talk, the error signal will contain 

both echo estimation error and near-end speech signal. When we use this signal for 

updating the filter coefficient then it diverges. As the result, the adaptive filter will 

work incorrectly and finally the bad sound signal was issued. So to overcome this 

problem, one uses Double-talk Detector. 

 

2.1.3. Nonlinear Processor (NLP) 

The nonlinear processor (NLP) is required for completely or partly cancels the residual 

signal in the absence of near-end speech signal.  By removing the residual signal will 

cancel any occurring acoustic echo. The NLP will gradually cancel the signal and 

insert a form of comfort noise to give the impression to far-end. The NLP as well as 

the adaptive filter need an accurate estimation from the DTD to operate efficiently. 
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2.2. ADAPTIVE FILTER ALGORITHMS 

Adaptive filtering is the process which is required for echo canceling in different 

applications. Adaptive filter is such type of filter whose characteristics can be changed 

for achieving optimal desired output. An adaptive filter can change its parameters to 

minimize the error signal by using adaptive algorithms. The error is the difference 

between the desired signal and the output signal of the filter. The figure below shows 

the basic model of adaptive filter used in AEC. 

 

Figure II-2: The basic model of AEC 
 

The notations are used in the figure above and during this thesis in turn are: 

• Far-end signal: )(nx  

• Near-end signal: )(nv  

• The true echo path (room impulse response): h  

• Echo signal: )(ny  

• Microphone signal: )()()( nynvnd +=  

• Estimated echo path: ĥ  

• Estimate echo signal: )(ˆ ny  

• Error signal: ˆ( ) ( ) ( ) ( )e n v n y n y n= + −  

The echo path h  of the room normally variable depends on the room structure and the 

moving object inside. The estimated echo ˆ( )y n  is calculated from the reference input 

 -       
 + 

 

  )(ˆ ny   )(ny  

Far-end signal 
)(nx  

Near-end signal + residual echo  
ˆ( ) ( ) ( ) ( )e n v n y n y n= + −  

Near-end signal + echo  
)()()( nynvnd +=  

Near-end signal 
)(nv  

Adaptive filter 
ĥ  

Echo path 
h  
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signal ( )x n  and the adaptive filter ĥ . The near-end signal ( )v n  and background noise 

are added into echo signal ( )y n  to create the desired signal ( )d n , 

)()()( nynvnd +=       (2.1) 

The signal ( )x n and ( )y n  are correlated. We get the error signal as, 

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )error n d n y n v n y n y n= − = + −    (2.2) 

The adaptive filter works to minimize the echo ( ˆ( ) ( )y n y n− ) to be zero to obtain only 

near-end signal ( )v n  in the perfect case. 

In Acoustic Echo Cancellation (AEC), the adaptive filter plays the main role to adapt 

the filter tap weight in order to overcome the echo problem. There are different types 

of algorithms are used for this purpose such as Least Mean Square (LMS), Normalized 

Least Mean Square (NLMS), Recursive Least Square (RLS) and Affine Projection 
Algorithm (APA) and etc. The LMS is widely used algorithm for adaptive application 

such as channel equalization and echo cancellation. This algorithm is the most simple 

if we compare it with NLMS and RLS algorithm. The normalized least mean square 

(NLMS) is also famous algorithm due to its computational simplicity. 

 

2.2.1. Wiener Filter 

 

Figure II-3: General Wiener filter problem. 

 

Wiener filters play a central role in a wide range of applications such as linear 

prediction, echo cancellation, signal restoration, channel equalization and system 

identification. [5] 

The FIR Wiener Filter is the signal processing to produces the minimum mean-square 

estimate, $( )d n  of ( )d n . Two signals ( )x n  and ( )d n  are assumed to be wide-sense 

)(nx
 

( )e n
 

ˆ( )d n  

( )d n  

 -       
 

+ 
 

   Adaptive filer 
( )W z  
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stationary with known autocorrelations ( )xr k , ( )dr k  and cross-correlation ( )dxr k . ( )w n  is 

the unit sample response of the wiener filter: 

1

0

( ) ( )
p

n

n

W z w n z
−

−

=

=∑       (2.3) 

The output signal $( )d n  of the Wiener filter is the convolution of ( )w n and ( )x n , 

$
1

0

( ) ( ) ( )
p

l

d n w l x n l
−

=

= −∑      (2.4) 

The requirement of the filter is to find filter coefficients ( )w k  that minimize the mean-

square error, 

{ } ${ }22
( ) ( ) ( )E e n E d n d nξ = = −     (2.5) 

Now taking the derivative to both sides with respect to *( )w k , 

{ }
*

*
* * *

( )
( ) ( ) ( )

( ) ( ) ( )
e n

E e n e n E e n
w k w k w k
ξ  ∂ ∂ ∂

= =  
∂ ∂ ∂ 

  (2.6) 

For 0,1,..., 1,k p= −  

This derivative must be equal to zero to minimize ξ  for a set of filter coefficients, 

*

*

( )
( ) 0

( )
e n

E e n
w k

 ∂
= 

∂ 
      (2.7) 

Where,  

• The error signal: $
1

0

( ) ( ) ( ) ( ) ( ) ( )
p

l

e n d n d n d n w l x n l
−

=

= − = − −∑  (2.8) 

it follows that, 

*
*

*

( )
( )

( )
e n

x n k
w k
∂

= − −
∂

        

Now the above Equation (2.7) becomes, 

{ }*( ) ( ) 0E e n x n k− = ;  0,1, 2,..., 1k p= −   (2.9) 

This equation is known as orthogonally principle or the projection theorem. 

By substituting ( )e n in Equation (2.8) into Equation (2.9) , we have 
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{ } { }
1

* *

0

( ) ( ) ( ) ( ) ( ) 0
p

l

E d n x n k w l E x n l x n k
−

=

− − − − =∑   (2.10) 

Already assumed that ( )x n and ( )d n are jointly wide-sense stationary, then  

{ }*( ) ( ) ( )xE x n l x n k r k l− − = −     (2.11)  

{ }*( ) ( ) ( )dxE d n x n k r k− =      (2.12) 

so the above equation becomes, 

1

0

( ) ( ) ( )
p

x dx
l

w l r k l r k
−

=

− =∑ ; 0,1, 2,..., 1k p= −   (2.13) 

This equation is known as Wiener-Hopf equation and we can write this equation in 

generalized form as, 

R x w=r dx        (2.14) 

Where:   

• R x  is p p×  Hermitian Toeplitz matrix of auto correlation 

• w is vector of filter coefficients 

• r dx is vector of cross-correlation between ( )d n and ( )x n  

By taking the Equation (2.5), we try to find the minimum mean square error, 

{ }
*1

2

0

( ) ( ) ( ) ( ) ( )
p

l

E e n E e n d n w l x n lξ
−

=

   = = − −  
   

∑   

   { } { }
1

* * *

0

( ) ( ) ( ) ( ) ( )
p

l

E e n d n w l E e n x n l
−

=

= − −∑   (2.15) 

By following the Equation (2.9), the second term of above Equation (2.15) is equal to 

zero. So we attain, 

{ }*
min ( ) ( )E e n d nξ =       (2.16) 

Also, we have, 

1

0

( ) ( ) ( ) ( )
p

l

e n d n w l x n l
−

=

= − −∑  

So Equation (2.16) becomes, 
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{ }
1

* *
min

0

( ) ( ) ( ) ( ) ( ) ( )
p

l

E e n d n E d n w l x n l d nξ
−

=

  
= = − −  

  
∑  (2.17) 

Finally, by taking the expected values, we have 

1
*

min
0

(0) ( ) ( )
p

d dx
l

r w l r lξ
−

=

= −∑      (2.18) 

In vector form, we have from Equation (2.14) and Equation (2.18)  

min (0)drξ = − r H
dx w      (2.19) 

Or  min (0)drξ = − r H
dx R 1

x
− r dx      (2.20) 

 

2.2.2. The Steepest Decent Method 

The method of steepest descent is an iterative procedure that has been used to find 

extreme of nonlinear functions since before the time of Newton. [5] 

In the steepest decent or gradient algorithm, the mean square error surface (respect to 

an FIR filter coefficients) is a quadratic bowl-shaped curve as shown in Figure (II-4) 

below. 

 

Figure II-4: Illustration of gradient search of the mean square error surface for the 
minimum error point 

2 ( )E e n    

optimalw  ( )w i
 

( 1)w i −  ( 2 )w i −  w  
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This figure explains the mean square error curve for a single coefficient filter and the 

steepest decent search for the coefficient of minimum mean square error. This steepest 

decent search is to find a value by taking successive downward step in the direction of 

negative gradient of the error surface. By taking start with different initial values and 

the coefficients of the filter are updated while moving in the downward direction 

towards the negative gradient and until a point comes where the gradient shows zero 

value. This steepest decent adaptation method can be written as, 

( 1) ( ) ( )n n nµ ξ+ = − ∇w w      (2.22) 

where µ is the step-size parameter and ( )nξ  is the mean square error at time n. 

Now we assume that we have, 

ˆ( ) ( )Td n n= w x       (2.23)  

{ }( ) ( )T
x E n n=R x x       (2.24)  

{ }( ) ( )dx E d n n=r x       (2.25) 

The gradient of the mean square error function is, 

{ } { } { }2 2 *( ) ( ) ( ) ( ) ( )n E e n E e n E e n e nξ∇ =∇ = ∇ = ∇  (2.26) 

And  we know that, 

  * *( ) ( )e n n∇ = −x  

Thus it yields, 

{ }*( ) ( ) ( )n E e n nξ∇ = − x      (2.27) 

In the case of stationary processes, if ( )x n and ( )d n  are jointly WSS (wide-sense 

stationary) then, 

{ } { } { }* * *( ) ( ) ( ) ( ) ( ) ( )T
nE e n n E d n n E n n= −x x w x x   (2.28) 

          ( )dx x n= −r R w  

Therefore, 

( ) ( )dx xn nξ∇ = − +r R w      (2.29) 

By considering the above two Equations (2.22) and (2.29), we have 

[ ]( 1) ( ) ( )dx xn n nµ+ = + −w w r R w     (2.30) 
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 Now we can define a filter coefficients error vector as, 

0)()(~ www −= nn       (2.31) 

where , 

• w0 is the optimal least square error filter coefficient vector.  

By Wiener filter, 0w  is given by, 

1
0 x dx

−=w R r        (2.32) 

After few mathematical arrangements in last three equations, (2.30) becomes, 

)(~][)1(~ nn x wRIw µ−=+      (2.33)  

The step-size parameterµ controls the stability and rate of convergence of the adaptive 

filter. The filter shows instability if the value of µ  is too large and low convergence 

rate if µ too small. The stability of the filter depends on the selection of step-size 

adaptive parameter µ  and the autocorrelation matrix. The correlation matrix can be 

expressed in term of the matrices of eigenvectors and eigenvalues as, 

T
x =R QΛQ        (2.34)  

Where,  

• Q  is orthonormal matrix of the eigenvectors of xR  

• Λ  is a diagonal matrix having diagonal elements corresponding to the 

eigenvalues of xR  

By putting the value of xR in Equation (2.34) into Equation (2.33) we obtain, 

)(~][)1(~ nQn T wQΛIw −=+      (2.35)  

Multiplying TQ  to both sides of Equation (2.35) and the using relations 
T TQ Q = QQ = I  yields, 

)(~][)1(~ nn TT wQΛIwQ µ−=+     (2.36) 

Let )(~)( nn T wQv = , 

So the Equation (2.36) becomes, 

[ ]( 1) ( )n nµ+ = −v Ι Λ v      (2.37) 
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Here, Ι  and Λ are diagonal matrices. So the above equation can be written in term of 

individual elements of the error vector ( )nv as, 

[ ]( 1) 1 ( )k k kv n v nµλ+ = −      (2.38) 

where kλ is the thk eigenvalue of the autocorrelation of the filter input ( )x n  

 

Figure II-5: Feedback model of the variation of coefficient error with time 
 

By considering the Equation (2.38), we make a condition for stability for the process 

of adaptation and the coefficient error vector decay is, 

1 1 1kµλ− < − <       (2.39) 

Let’s denote maxλ the maximum eigenvalue of the autocorrelation matrix, the limits 

ofµ for stable adaptation is, 

max

2
0 µ

λ
< <        (2.40) 

 

2.2.2. Least Mean Square (LMS) Algorithm 

In 1959, Widow and Hoff [3] derived an algorithm whose name was Least Mean Square 

(LMS) algorithm and till now it is one of the best adaptive filtering algorithms. This 

algorithm is used widely for different application such as channel equalization and 

echo cancellation. This algorithm adjusts the coefficients of ( )w n  of a filter in order to 

reduce the mean square error between the desired signal and output of the filter. This 

algorithm is basically the type of adaptive filter known as stochastic gradient-based 

algorithms. Why it’s called stochastic gradient algorithm? Because in order to 

converge on the optimal Wiener solution, this algorithm use the gradient vector of the 

filter tap weights. This algorithm is also used due to its computational simplicity. 

1 kµλ−  
 

( )kv n  ( 1)kv n +  

1z−  
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The equation below is LMS algorithm for updating the tap weights of the adaptive 

filter for each iteration. 

 

*( 1) ( ) ( ) ( )n n e n nµ+ = +w w x      (2.41) 

Where, 

• ( )nx  : input vector of time delayed input values. 

• ( )nw  : weight vector at time n . 

µ  is a step-size parameter and it controls the immediate change of the updating factor. 

It shows a great impact on the performance of the LMS algorithm in order to change 

its value. If the value of µ  is so small then the adaptive filter takes long time to 

converge on the optimal solution and in case of large value the adaptive filter will be 

diverge and become unstable. 

 

Derivation of the LMS algorithm: 

The derivation of LMS algorithm is the development of the steepest decent method 

and also takes help from the theory of Wiener solution (optimal filter tap weights). 

This algorithm is basically using the formulas which updates the filter coefficients by 

using the tap weight vectors w  and also update the gradient of the cost function 

accordingly to the filter tap weight coefficient vector ( )nξ∇ . From Equation (2.22) in 

the steepest decent algorithm, 

( 1) ( ) ( )n n nµ ξ+ = − ∇w w  

{ }*( 1) ( ) ( ) ( )n n E e n nµ+ = +w w x     (2.42) 

In practice, the value of the expectation { }*( ) ( )E e n nx  is normally unknown, therefore 

we need to introduces the approximation or estimated as the sample mean, 

{ }
1

* *

0

1ˆ ( ) ( ) ( ) ( )
L

l

E e n n e n l n l
L

−

=

= − −∑x x     (2.43) 

With this estimate we obtain the updating weight vector as, 

1
*

0

( 1) ( ) ( ) ( )
L

l

n n e n l n l
L
µ −

=

+ = + − −∑w w x    (2.44) 
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If we using one point sample mean (L=1) then, 

{ }* *ˆ ( ) ( ) ( ) ( )E e n n e n n=x x      (2.45) 

And finally, the weight vector update equation become the simple form, 

*( 1) ( ) ( ) ( )n n e n nµ+ = +w w x      (2.46) 

     

2.2.3. Normalized Least Mean Square (NLMS) Algorithm 

By using this normalized step-size parameter in Least Mean Square algorithm, this 

algorithm is known as Normalized Least Mean Square (NLMS) algorithm [5]. The step-

size for computing the update weight vector is, 

2
)(

)(
nc

n
x+

=
βµ        (2.47) 

Where,  

• ( )nµ  is step-size parameter at sample n 

• β  is normalized step-size ( 0 2β< < ) 

• c is safety factor (small positive constant) 

 

Derivation of the NLMS algorithm: 

Normalized Least Mean Square (NLMS) is actually derived from Least Mean Square 

(LMS) algorithm. The need to derive this NLMS algorithm is that the input signal 

power changes in time and due to this change the step-size between two adjacent 

coefficients of the filter will also change and also affect the convergence rate. Due to 

small signals this convergence rate will slow down and due to loud signals this 

convergence rate will increase and give an error. So to overcome this problem, try to 

adjust the step-size parameter with respect to the input signal power. Therefore the 

step-size parameter is said to be normalized. 

When design the LMS adaptive filter, one difficulty we meet is the selection of the 

step-size parameter µ . For stationary processes, this algorithm converts in the limits: 

max

2
0 µ

λ
< <  And 2

0
( )xtrace

µ< <
R
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However, the auto-correlation xR  generally is unknown, for this reason, the maximum 

lambda maxλ  and xR  are estimated in order to use the bounds. To solve this problem, 

one introduces new estimate of  ( )xtrace R  as, 

  { }2
( ) ( 1) ( )xtrace p E x n= +R      (2.48) 

Where, 

• 0,1,2,...p =  

• { }2
( )E x n  is the power of input signal. It can be estimated by estimator: 

  { }2 2

0

1ˆ ( ) ( )
1

p

k

E x n x n k
p =

= −
+ ∑     (2.49) 

Therefore, the limits of step-size parameter will become, 

{ }2

2
0

( 1) ( )p E x n
µ< <

+   
     (2.50) 

Substitutes Equation (2.49) into Equation (2.50), one get the step-size parameter as, 

2
0

( ) ( )H n n
µ< <

x x
      (2.51) 

For time-varying processes, one computes the step-size parameter in time (sample n), 

  2( )
( ) ( ) ( )Hn
n n n

β βµ = =
x x x

    (2.52) 

Where, 

• β  is normalized step-size ( 0 2β< < ) 

By replaced µ  by ( )nµ  into the Equation (2.46) for updating the weight vector in 

LMS algorithm, we achieve a new algorithm was known as Normalized Least Mean 

Square (NLMS). The weight vector update now is, 

  *( 1) ( ) ( ) ( ) ( )n n n e n nµ+ = +w w x  

Or  *
2( 1) ( ) ( ) ( )

( )
n n e n n

n

β
+ = +w w x

x
    (2.53) 

In the LMS algorithm, because the weight vector ( )nw  changes depending on the input 

signal ( )nx . Thus it will get the problem is called as gradient noise amplification [5] 
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when ( )nx  is too large. However, by using NLMS algorithm we can avoid this 

problem. Take a look the Equation (2.53), when ( )nx  is very small the calculation of 

weight vector updating equation will be the big problem. For this reason, one 

implements the safety factor as, 

   *
2( 1) ( ) ( ) ( )

( )
n n e n n

c n

β
+ = +

+
w w x

x
   (2.54) 

Where 

• c is safety factor (small positive constant) 

Finally, the Equation (2.54) is the weight vector updating equation for NLMS 
algorithm. 

 

2.2.4. Recursive Least Square (RLS) 

The RLS filter is a simple adaptive and time update version of wiener filter [12]. For 

non-stationary signals, this filter tracks the time variations but in case of stationary 

signals, the convergence behavior of this filter is the same as Wiener filter that it 

converges to the same optimal coefficients. This filter has fast convergence rate and it 

is widely used in the application such as echo cancellation, channel equalization, 
speech enhancement and radar where the filter should do fast changes in signal 

process. This adaptive algorithm is used due to following factors: 

• Computational complexity 

• Speed of convergence 

• Minimum error at convergence 

• Numerical stability 

• Robustness 

For RLS algorithm, we consider the following: 

• ( )nx is the discrete time array 1M × array input vector. 

• ( ) ( )Hy n n= w x is the output signal. 

• ( )d n is the desired signal. 

• And w is the 1M × complex weight vector  
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The cost function ( )nf w∂  at time instant n is given by, 

2

0 0 0
1

( ) ( ) ( ) ( ) ( )
n k

n
H H n

n
k

f k d kλ λ
−

=

= − + − −∑w w x w w R w w  (2.55) 

 1, 2,3,.....n =  

where,  

• 0w  and 0R  are the initial chosen parameters  

• λ  is the real-positive constant (0 1)λ< <  

And we define the new function, 

  0 0 0 0( ) ( ) ( )Hf = − −w w w R w w     (2.56) 

  0 0 0p = R w  

Now consider two column matrices, 

 

1
2 (1)

( )

n
H

H n

λ
− 

 
 =
 
 
 

x

A

x

M ,  

1
*2

*

(1)

( )

n

d

d n

λ
− 

 
 =
 
 
 

b M  

Now the cost function ( )nf w  could rewrite as, 

0 0 0( ) ( ) ( ) ( ) ( )H H n
nf λ= − +w Aw b Aw - b w - w R w - w  (2.57) 

When n is large (n>M), then 0nλ → , hence the second term of the Equation (2.57) 

will disappear and the least square error now is, 

  ( ) ( ) ( )H
nf = −w Aw b Aw - b      (2.58) 

nw  will be a solution of over-determined linear system of equation =Aw b . 

For otherwise, by differentiating the Equation (2.57), we have nw  as 

1
n n n

−=w R p        (2.59) 

Where,  

• 0 0
1

( ) ( )
n

H n n k H n
n

k

k kλ λ λ−

=

= + = +∑R A A R x x R    (2.60) 
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• *
0 0

1

( ) ( )
n

H n n k n
n

k

k d kλ λ λ−

=

= + = +∑p A b p x p     (2.61) 

Then we obtain the recursive relations for nR  and np  as, 

1

0
1

( ) ( ) ( ) ( )
n

n k H H n
n

k

k k n nλ λ
−

−

=

= + +∑R x x x x R     

        
1

1 1
0

1

( ) ( ) ( ) ( )
n

n k H n H

k

k k n nλ λ λ
−

− − −

=

 
= + + 

 
∑ x x R x x  

        1 ( ) ( )H
n n nλ −= +R x x   (for 1n ≥ )  (2.62) 

1
* *

0
1

( ) ( ) ( ) ( )
n

n k n
n

k

k d k n d nλ λ
−

−

=

= + +∑p x x p  

       
1

1 * 1 *
0

1

( ) ( ) ( ) ( )
n

n k n

k

k d k n d nλ λ λ
−

− − −

=

 
= + + 

 
∑ x p x  

       *
1 ( ) ( )n n d nλ −= +p x   (for 1n ≥ )  (2.63) 

Rewrite the Equation (2.62) for recursive relation of nR . We have, 

1 1
1 ( ) ( )H

n n n nλ λ− −
−= +R R x x      (2.64) 

Using matrix inversion, suppose that A and B are two positive-definite matrices related 

by, 

1 1 1 H− − −= +B A CD C        (2.65) 

So the relations of these matrices are: 

   1 1
nλ− −=B R , 1

1n
−

−=A R , ( )n=C x  and 1 1λ− −=D  

Now by taking the inverse of  1
nλ− R  we have, 

1 1 1 1
1 1 11

1

1
( ) ( )

( ) ( )
H

n n n nH
n

n n
n n

λ
λ

− − − −
− − −−

−

= −
+

R R R x x R
x R x

 (2.66) 

Therefore,  

1 1 1
1 1 1 1 1

1 1
1

( ) ( )
( ) ( )

H
n n

n n H
n

n n
n n

λ
λ

λ

− − −
− − − − −

− −
−

= −
+

R x x R
R R

x R x
   (2.67) 

Multiplying both sides with ( )x n , the useful relation 1 ( )n n−R x  is, 
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1 1 1
1 1 1 1 1

1 1
1

( ) ( ) ( )
( ) ( )

( ) ( )

H
n n

n n H
n

n n n
n n

n n
λ

λ
λ

− − −
− − − − −

− −
−

= −
+

R x x R x
R x R x

x R x
 

             
1

1
1

1

( )
( ) ( )

n
H

n

n
n n λ

−
−
−
−

=
+

R x
x R x

    (2.68) 

Now we will use the above equations to attain the recursive relation for least square 

solution nw  as, 

1 1 *
1( ( ) ( ))n n n n n d nλ− −
−= = +w R p R p xo  

      1 1 *
1 ( ) ( )n n n n d nλ− −
−= +R p R x  

      
1 1 1

1 1 1 *1 1
1 11

1

( ) ( )
( ) ( )

( ) ( )

H
n n

n n nH
n

n n
n d n

n n
λ

λ λ
λ

− − −
− − −− −

− −−
−

 
= − + + 

R x x R
R p R x

x R x
 

      
1 1

1 1 *1 1 1
1 1 1

1

( ) ( )
( ) ( )

( ) ( )

H
n n n

n n nH
n

n n
n d n

n n λ

− −
− −− − −
− − −

−

= − +
+

R x x R p
R p R x

x R x
 

      1 1 *
1 1( ) ( ) ( ) ( )H

n n n nn n n d n− −
− −= − +w R x x w R x  

      1 *
1 1( )( ( ) ( ) )H

n n nn d n n−
− −= + −w R x x w    (2.69) 

Finally, we know that the error signal is 1( ) ( ) ( )H
nn d n nε −= −w x , substitute this term into 

Equation (2.69), we achieve the weight vector update equation of RLS algorithm as 

following, 

1 *
1 ( ) ( )n n n n nε−
−= +w w R x      (2.70) 

 

2.3. DOUBLE-TALK DETECTOR (DTD) 

In Acoustic Echo Cancellation, the most difficult problem is to handle with the 

situation of Double-talk presence. Double-talk occurs when far-end and near-end talk 

at the same time, as a result, the far-end speech signal is corrupted by near-end signal. 

To solve this problem, one introduces the Double-talk Detector. The task of DTD is 

freezes the adaptation step during filtering algorithm in case of near-end speech 

present to avoid the divergence of adaptive algorithm. Without DTD, when the near-

end talking would make the system estimation process fail and produce extremely 

erroneous results.  
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Now we see the Figure (II-6), when near-end speech is not present ( ( ) 0v n = ) then the 

adaptive algorithm will quickly converse to an estimate echo path. This is the best case 

of canceling echo. But when near-end speech present ( ( ) 0v n ≠ ) then this signal could 

influence to the adaptation of the filter and cause the divergence. The process of 

adaptive algorithm will be incorrect and the echo can not be removed.  

 

 

Figure II-6: Double-talk detector with AEC 
 

By implementing the DTD and Updating filter blocks in the figure above, the DTD 

will estimate the statistic decision may depend on far-end speech, near-end speech and 
error signal. After that, it will compare to the threshold to make the DTD decision to 

control the Updating filter (freeze the adaptation or not). The “Updating filter” block 

here has the meaning as a switch (on or off) which permits to update weight vector or 

not. 

There are several methods of DTD, one can use the basic algorithm as Geigel, one 

bases on the cross correlation calculations (Benesty and Normalized Cross-Correlation 

algorithms) and another method is Variance Impulse Response. 
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2.3.1. The Geigel algorithm 

One simple algorithm is introduced by A.A. Geigel [9]. His approach is that first 

measure the power of the received signal (microphone signal) and then compares this 

power to the power of the far-end signal. Due to damping the signal by room acoustic 

filter, as a result the power of the received signal containing only the echo will be 

lesser than the signal consisting of echo and a near-end speaker. This is known as 

Geigel Double-talk detector. The decision variable for this algorithm is, 

{ }max ( ) ,..., ( 1)
( )

( )G

x t x t L
t

d t
ξ

− +
=     (2.71) 

Where,  

• L is length of adaptive filter  

Make the comparison this value to the threshold GT . If ( )G tξ  is greater than the preset 

threshold, it is supposed that doubletalk is present and otherwise is not. That is mean: 

( )

( )
G G

G G

t T doubletalk
Decision

t T no doubletalk

ξ
ξ

< 
=  > − 

 

The selection of GT  requires to be chosen carefully because it strongly affect the 

performance of the detector. The Geigel detector has the benefit of being 

computationally simple and requiring very little memory. This detection approach is 

based on a waveform level comparison between microphone signal ( )d n and the far-

end signal ( )x n . And also assume that the near-end speech signal ( )v n in the 

microphone signal will be stronger than the echo ( ) ( )y n n= Th x . For AEC, it is difficult 

to set threshold which works in any situation because the loss through the acoustic 

echo path depends on different factors. In general, this detector has quite poor 

performance. 

 

2.3.2. The Cross-correlation (Benesty) algorithm 

Ye and Wu [8] firstly introduced the idea by using cross-correlation vector between the 

far-end signal ( )x n  and the error signal ( )e n  for doubletalk detection which is given 

as, 

{ }( ) ( )Texr E e n n= x
      

(2.72) 
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Where,  

• exr : is the cross-correlation vector between far-end and error signal. 

But Benesty [8] worked on this with different approach and he claimed that the above 

approach does not work well for doubletalk detection. He mentioned that both near-

end speech ( )v n and the far-end speech signal ( )x n are independent and assume that all 

the signals are zero mean.  

According to him, the cross-correlation xdr  between far-end signal and microphone 

signal will be used to calculate the decision statistic. 

{ }( ) ( )Txdr E n d n= x  

     
( ){ }( ) ( ) ( )

T
E n y n v n= +x

 

     
( ){ }( ) ( )

TTE n n= x h x
 

     
x= R h

       
(2.73) 

 Where, 

• { }( ) ( )Tx E n n=R x x  is the autocorrelation vector of far-end signal. 

Benesty’s decision statistic for double-talk detection is, 

2 1( )T
CC xd d x xdr rξ σ −= R      (2.74) 

In this equation, the variance of the microphone signal 2
dσ is,  

{ }2 ( ) ( )Td E d n d nσ =
 

     
( ) ( ){ }( ) ( ) ( ) ( )

T
E y n n y n n= + +v v  

     
{ } { }( ) ( ) ( ) ( )T TE y n y n E n n= + v v

  

     
( ){ } 2( ) ( )

TT T
vE n n σ= +h x h x
 

     
2T

x vσ= +h R h       (2.75) 

Where,  

• 2
vσ  is variance of the near-end speech 
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Finally, the Equation (2.74) of the decision statistic becomes, 

  2 2 1( )T
Benesty CC xd d x xdr rξ ξ σ −= = R  

             2( )

T
x x

T
x v xσ

=
+

h R R h
h R h R  

           2

T
x

T
x vσ

=
+

h R h
h R h       (2.76) 

Therefore, observe the above equation, easily to see that, 

• If near-end speech is present ( ( ) 0v n = ), then 1Benestyξ ≈  

• If near-end speech is not present ( ( ) 0v n ≠ ), then 1Benestyξ <  

Thus, finally we get the double-talk decisions as, 

( )

( )
Benesty

Benesty

t T doubletalk
Decision

t T no doubletalk

ξ
ξ

< 
=  > − 

 

Where, 

• T is a threshold with the chosen value approximately is 1. 

 

2.2.3. Normalized cross-correlation (NCC) algorithm 

Another method here we will discuss for doubletalk detection is the Normalized Cross-

Correlation algorithm [8]. The NCC algorithm computes the decision statistic 
depending on the relations of microphone signal and error signal. It can be approached 

by considering the values of variance of near-end signal and cross-correlation between 

error signal and microphone signal. 

The cross-correlation edr  between the error signal ( )e n  and microphone signal 

( )d n which is given as, 

{ }( ) ( )edr E e n d n=  

     
( )( ) ( ) ( ) ( ( ) ( ))T TE y n n n y n v n = + − + v h x

 

     
( )ˆ( ) ( ) ( ) ( ( ) ( ))T T T TE n n v n n v n = − + +
 

h x h x h x
 

     
( )ˆ( ) ( ) ( ) ( ) ( )T T TE n n n v n v n = − +
 

Th x h x x h
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( ) 2ˆ T

x vσ= − +Th h R h
     

(2.77) 

Now one introduces the normalized decision statistic as, 

21 ed
NCC

d

r
ξ

σ
= −

       (2.78)
 

By substituting the values of emr and 2
mσ from above relations into Equation (2.78), we 

have, 

( ) 2

2

ˆ
1 ˆ

T
x v

NCC T
x v

σ
ξ

σ

− +
= −

+

Th h R h

h R h
 

             
2

ˆ T
x

x vσ
=

+T

h R h
h R h       

(2.79) 

Look at the Equation (2.79), when the adaptive filter works well to converge to an 

estimate echo path ĥ that approximately equal to the true echo path h . Therefore, 

easily to obtain bellow conclusion, 

• If near-end speech is present ( ( ) 0v n = ), then 1MECCξ ≈  

• If near-end speech is not present ( ( ) 0v n ≠ ), then 1MECCξ <  

Thus, finally we get the double-talk decisions as, 

( )

( )
NCC

NCC

t T doubletalk
Decision

t T no doubletalk

ξ
ξ

< 
=  > − 

 

Where, T is a threshold with the chosen value approximately is 1. 

The values of edr and 2
vσ are not available in practice, so we define the new estimated 

decision statistic as, 

21
ˆ
ed

NCC
d

rξ
σ

= −
$

     
(2.80)

 

Where, 

• 
 

edr$  is the estimate of edr  

• 
2ˆdσ  is the estimate of 

2
dσ  

We can found these estimates by using the exponential recursive weighting algorithm. 
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( ) ( 1) (1 ) ( ) ( )T
ed edr n r n e n d nλ λ= − + −$ $

   (2.81) 

22ˆ ˆ( ) ( 1) (1 ) ( ) ( )T
d dn n d n d nσ λσ λ= − + −    (2.82) 

Where, 

• e(n) is the captured cancellation error sample at time n 

• d(n) is the captured microphone signal sample at time n 

• λ  is the exponential weighting factor (λ <1 and λ 1≈ ) 

2.3. FREQUENCY-DOMAIN ACOUSTIC ECHO CANCELLATION 

Above all algorithms that we described in this thesis are time domain algorithms. They 

deals with low frequencies and we can get good result in case of acoustic echo 

cancellation for low frequency signals. But when we deal with high frequencies then 

we get good result by implementing frequency domain adaptive algorithm. The main 

advantages of frequency domain adaptive algorithm is the fast convergence rate 

especially when we are dealing with speech signals and second is the low 

computational complexity due to the efficiency of block processing in connection with 

discrete Fourier transform (DFT). The frequency domain adaptive filter has two basic 

types [10]: 

1. Gradient constrained frequency domain adaptive filter. 

2. Unconstrained frequency domain adaptive filter. 

 

2.2.1. The generic frequency domain echo canceller 

In this thesis, we focus on unconstrained frequency domain adaptive filter [10]. This 

filter has low computational complexity and it can converge to the Wiener solution 

when the length of the unknown system is less than half of the block size of DFT. This 

algorithm is based on overlap-save sectioning with the DFT and its robustness is based 

on a nonlinear function that provides scaling of the reference and error signal levels. 

Due to this algorithm, we get good results without time-variant threshold estimators. 

This algorithm is useful for the applications of echo cancellation. 

In the below figure, ( )x n is the far-end speech signal with discrete time index n  and 

after passing through the room echo path this signal is picked up by microphone. The 

room impulse response h is given by, 
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[ ]1 2, ,...,
T

Lh h h h=       (2.83) 

where L is the length of the adaptive filter. The microphone signal or the output signal 

( )y n  is given as, 

( ) ( ) ( ) ( )Ty n n v n w n= + +h Rx      (2.84) 

Where,  

• ( )v n  is the near-end speech signal. 

• ( )w n is the ambient noise. 

• [ ]( ) ( 1),..., ( )
T

n x n L x n= − +x . 

• R is the matrix that reverses the order of the elements of ( )nx . 

 

Figure II-7: Frequency domain echo canceller 
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The impulse response h is assumed to be fixed or vary slowly with the convergence 

rate of adaptive filter. The transformed far-end signal in l -th frequency bin at k -th 

step is ( )kX l and it is an element of DFT of ( ), ( )
TT Tx kL L x kL −  . By increasing the 

value of L , the index k  is incremented after every time n  and 0,..., 2 1l L= − . 

The coefficient of the filter for k and l  is )(ˆ lHk , so the output signal is given as 

)()(ˆ)(ˆ lXlHlY kkk =       (2.85) 

 The echo replica $( )y kl corresponds to the last L  elements of the inverse DFT (IDFT) 

of [ ]Tkkk LYYY )12(ˆ),...,1(ˆ),0(ˆ − . And the error signal becomes, 

$( ) ( ) ( )e kL y kL y kL= −       (2.86) 

Where,  

• ( ) ( 1),..., ( )y kL y kL L y kL= − +  

In time-domain the error signal and the filter output are scalars whereas in frequency 

domain these are vectors. 

The transformed error signal ( )kE l is an element of DFT of , ( )
TT Tz e kL   , where z is an 

1L× zero vector.  

Here we are focusing on unconstrained case. So by neglecting the gradient constrained 

in figure and the updating equation for )(ˆ lHk  is, 

)(
1 ))(,)((.)(ˆ)(ˆ XklEklj

kkkk elXlEglHlH θθµ −
+ +=   (2.87) 

Where,  

• Eklθ  and Xklθ are the phases of ( )kE l and ( )kX l . 

• ( )( ) , ( )k kg E l X l  is an arbitrary function of ( )kE l and ( )kX l . 

• µ is the step-size parameter depend on ( )( ) , ( )k kg E l X l . 
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2.2.2. Sub-band adaptive filter 

The basic idea of a sub-band [15] decomposition approach is its increase in convergence 

speed in comparison to a full-band solution, especially when extremely long FIR filters 

are being adapted. This is due to a reduced spectral magnitude range, i.e. sub-band 

filtering has a de-correlating effect because colored input signals are decomposed into 

sub-bands with ’’whiter’’ sub-spectra. 

Figure (II-8) depicts the sub-band adaptive filtering. Using analysis filter banks P(Z) 

the original signal from far-end signal and near-end signal, microphone signal are 

decomposed by subdividing their spectra into smaller intervals (x0(n),x1(n),…). 

Adaptive filtering is then performed in these sub-bands by a set of independent 

filters 0 1( ( ), ( ),...)h n h n→ → . The outputs of these filters are subsequently combined using a 

synthesis filter bank Q(z) to reconstruct the full-band output. 

 

Figure II-8: Sub-band adaptive filtering (SAF) for M sub-bands 

 

The width of each sub-band is reduced because the sampling frequency for each filter 

can be lowered. Consequently the sub-band adaptive filters need fewer taps in 

comparison to full-band solutions to cover the same time interval and are updated at a 

lower rate. This leads to a significant reduction of computational complexity. 

Because linear group delays are required for sub-band adaptive filtering, only non-

recursive filters are allowed for the filter banks. 
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Filter Bank Structure: 

Because the quality of sub-band separation is highly significant for the obtained 

decimation rate and for the convergence behavior of the adaptive filters in sub-band, 

the design of analysis and synthesis filter banks [15] is the determining factor for the 

quality and efficiency of the overall system. 

The following figures depict the analysis filter bank and synthesis filter bank. To ease 

the processing, down-sampling ( )L ↓  and up-sampling ( )L ↑ can be inserted between 

the analysis and synthesis filter banks. 

 

 
 

Figure II-9: Analysis filter bank 
 

For sub-band separation and recombination we use DFT filter banks. To subdivide the 

sequence x(n) (apart from the low-frequency part) any part of the spectrum centered 

around the frequencies ω=ωm (for m=0,1,…,M-1) are shifted into the base-band by 

multiplying x(n) with the complex sinusoid mj ne ω− (with 2m

m
M

ω π= ). 

The ideal filters have unit magnitude and zero-phase in the pass-band while zero for 

the stop-band magnitude. The choice is to use FIR filters that have linear phase, but 

not ideal magnitude requirements. 

The synthesis filter bank design reduces also to the design of a signal synthesis 

prototype filter ( )Q z . Since we always use FIR sub-band filters and sub-band models, 

residual errors are unavoidable. This implies that in the design of a sub-band 

identification system, there is a tradeoff between asymptotic residual error and 

computational cost. 

1m =
 ( )x n  

Modulation 
2 m

Mj ne π−  
0m =  

1m M= −  

0 ( )x k  

1( )x k  

1( )Mx k−  

L↓  

L↓  

L↓  

( )P z  

( )P z  

( )P z  



 39

 

Figure II-10: Synthesis filter bank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0m =  

1m =  
L↑  

Modulation 
2 m

Mj ne π−  

1m M= −  

0 ( )m kθ =  

1( )m kθ =  

1( )m M kθ = −  

L↑  

L↑  

( )Q z  

( )Q z  

( )Q z  

( )e n  



 40

 

 

 

 

 

CHAPTER IIICHAPTER IIICHAPTER IIICHAPTER III ::::    SIMULATIONSIMULATIONSIMULATIONSIMULATION    

 

 

In the previous chapters above provided us the detail theory about the Acoustic Echo 

Cancellation including Algorithms of Adaptive filter, Double-talk Detection and other 

issues.  

This chapter will perform these ideas to simulate the topic’s problems by using the 

software environment (MATLAB).  

 

3.1. GENERAL SETUP OF SIMULATION 

3.1.1. Setup of the Simulation 

1. MATLAB 

MATLAB is a numerical computing environment that especially effective to calculate 

and simulate the technical problems. This programming language is very powerful 

allows matrix manipulation, plotting of functions and data, implementation of 

algorithms, creation of user interfaces, and interfacing with other programming 

languages (C, C++, Fortran and Java). 

One of the most beneficial features is graphical visualization which helps us have 

confidence in results by monitoring and analyzing resultant plots.  

In addition, MATLAB implement Simulink, the software package models, simulates, 
and analyzes dynamic systems. It enables us to pose a question about a system, model 

the system, and see what happens. 

For our simulation purpose, MATLAB actually is necessary and effective software to 

attain the convincible results because of some reasons as following: 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/User_interface
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- Easy to record audio signals of the far-end and near-end speeches. These data 

are indispensable of the simulation. 

- Matrix calculation is very important since data was processed as the matrix 

formats. 

- Easy to monitor the results by plotting desired graphs. Especially, we need to 

hear the resultant sounds – By MATLAB, it is simple to achieve. 

- The structure of the commands is suitable to compute with Signal Processing. 

 

2. Requirements during the simulation 

- This simulation tries to perform the tasks of the acoustic echo canceller and double-

talk detector at the near-end conference room. We assume that both far-end and near-

end rooms are the same characteristics (size, acoustic features). In the case of the 

perfectively performance of the far-end echo canceller, we only try to do the task of 

near-end room. 

- The speech signals (including far-end and near-end signals) were recorded by 

MATLAB software at the sampling rate of 8 kHz. The speech signal is the audio signal 
contains the frequencies between 300Hz-3400Hz. Because of the sampling theorem 

(Nyquist–Shannon sampling theorem), the analog signal will reconstruct perfectly 

from the sequence of samples if the sampling rate exceeds 2B (B is highest frequency 

of the analog signal). Thus by using sampling rate fs of 8000Hz, we will satisfy to the 

sampling theorem (fs=8000Hz>2B=3400x2=6800Hz). 

- For our simulation, the duration of the signals is 20 seconds (160.000 samples) which 

can express 4 cases (5 seconds for each case, respective to 40.000 samples) of the 

communication between far-end and near-end in the teleconference system. These 

signals are plotted as the figures below. 4 cases in teleconference are: 

 1. Far-end talks only 

 2. Double talk 

 3. Near-end talks only 

 4. Both of them are silent 
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Figure III-1: Far-end and near-end speeches 

 

- The background noise and the ambient noise were generated by MATLAB as a white 

noise that has a zero mean. The suitable noise we used here compares to the echo so 

that the Signal to Noise Ration (SNR) is approximately 45dB. 

- The process of the simulation will be performed in off-line mode, i.e. the 

performance of the acoustic echo canceller and double-talk detector will work in 

MATLAB with the recorded speech and measured room impulse response. 

 

3.1.2. Flowchart of the AEC algorithm 

The flowchart of the AEC algorithm is very important for us to orient all steps we need 

to do in the simulation. This is shown in the figure next page. 

 
Far-end 

talks only 
Double-talk Near-end 

talks only 
Both sides 
are silent 
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NO 

YES 

Start 

Read far-end signal x(n) 
and Room Impulse 
response h(n) 

Create Echo signal 

Read near-end 
Signal v(n) 

Create desired signal d(n) 

Running NLMS algorithm to 
calculate error signal 

Double-talk detection 
(Normalized Cross-
Correlation method) 

Updating Adaptive Filter 
coefficients 

Get residual echo e(n) by 
subtracting estimated echo 

from desired Signal 

NLP 

Freeze Adaptive 
filter  

Stop 

Figure III-2: Flowchart of acoustic echo cancellation algorithm 
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3.2. MEASURE ROOM IMPULSE RESPONSE (RIR) 

3.2.1. Why we must to measure RIR 

In real time performance, the Adaptive Filter works to estimate the true value of 

impulse response )(nh  of the specific room. Therefore, if we have the exact Room 

Impulse Response, we can compare our result )(ˆ nh  to this to make sure it is correct or 

not. In addition, by comparing to the true impulse response we could adjust the value 

of the factors to get the correct convergence of adaptive filter. 

The acoustic characteristic of different rooms is different. They are frequency 

response, cumulative spectral decay, energy decay and reverberation characteristics, 

they depend on the three main factors: 

 1. Size of the room. 

 2. Constructing materials of the room (hard wood, concrete, ceramics…). 

 3. Objects inside the room (tables, chairs, people…). 

 

3.2.2. Method of measuring RIR 

There are several methods to measure RIR [13], we can use various excitation signals 

such as: white noise, pink noise, Dirac pulse, swept-sine and so on.  

To achieve the room impulse response, we need to record the response (microphone 

signal) of the excitation signals (loud speaker signal). Impulse response may be 

obtained by direct de-convolution or by spectral division between the spectrum of the 

response and the spectrum of the excitation. 

The chosen method in this simulation is measuring the room impulse response by 

using white noise signal as excitation. The reason is this signal contains equal amounts 
of energy for all frequencies, thus it will be good for demonstrating the frequencies of 

the speech that are used during the simulation. Moreover, this method only requires us 

with the simple equipments: one computer is connected to microphone and loud 

speaker. And after that, all calculations of the impulse response are performed easily 

by the MATLAB software.   
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3.2.3. Result 

Our experiment was done under the setup as follow: 

- The study room at the Vaxjo University’s library is acoustically isolated with 

dimensions of  4m x 5m x 3m. 

- The microphone was located on a 1m high table and far from the loud speaker 

the distant of 1m. 

- The white noise was generated at the sampling frequency of 8000Hz and 16bits 

resolution.  

- The recorded sounds were processed off-line using MATLAB. 

Because the results are different for different times we measure. For this reason, to 

obtain the exact approximation of the room impulse response we took several times of 

measurements and got the average of them. In our experiment, we took 15 times of 

measurements and calculated the mean of them by using MATLAB. 

To obtain the real room impulse response, we must take approximated 1 second (8000 

taps) since it is depend on the reverberation factor. The graph below will illustrate this, 

 

Figure III-3: Room impulse response is measured with 8000 taps length. 

 

For this simulation, to make the simulation in MATLAB simpler, thus we measured 

the room impulse response with 128 taps length (16ms).   
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Figure III-4: The room impulse response (128 taps length)  
is used in this simulation. 

 

As the figure’s illustration, the length of the filter is approximately 16ms (respective to 

128 taps length) and the delay is 3ms (24 taps from beginning to the first maximum 

magnitude) 

The delay of 4ms is the approximate value we can compute from the distance (d=1m) 

between loud speaker and microphone.  

delay=distance/speed of sound=1/343≈3 [ms] 

 

3.3. EXPLANATION OF MATLAB CODE 

3.3.1. Adaptive filter algorithms 

In these code segments, the purpose we need to obtain is processing and performing 

the LMS and NLMS algorithms. 

The comparison below between the theory and the simulation parts (MATLAB code) 

may bring the better understanding about not only the algorithm but the programming 

work.   

The summary of the algorithms (LMS, NLMS) and the code segments are 

demonstrated in the tables below. 

 

 

 

delay 
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1. Least Mean Square (LMS) algorithm 

LMS algorithm 

Initial Conditions: 10 << µ  

Length of adaptive filter: L 

Input vector: T
Lx ]0,...,0,0[1, =  

Weight vector: T
Lw ]0,...,0,0[1, =  

For each instant of time, n = 1, 2,…, compute: 

Output signal: ( ) ( ) ( )Ty n w n x n=  

Estimation Error: )()()( nyndne −=  

Tap-Weight Adaptation: )()(2)()1( nenxnwnw µ+=+  

 

Table III-1: Summary of LMS algorithm 

 

MATLAB code 

Initial Conditions: 
mu=0.014; 
L=length(h);    %the same length of RIR 
w=zeros(L,1);   %Initial weight vector 
xin=zeros(L,1); %Initial input signal 

For each instant of time, k = 1, 2,…, compute: 

Output signal: y(i)=w'*xin;        

Estimation Error: error= d(i)-y(i); 

Tap-Weight Adaptation: wtemp = w + 2*mu*error*xin;  

 

Table III-2: MATLAB code of LMS algorithm 

 

 



 48

2. Normalized Least Mean Square (NLMS) algorithm 

NLMS algorithm 

Initial Conditions: 10 <<α  and :c  a small constant 
Length of adaptive filter: L 

Input vector: T
Lx ]0,...,0,0[1, =  

Weight vector: T
Lw ]0,...,0,0[1, =  

For each instant of time, n = 1, 2,…, compute: 

Output signal: ( ) ( ) ( )Ty n w n x n=  

Estimation Error: )()()( nyndne −=  

Tap-Weight Adaptation: )()(
)()(

2
)()1( nenx

nxnxc
nwnw

T+
+=+

α
 

 

Table III-3: Summary NLMS algorithm 
 

MATLAB code 

Initial Conditions: 

alfa=0.42;      %Alfa      
c=0.01;         %A small constant 
L=length(h);    %the same length of RIR 
w=zeros(L,1);   %Initial weight vector 
xin=zeros(L,1); %Initial input signal 

For each instant of time, k = 1, 2,…, compute: 

Output signal: y(i)=w'*xin;     

Estimation Error: error= d(i)-y(i); 

Tap-Weight Adaptation: 
mu=alfa/(c+xin'*xin); 

wtemp = w + 2*mu*error*xin;  

Table III-4: MATLAB code of NLMS algorithm 
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3.3.2. Double-talk Detector algorithm 

In this simulation, we used the Normalized Cross-Correlation method to detect the 

existence of the double-talk. We calculate the estimates using the exponential recursive 

weighting algorithm to obtain the values of the cross-correlation ( emr ) between error 

signal and microphone signal and the variance ( 2
mσ ) of the microphone signal. And 

achieve the decision statistic ( DTDξ ) from these values. Finally, we compare this value 

to the threshold (T) to make the decision of Double-talk Detector.  

Because of the convergence time of the adaptive filter, we must setup the first time 

(DTDbegin) when the Double-talk Detector start working.  

The summary and MATLAB code below will illustrate the theory and simulation the 

problem of Double-talk detection: 

 

NCC algorithm summary 

Initial Conditions: 
10 << λ  and 1≈λ  

Threshold 1≈  

For each instant of time, n= 1, 2,…, compute: 

Cross-correlation: ( ) ( 1) (1 ) ( ) ( )T
ed edr n r n e n d nλ λ= − + −  

Variance of near-end speech: 22ˆ ˆ( ) ( 1) (1 ) ( ) ( )T
d dn n d n d nσ λσ λ= − + −  

Decision statistic: 2

ˆ
1

ˆ
ed

NCC
d

r
ξ

σ
= −  

Making the DTD decision: 
If DTDξ <T, freeze adaptive filter 

If DTDξ >T, updating adaptive filter coefficients 

Table III-5: Summary of NCC double-talk detection algorithm 

In the MALAB code, one introduces the new variable wtemp (temporary value) for 

updating the adapter filter coefficients. 



 50

1. If DTDξ <T, then freeze the adaptive filter, i.e., stop updating the adaptive filter 

coefficients. Double-talk mode or both near-end and far-end are silent. 

wtemp = w;  %Freeze the adaptive filter coefficients 

2.  If DTDξ >T, then continue running the loop of the adaptive filter algorithm, i.e., 

the updating the adaptive filter coefficients will be continuous. This case for no 

near-end speech is detected: far-end talks only.  

w=wtemp;        %Update filter coefficients 

 

MATLAB code of DTD using NCC algorithm 

Initial Conditions: 

T=0.92;          %Threshold  

Lambda_DTD=0.95; %Constant 

DTDbegin=50*L;   %The time to activate DTD 

For each instant of time, n= 1, 2,…, compute: 

Cross-correlation: 
r_em(i)=lambda_DTD*(r_em(i-1))+(1-

lambda_DTD)*e(i)*d(i)'; 

Variance of near-end speech: 
varMIC(i)=sqrt(lambda_DTD*(varMIC(i-

1)^2)+(1-lambda_DTD)*d(i)*d(i)'); 

Decision statistic: 
decision_statistic(i)=1-

(r_em(i)/varMIC(i)^2); 

Making the DTD decision: 

if (decision_statistic(i)>threshold(i))  

    w=wtemp;    %Update filter coefficient 

end 

Table III-6: MATLAB code of NCC double-talk detection algorithm 

 

3.3.3. Calculate other issues 

1. Mean Square Error (MSE) 

The purpose of the adaptive filter is minimizing the Mean Square Error MSE:  

{ } ${ }22
( ) ( ) ( )E e n E d n d nξ = = −
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Therefore, the values and graph of this quantity will be essential to evaluate the 

performance of the adaptive filter. If the adaptive algorithm works well, after 

convergence time, the value of MSE should be reduced gradually to zero (for the case 

of no near-end signal). The segment of MATLAB code below to calculate this 

parameter. 

mse_iteration(i)=error^2;  %Square Error 

for i=1:N-L 

    mse(i)=mean(mse_iteration(i:i+L)); %MSE - Mean Square Error 

end 

 

2. Echo Return Loss Enhancement (ERLE)  

Echo Return Loss Enhancement ERLE is one of the most important parameters is 

commonly used to evaluate the performance of the echo cancellation algorithm. This 

quantity measures how much echo attenuation the echo canceller removed from the 

microphone signal. 

ERLE, measures in dB, is defined as the ratio of the microphone signal’s power (d[n]) 

and the residual error signal’s power (e[n]). 

)]([
)]([

)(
)(

log10
2

2

neE
ndE

nP
nP

ERLE
e

d ==  

ERLE depends on the algorithm we use for the adaptive filter, two quantities are 

considered with ERLE are the convergence time and near-end attenuation will be 

different relative to different algorithms. In our simulation, we made the MATLAB 

code to fulfill the computation of ERLE as follow, 

 

powerD(i) = abs(d(i))^2;    %Power of Microphone signal 

powerE(i)=abs(e(i))^2;      %power of Error signal 

for i=1:N-L 

    ERLE(i)=10*log10(mean(powerD(i:i+L))/mean(powerE(i:i+L)); 

end 
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3.4. RESULTS 

The resulting plots below demonstrate the performance of acoustics echo canceller 

with different algorithms. Fist, we show the graph of near-end speech which we need 

to compare with the error signal (it is should be approximately equal). Second, the 

plots in turn are: microphone signal ( )d n , output signal ( )y n  of the adaptive filter and 

error signal ( )e n . The error signal in real teleconference system is transmitted from 

near-end user to the far-end user. If no near-end speech, it should be a silent signal and 
if near-end talks, then the error signal contains only near-end speech. 

Other graphs will express the evaluations of the estimated impulse response, Double-

talk detector and performance of the adaptive filter (MSE, ERLE). 

 

 

Figure III-5: Plot near-end speech, it is necessary to compare with the error signal 
that the echo canceller produced. 
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3.4.1. LMS algorithm 

 

 

 

 

 

 

 

Figure III-6: Plot the needed signals (LMS algorithm) in turn are:                     
desired signal, output signal and error signal 
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Figure III-7: Double-talk detection of LMS algorithm where the decision statistic 
( )NCC nξ (green line) compare to the threshold T (red line). If ( )NCC nξ >T, far-end talks 

only and if ( )NCC nξ <T, double-talk or only near-end talks or both side are silent 

 

 

 

 

Figure III-8: Evaluation of LMS algorithm, Mean Square Error (measure how much 
the algorithm minimize the echo) and Echo Return Loss Enhancement (measure the 

echo attenuation the echo canceller removed) 
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3.4.1. NLMS algorithm 

 

 

 

 

 

 

 

Figure III-9: Plot the needed signals (NLMS algorithm) in turn are:  
desired signal, output signal and error signal 
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Figure III-10: Double-talk detection of NLMS algorithm where the decision statistic 
( )NCC nξ (green line) compare to the threshold T (red line). If ( )NCC nξ >T, far-end talks 

only and if ( )NCC nξ <T, double-talk or only near-end talks or both side are silent 

 

 

 

Figure III-11: Evaluation of NLMS algorithm, Mean Square Error (measure how 
much the algorithm minimize the echo) and Echo Return Loss Enhancement (measure 

the echo attenuation the echo canceller removed) 
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3.5. EVALUATION 

From the experiment works and the resultant graphs, we can evaluate the echo 

cancellation algorithm in order to have a deeper understanding and the conclusion of 

the thesis’ topic. As the results above of two echo cancellation algorithms are LMS 

and NLMS, we have some evaluations as follow. 

 

1. Comparison between LMS and NLMS 

Both of them could converge approximately the estimated impulse response ĥ  of the 

true room impulse response h, thus the estimated echo ˆ( )y n  signal look like similar the 

true echo signal ( )y n . As a result, the error signals almost obtain our desired results. 
Considering the Figure (III-6) and (III-9), it is easily to see that the resultant error 

signals of NLMS is more convincing than the ones of LMS. The figure (III-7) and (III-

10), the double-talk decision of NLMS also is better than LMS (more exactly).  

From these comments above, we can conclude that the performance of NLMS 

algorithm is better and exacter than LMS algorithm. 

 

2. Convergence test 

Convergence is the most important factor to observe when running the echo 

cancellation algorithm. If the filter coefficients used in the adaptive filter algorithm did 

not converge, the code could get problem. In this simulation, we used the standard 

signals as white noise (as the input signals), the low pass filter (model the impulse 

response) to check the operation of the algorithm. If the problem still exist, then we 

verify the convergence factor nµ . By varying this factor, we can control and adjust the 

convergence of the adaptive filter algorithm.  

 

3. Echo Return Loss Enhancement (ERLE) 

This parameter is used in order to evaluate the quality of the echo cancellation 

algorithm. If the echo cancellation algorithm perform well, then the values of ERLE 

should be in the range of (45dB, -40dB) (for Signal to Noise ratio SNR of 45dB). 
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Both LMS and NLMS gave the plots of ERLE within this range, thus the ERLE for 

these algorithms achieved the required value or in other words, the algorithms work 

well. 

 

4. Check the resultant audio signals 

With MATLAB, we can check the resultant signals by playing them. The microphone 

signal and the error signal after echo canceller are play by loud speaker gave us the 

good result we want. We realized that there was litter echo still existed in the 

beginning of the error signal, this because of the convergence time of the adaptive 

filtering algorithm. In general, the sounds we heard bring us with the convincing 

results.  
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CHAPTER IVCHAPTER IVCHAPTER IVCHAPTER IV ::::    CONCLUSION AND CONCLUSION AND CONCLUSION AND CONCLUSION AND     

FURTHER WORKFURTHER WORKFURTHER WORKFURTHER WORK    

 

 

 

4.1. CONCLUSION 

In this thesis we studied how to cancel acoustic echo by AEC. One of the major 

problems in a telecommunication application over a telephone system is echo. The 

Echo cancellation algorithm presented in this thesis successfully attempted to find a 

software solution for the problem of echoes in the telecommunications environment. 

AEC is the conventional method for solving the acoustic echo problem. Under ideal 

conditions AEC can achieve perfect echo cancellation, because it estimates both the 

phase and amplitude of the echo signal. The proposed algorithm was completely a 

software approach without utilizing any Digital Signal Processing (DSP) hardware 

components. 

Speech has most of its energy concentrated to lower frequencies. Therefore it is most 

important to achieve an optimal echo cancellation at these frequencies. At higher 

frequencies the ear is not sensitive to phase information. 

The algorithm was capable of running in any PC with MATLAB software installed. In 
addition, the results obtained were convincing. The audio of the output speech signals 

were highly satisfactory and validated the goals of this research. 
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4.2. FURTHER WORKS 

The algorithm proposed in this thesis presents a solution for single channel acoustic 

echoes. However, most often in real life situations, multi-channel sound is the norm for 

telecommunication. For example, when there is a group of people in a teleconference 

environment and everybody is busy talking, laughing or just communicating with each 

other multi-channel sound abounds. Since there is just a single microphone the other 

end will hear just a highly incoherent monographic sound. In order to handle such 

situations in a better way the echo cancellation algorithm developed during this 

research should be extended for the multi-channel case. 

Another thing we need to implement in the acoustic echo canceller is that make it 

working in real time (in practice) performance of teleconference system. Our work 

only simulate the thesis’ topic in offline mode, therefore, it is necessary to implement 

in real communication between far-end and near-end room of the teleconference 

network.  
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Appendix A: MATLAB code of LMS algorithm 

clear all 
%--------------------------------------------------------------------- 
%Load Data 
[x, Fs, nbits] = wavread('c:/audiofiles/fe1');    %Far-end signal 
[v, Fs, nbits] = wavread('c:/audiofiles/ne1');    %Near-end signal  
[h, Fs, nbits] = wavread('c:/audiofiles/room_impulse_response_128taps'); 
%Room impulse response 
  
%Declare the needed variables  
L=length(h);        %Length of adaptive filter (same length of RIR) 
N=length(x);        %Number of iterations 
T=0.92;             %Threshold for Double talk detection 
lambda_DTD=0.95;    %Constant for calculating decision statistic of DTD 
DTDbegin=21000;     %The time to activate DTD 
  
%Intial value 0 
w=zeros(L,1);       %Initial weight vector of AF Lx1 
xin=zeros(L,1);     %Initial input signal of AF Lx1 
varMIC=zeros(N,1);  %Initial variance of microphone signal of AF Nx1 
r_em=zeros(N,1);    %Initial Cross correlation between error and microphone 
signals 
  
%Ambient noise 
WhiteNoise = wgn(N,1,-65);     %With make SNR of 45dB 
%Microphone signal 
EchoSignal=filter(h,1,x);      %Echo signal after filter H 
d=EchoSignal+WhiteNoise+v;     %Desired signal (Microphone Signal) 
  
%Make column vectors 
x=x(:);             %Far end signal Nx1 
d=d(:);             %Desired signal Nx1 
  
%The values for calculate Step-Size of Adaptive Filter           
mu=0.014; 
  
%Calculate the average SNR (desired signal/noise) 
powerMic = sum(abs(d).^2)/N;            %Power of Microphone signal 
powerN = sum(abs(WhiteNoise).^2)/N;     %Power of White Noise 
SNR=10*log10(powerMic/powerN);          %Calculate the SNR 
  
%---------------------------------------------------------------------- 
%-------------LMS algorithm for Adaptive Filter----------------------- 
for i=1:N 
for j=L:-1:2 
    xin(j)=xin(j-1); 
end 
    xin(1)=x(i);               %Insert new sample at beginning of input 
     
    y(i)=w'*xin;               %Output signal after adaptive filter    
    error=d(i)-y(i);           %ERROR  
    e(i)=error;                %Store estimation error 
    wtemp = w + 2*mu*error*xin;%Update filter   
  
% -----------NORMALIZED CROSS-CORELATION ALGORITHM DTD-------------- 
threshold(i)=T;     %Threshold for plotting DTD 
if (i<=DTDbegin)    %The beginning time of the DTD 
    w=wtemp;        %Update filter coefficients 
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end 
if (i>DTDbegin) 
    %Cross correlation between error and microphone signal 
    r_em(i)=lambda_DTD*(r_em(i-1))+(1-lambda_DTD)*e(i)*d(i)'; 
    %Variance of microphone signal 
    varMIC(i)=sqrt(lambda_DTD*(varMIC(i-1)^2)+(1-lambda_DTD)*d(i)*d(i)'); 
    decision_statistic(i)=1-(r_em(i)/varMIC(i)^2);  %Decision statistic 
%Making the double-talk decision 
if (decision_statistic(i)>threshold(i))  
    w=wtemp;        %Update filter coefficients 
end 
 
end 
%-------------ERLE------------------------------------- 
powerD(i) = abs(d(i))^2;    %Power of Microphone signal 
powerE(i)=abs(e(i))^2;      %power of Error signal 
%--------------MSE------------------------------------- 
mse_iteration(i)=error^2;  %Square Error 
end 
  
for i=1:N-L 
    %MSE - Mean Square Error 
    mse(i)=mean(mse_iteration(i:i+L)); 
    %Echo Return Loss Enhancement 
    ERLE(i)=10*log10(mean(powerD(i:i+L))/mean(powerE(i:i+L))); 
     
    %Plotting Double-talk Detection 
    if (i>DTDbegin) 
       ds(i)=mean(decision_statistic(i:i+L)); 
    else 
       ds(i)=1; 
    end 
end 
    
%---------------------------------------------------------------------- 
%PlOTTING THE NECESSARY SIGNALS 
%---------------------------------------------------------------------- 
figure(1) 
%-------echo signal------------------------- 
subplot(4,1,1) 
plot(EchoSignal) 
xlabel('time (samples)');  
ylabel('echo(n)'); 
title('ECHO SIGNAL: echo(n)') 
grid on 
axis([0 N -1 1]); 
  
%-------Desired signal----------------------- 
subplot(4,1,2) 
plot(d) 
xlabel('time (samples)');  
ylabel('d(n)'); 
title('DESIRED SIGNAL: d(n)') 
grid on 
axis([0 N -1 1]); 
  
%-------Output signal x(n)------------------- 
subplot(4,1,3) 
plot(y) 
xlabel('time (samples)');  
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ylabel('y(n)'); 
title('OUTPUT SIGNAL (AFTER W): y(n)') 
grid on 
axis([0 N -1 1]); 
  
%-------Error signal x(n)-------------------- 
subplot(4,1,4) 
plot(e,'red') 
xlabel('time (samples)');  
ylabel('E(n)'); 
title('ERROR SIGNAL: e(n)') 
axis([0 N -1 1]); 
grid on  
  
%-------Estimation system w----------------- 
figure(2) 
subplot(2,1,1) 
plot(w,'red') 
xlabel('Tap');  
ylabel('Magnitude (W)'); 
title('ESTIMATE SYSTEM: W(N)') 
grid on 
  
%-------True system h---------------------- 
subplot(2,1,2) 
plot(h) 
xlabel('Sample number (n)');  
ylabel('Magnitude (H)'); 
title('TRUE IMPULSE RESPONSE: h(n)') 
grid on 
  
%-------Estimator for DTD------------------ 
figure(3) 
  
%-------Decision Statistic----------------- 
subplot(311) 
plot(ds,'green') 
hold all 
plot(threshold,'red') 
hold off 
xlabel('Sample number (n)');  
ylabel('Decision Statistic'); 
title('DOUBLE TALK DETECTION') 
grid on 
  
%-------Mean square error------------------- 
subplot(312) 
plot(mse) 
xlabel('Sample number (n)');  
ylabel('Mean(Error^2)'); 
title('MEAN SQUARE ERROR') 
grid on 
  
%-------Echo return loss enhancement--------- 
subplot(313) 
plot(ERLE) 
xlabel('Sample number (n)');  
ylabel('Desired signal/Error signal (dB)'); 
title('ECHO RETURN LOSS ENHANCEMENT') 
grid on 
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Appendix B: MATLAB code of NLMS algorithm 

clear all 
%--------------------------------------------------------------------- 
%Load Data 
[x, Fs, nbits] = wavread('c:/audiofiles/fe1');    %Far-end signal 
[v, Fs, nbits] = wavread('c:/audiofiles/ne1');    %Near-end signal  
[h, Fs, nbits] = wavread('c:/audiofiles/room_impulse_response_128taps'); 
%Room impulse response 
  
%Declare the needed variables  
L=length(h);        %Length of adaptive filter (same length of RIR) 
N=length(x);        %Number of iterations 
T=0.92;             %Threshold for Double talk detection 
lambda_DTD=0.95;    %Constant for calculating decision statistic of DTD 
DTDbegin=21000;     %The time to activate DTD 
  
%Intial value 0 
w=zeros(L,1);       %Initial weight vector of AF Lx1 
xin=zeros(L,1);     %Initial input signal of AF Lx1 
varMIC=zeros(N,1);  %Initial variance of microphone signal of AF Nx1 
r_em=zeros(N,1);    %Initial Cross correlation between error and microphone 
signals 
  
%Ambient noise 
WhiteNoise = wgn(N,1,-65);     %With make SNR of 45dB 
%Microphone signal 
EchoSignal=filter(h,1,x);      %Echo signal after filter H 
d=EchoSignal+WhiteNoise+v;     %Desired signal (Microphone Signal) 
  
%Make column vectors 
x=x(:);             %Far end signal Nx1 
d=d(:);             %Desired signal Nx1 
  
%The values for calculate Step-Size of Adaptive Filter           
alfa=0.42;     %Alfa      
c=0.01;        %A small constant 
  
%Calculate the average SNR (desired signal/noise) 
powerMic = sum(abs(d).^2)/N;            %Power of Microphone signal 
powerN = sum(abs(WhiteNoise).^2)/N;     %Power of White Noise 
SNR=10*log10(powerMic/powerN);          %Calculate the SNR 
  
%---------------------------------------------------------------------- 
%-------------NLMS algorithm for Adaptive Filter----------------------- 
for i=1:N 
for j=L:-1:2 
    xin(j)=xin(j-1); 
end 
    xin(1)=x(i);               %Insert new sample at beginning of input 
     
    y(i)=w'*xin;               %Output signal after adaptive filter    
    error=d(i)-y(i);           %ERROR  
    e(i)=error;                %Store estimation error 
    mu=alfa/(c+xin'*xin);      %Calculate Step-size 
    wtemp = w + 2*mu*error*xin;%Update filter   
  
% -----------NORMALIZED CROSS-CORELATION ALGORITHM DTD-------------- 
threshold(i)=T;     %Threshold for ploting DTD 
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if (i<=DTDbegin)    %The beginning time of the DTD 
    w=wtemp;        %Update filter coefficients 
end 
if (i>DTDbegin) 
    %Cross correlation between error and microphone signal 
    r_em(i)=lambda_DTD*(r_em(i-1))+(1-lambda_DTD)*e(i)*d(i)'; 
    %Variance of microphone signal 
    varMIC(i)=sqrt(lambda_DTD*(varMIC(i-1)^2)+(1-lambda_DTD)*d(i)*d(i)'); 
    decision_statistic(i)=1-(r_em(i)/varMIC(i)^2);  %Decision statistic 
%Making the double-talk decision 
if (decision_statistic(i)>threshold(i))  
    w=wtemp;        %Update filter coefficients 
end 
  
end 
%-------------ERLE-------------------- 
powerD(i) = abs(d(i))^2;    %Power of Microphone signal 
powerE(i)=abs(e(i))^2;      %power of Error signal 
%--------------MSE-------------------- 
mse_iteration(i)=error^2;  %Square Error 
end 
for i=1:N-L 
    %MSE - Mean Square Error 
    mse(i)=mean(mse_iteration(i:i+L)); 
    %Echo Return Loss Enhancement 
    ERLE(i)=10*log10(mean(powerD(i:i+L))/mean(powerE(i:i+L))); 
    %Plotting Double-talk Detection 
    if (i>DTDbegin) 
       ds(i)=mean(decision_statistic(i:i+L)); 
    else 
       ds(i)=1; 
    end 
end 
    
%---------------------------------------------------------------------- 
%PlOTTING THE NECESSARY SIGNALS 
%---------------------------------------------------------------------- 
figure(1) 
%-------echo signal------------------------ 
subplot(4,1,1) 
plot(EchoSignal) 
xlabel('time (samples)');  
ylabel('echo(n)'); 
title('ECHO SIGNAL: echo(n)') 
grid on 
axis([0 N -1 1]); 
  
%-------Desired signal-------------------- 
subplot(4,1,2) 
plot(d) 
xlabel('time (samples)');  
ylabel('d(n)'); 
title('DESIRED SIGNAL: d(n)') 
grid on 
axis([0 N -1 1]); 
  
%-------Output signal x(n)---------------- 
subplot(4,1,3) 
plot(y) 
xlabel('time (samples)');  
ylabel('y(n)'); 
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title('OUTPUT SIGNAL (AFTER W): y(n)') 
grid on 
axis([0 N -1 1]); 
  
%-------Error signal x(n)----------------- 
subplot(4,1,4) 
plot(e,'red') 
xlabel('time (samples)');  
ylabel('E(n)'); 
title('ERROR SIGNAL: e(n)') 
axis([0 N -1 1]); 
grid on 
  
%-------Estimation system w--------------- 
figure(2) 
subplot(2,1,1) 
plot(w,'red') 
xlabel('Tap');  
ylabel('Magnitude (W)'); 
title('ESTIMATE SYSTEM: W(N)') 
grid on 
  
%-------True system h--------------------- 
subplot(2,1,2) 
plot(h) 
xlabel('Sample number (n)');  
ylabel('Magnitude (H)'); 
title('TRUE IMPULSE RESPONSE: h(n)') 
grid on 
  
%-------Estimator for DTD----------------- 
figure(3) 
  
%-------Decision Statistic---------------- 
subplot(311) 
plot(ds,'green') 
hold all 
plot(threshold,'red') 
hold off 
xlabel('Sample number (n)');  
ylabel('Decision Statistic'); 
title('DOUBLE TALK DETECTION') 
grid on 
  
%-------Mean square error----------------- 
subplot(312) 
plot(mse) 
xlabel('Sample number (n)');  
ylabel('Mean(Error^2)'); 
title('MEAN SQUARE ERROR') 
grid on 
  
%-------Echo return loss enhancement------ 
subplot(313) 
plot(ERLE) 
xlabel('Sample number (n)');  
ylabel('Desired signal/Error signal (dB)'); 
title('ECHO RETURN LOSS ENHANCEMENT') 
grid on 
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