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Differential Amplifier Input Impedance and Blackman’s
Impedance Relation

CLAUDE S. LINDQUIST

Abstract—Recently the input impedance of a differential ampli-
fier was derived and discussed, This correspondence derives similar
results using a different approach, namely, Blackman’s impedar.ce
relation, and generalizes earlier observations. The results provide an
alternative active R( realization of a bilinear RL impedance. Varicus
all-pass networks are also analyzed.

A recent letter derived and described the input impedance of a
differential amplifier and presented an illustrative example [1]. This
correspondence derives the input impedance using another approach,
namely, Blackman’s impedance relation, and proceeds to generalize
and apply the results. It provides an alternative active RC realiza-
tion for bilinear RL impedances. The input impedance of several
recent all-pass networks are also derived and are discussed to illt s-
trate these results,

To begin, consider the differential amplifier embedded in external
circuitry, as shown in Fig. 1, The differential amplifier is shown insiie
the dotted lines; the inverting port voltage is ¥, and the noninverting
port voltage is Va. A simplified amplifier model is used that neglects
the cross-coupling between inputs and the reverse transmission from
the output to either input. Alsoc, the forward channel gains a-e
assumed to be equal in magnitude. The input impedances are £’y
and Zi and the output impedance is Z,. The forward gain is 4. This
model is adequate for the discussion here. We intend to extend the
model to include common-mode effects in the near future. Followir g
the condition of [1, eq. (9)] where the open-circuit voltage Ep Is
linearly related to E,, the noninverting voltage port is driven from &
voltage source K(s)E; through the voltage divider consisting of s
and Zi. In the equations that follow, K(s) is simply expressed as £,

The input impedance Z; of the noninverting channel equals Ey/.i;
and can be written immediately as

VAYALS

= ZlZin=Z ——e . 1
Zs+ Zi| Z:a 2+Za+Z,~z o

Under the condition that Z;>3>Z;, which is usually the case,
Zy =2y + Zs. (2)

The input impedance Z, of the inverting channel was derived in
[1] from basic network equations. Z, is given by (8) and is a func-
tion of Z1, Zs, Zs, and K under limiting gain 4 conditions. We will
derive the input impedance utilizing Blackman’s impedance relation
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Fig. 1. Differential amplifier embedded in external circuitry,

2,9

Fig. 2. _Calculation of Z,(0), T's, and T, terms in Blackman's impedance relation.
(a) Input impedance of system in Teference state. (b) Calculation of shorte
circuit return ratio T () Calculation of open-circuit return ratio 7.

as an alternative approach, It is particularly illuminating to those
familiar with feedback network theory.
Blackman’s impedance relation states [2], [3]

14T,
14+ T

where Z(k) and Z(0) are driving-point impedances of the port of
interest when the system is in its normal and reference states (k=0),
respectively; T, and T, are the system return ratios for coupling &
under short-circuit and open-circuit port conditions, respectively.
Let us choose the voltage source 4 (Vi— V,) as the source of inter-
est having strength A. Setting 4 =0, the driving-point impedance
Za(0) for the system in the reference state shown in Fig. 2(a) is

Z.(0) = Z, + Za||(Z + Z0). )

The short-circuit return ratio T, is readily determined by replac-
ing the dependent voltage source by an independent voltage source
having strength A4, shorting the input port, and calculating T, which’
equals —(Vg— V) under these conditions. Thus from Fig. 2(b)

Zx“Zn .
Z4Z,+ ZxHZu

Z{E) = Z(0) ——— 3)

T‘=—'(Vd—V¢) =V,
Ha=0

thus Ep=0

(5)

Eg=0=Eb

The open-circuit return ratio T is obtained by instead open-
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circuiting the input port and calculating — (Va— V) which equals T, Zs VA VA
under these conditions. Therefore, from Fig. 2(c) E, = Za+ Zs (1 + Z) By — A Ea
Tu= - (Va- =v.(1-x _ZillZa ) = Gi(1 + G)Es — GuFe ©)
Z: + 2| Za . . . .
Z. z ||Z where —Go=—Z7/7; is the gain of the inverting channel (for Zi,
=4 i (1 - K sl ) (6) A—w»,and Z,—0). Therefore, for B, = KE,, the overall system gain
Zu+Z2+ 2, Zy + Zif|Zsy G(s) is

Substituting (4), (5), and (6) into (3) gives the general inputim-
pedance Z,(4) expression. Under limiting impedance conditions for
the differential amplifier where Z;;— %, Zi;— », and Z,—0, we find
that

Zy
144"
Z+Z
Zu(4) = (21 + 2) +; @
1+A<1 Za‘i‘Zs)

which is identical to [1, eq. (10)]. Under the limiting condition on

differential amplifier gain that 4— «, (7) reduces to

Z1 _ Z1
Zs 1 —KG

1—-K —
Zy+ Zs

Zo & Zu(w) = ®

where Gy =Z3/(Z:+2Z;) is the voltage gain of the input (impedance)
divider to the noninverting channel for Z»— «. This is equivalent to
[1, eq. (11)] in rearranged form. It is a particularly useful factoring
since the output voltage of the differential amplifier network can be
written as

G(s) = — = KGy (1 + Go) — G

a

(10

If we normalize the input impedance expression of (8) by Zi, we
obtain

Za _ 1
Za nor é — T
_Z1 1 - KG

so that Z, =2, when KG,=0. Thus under nonzero KGs conditions, Z;
must be denormalized by 1/(1 —KG). In sinusoidal steady state, this
denormalization factor can be obtained directly from {1, Fig. 4(a),
(b)] by simply redefining K given by [1, eq. (14)] and Z. by [1, eq.
(15)]. Expressing

(1

KGs = | KGy| e (12)

and

Zg not = 1/<1 — KEG) = ] Zy norl
in (11) and relabeling [1, Fig. 4], the normalized input impedance to
channel ¢ is shown in Fig. 3. The input impedance is infinite when
KGy=

(13)

2 nor
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Fig. 4.

(b)

Operational «.mplifier network for converting

balanced output: into unbalanced outputs.

The ratio R of the input impedances of channels b and a from 2)

and (8) is
Zy Zz-!- Z3 + Zs VA
RA —=— 1 — KG <1—K—— ) 4
a5 2 ( ) = 7 7, (4)

For the channels to be matched, R=1, Thus rearranging (14) gives
the condition on the coupling coefficient K for matching of the input
impedances of the two channels as

—-Z
Kiaten = 1 + _Zs = * (3>
In the example of [1, Fig. 3]
. | KK -
mateh = e A
teh 0K 5

so that simply connecting the inputs together leads to matched chin-
nel input impedances of 11 kQ. The total input impedance to both
channels is therefore 5.5 k. Equation (14) shows that for K =1, ~he
two channels are impedance matched (to Z,+Z;) only when Z; = Z,.
This becomes obvious after recalhng V.=V, for infinite gain opera-
tional amplifiers and E, = Fp since k=1 (see Fig. 1). Thus I, =1, oaly
when Z; =Z,, in which case Z,=2;.

The total input impedance Zin of the differential amplifier net-
work is

o= B ezt 2 =
BT Zetze TV L2+ 21— K)
Z1/Zs )
=2 [1 1+Z2/Za] (17

Note that Zi, is independent of the feedback impedance Z. When he
inputs to each channel are connected together so K=1,

142
Zot 2 Z
ZuK =1 =225 _ g : (18)
Z+ 7z, gz
Zy

Equations (17) and (18) form the basis for an interesting driviag-
point impedance synthesis method. It can be used, for instance, to
provide an alternative method for realizing a bilinear RL impeda 1ce
to that in [4] and [5]. For example, setting Zi=R, Z;=1/sC, ¢nd
Zi=aR, the total input impedance Zi of the network is

1 -+ asRC

ZnlK =1 =R=7%c

(19)

For a>1, the input impedance is inductive. Drawing the Bode mag-
nitude approximation for Zi, shows that the equivalent inductanace
value is ¢R?C H in the frequency range 1/aRC<w<1/RC. For ¢-<1,
the input impedance is capacitive over a limited frequency range.
Another application area of these results are operational amplifier
systems that convert balanced systems into unbalanced syste ms.
Balanced systems are symmetrical with respect to ground so KX = --1.
Since these outputs must remain balanced with respect to impressed
loads, then Z,=2Z;. Another constraint that channel gains be equal
and opposite requires that Gy=G./(1+Gs) from (10). Thus if the

channel gains required are G (noninverting channel) and —G (invert-
ing channel), respectively, the channel gain constraint requires

Z=GZ,and Zy=GZ, from (10), as shown in Fig. 4(a). The input im-
pedances are then
1+G
Zy = ——— 20
14262 (20)
=1+ &2, (1)

from (8) and (2), respectively. Requiring Zs =2, for equal loading
requires

Zy = Zy(1 + 2G). (22)

Since large gain G requires Z; ~2GZ, and Z =2G*Z,, the feedback
impedance Z may become excessively large. In such cases, it is more
practical to add a shunt impedance Z, to the input of the noninverting
channel to reduce Zs to the desired level. Equating Z|Z, to Z, and re-
arranging results in the design equation

1 1 Z
Z, (1+G6)7, [: Zy + ZG:" (3)

A convenient choice is to make Zy=Z; which requires that
Z,=Z1(1+G)/2G. The resulting network is shown in Fig. 4(b). An
additional constraint that is sometimes desirable requires matching
of the input impedances presented to the operational amplifier itself,
This minimizes the voltage offsets due to nonzero offset currents.
Assuming that the voltage sources + V3 have output impedances Z,,
then the 1mpedance presented to the inverting terminal of the opera-
tional amplifier is (Z,-+Z1)||GZ:, while that presented to the non-
inverting terminal is (Z, +2,)||GZ; [see Fig. 4(a) ]. Impedance match-
ing requires Z, =Z, which cannot be satisfied under the equal loading
requirement of (22). The problem is simply overconstrained and more
degrees of freedom must be introduced if a solution is to exist. This
will not be pursued here.

All-pass networks having the equivalent topology of Fig. 1 can
also be readily analyzed using these results [6], [7]. These considera-
tions can be directly generalized for other topologies. Consider the
all-pass networks of Fig. 5. For the network of Fig. 5(a), the input
impedance Z, of the inverting channel, using (8), is

Zy=R ! =R 1
Lo = 1 = 1 SRaCz

1-G
1 + S.Rscz

= Ry(1 + sRsCy). (29)

The equivalent circuit of this input appears to be a resistance of
R, © in series with an inductance of R1C:R; H. We found experimen-
tally that Z,=20.2 kQ-+4jwl7 H when theoretically Z,=20 kQ
+7w15.3 H for an all-pass network having Rj=R=20 kQ, (,=0.09
uF, and R3=8.5 kQ using an LM 101 operational amplifier. The total
input impedance Zin is Ri(1 +sR;C)/(1+35R;C) so that this network
can be used to obtain the bilinear RL impedance discussed in (19)
for R;>Ry.

For the network of Fig. 5(b),

1 1
Zo =R ——m =R (1 —-——)
! 1 ! ( + sR2C3

1 + SRz(/s

(25)
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Fig., 5, Recent all-pass networks [7].

so that the input appears to be a resistance of Ry Q in series with a
capacitance of C3Ry/Ry F. Experimentally, Z,=20.2 kQ—j/w
0.0348 X10~¢ F when theoretically Z,=20 kQ—j/w 0.038X10~¢ F,
interchanging the R and C position of Fig. 4(a). The total input im-
pedance Zin is (14+sCsRs)/sC(1+Ry/Ry).

In passing we note that the input impedance Z, of the network
of Fig. 5(c) is

=R
Va1 1 s243 (s+2)
Yoz s+2 s+ D6+ 3)

(26)

These all-pass networks provide excellent application and veri-
fication of the results developed in [1] and in this correspondence.
The results provide insight into impedance matching problems, The
results also provide the basis for an active RC realization of a driving-
point impedance.
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Fast Neutron Tolerance of GaAs JFET’s Operating in
the Hot Electron Range

A. F. BEHLE axp R. ZULEEG

Abstract—Carrier removal and mobility degradation in epitaxially
grown n-type GaAs, due to exposure to fast neutrons, is reported.
The variations in carrier concentrations and mobilities are utilized to
predict the transconductance degradation of GaAs JFET’s as a func-
tion of neutron fluence. Experimental results up to a fluence of
8% 10% n/cm? are reported and correlated with theory.

A theoretical analysis and preliminary data for the effects of fast
neutron irradiation on the electrical parameters of n-channel, GaAs
JFET’s operating under hot electron conditions have been reported
previously by McNichols and Zuleeg [1].

The purpose of this correspondence is to report further experi-
mental data confirming the improved neutron tolerance expected for
these devices. In addition, data for neutron effects in n-type, GaAs
epitaxial layers are presented.

In order to fully assess the effects of fast neutron irradiation on
GaAs JFET's, pre- and post-irradiation Hall effect measurements
were performed to determine the effects of neutron irradiation on the
basic starting material of n-type epitaxial GaAs layers on chromium
doped, semi-insulating substrates. Fig. 1 presents data for the carrier
removal rate (—dN/d®) and the degradation parameters ¢ and b as
a function of initial carrier concentration for epitaxial GaAs layers
greater than 1 um thick. The degradation parameters ¢ and b are
defined in [1] and predict the post- to pre-irradiation carrier concen-
tration NV and mobility x4 as a function of neutron fluence & from the
relations

N =No¢(l — a®) n
Lot @
v oMo

These data correlate well with data for bulk n-type GaAs published
by McNichols and Ginell [2]. The straight lines in Fig. 1 are ob-
tained by the method of least squares, and are numerically repre-
sented by [2]

¢ =172X 1074 N0 (cm?) 3)
= 7.8 X 1078 N-0-8¢ (cm?). (4)

When epitaxial films thinner than 1 um were investigated, it was
not possible to extract meaningful information from pre- and post-
irradiation Hall measurements due to space-charge redistribution
effects of significant magnitudes occurring at the substrate-epitaxial
layer interface.

The GaAs JFET’s (Fig. 2) used in this study were fabricated on
n-type layers 1-2 um thick with carrier concentrations in the range of
108-10" cm™ on chromium doped, semi-insulating substrates. The
gate, with a length of 5 um, is zinc diffused across a mesa formed by
etching through the epitaxial layer. Source, drain, and gate con-
tacts are alloyed AuGe. The maximum frequency of oscillations for
the devices is about 6 GHz.

The data for the normalized transconductance degradation of the
JFET’s as a function of channel doping for a neutron fluence of
2X10% n/cm? is presented in Fig. 3 for all transistor lots tested under
the program. Each lot was composed of a minimum of ten devices. It
is evident that the average value and the standard deviation range of
normalized transconductance degradation of device lots doped with

2X10%, 2X10%, 5X10%¥ and 1X10Y7 cm™ are predicted by the
theory for z>>1, where by definition [3]
uVo
=— 5
=7 (5)

and where p is the low-field drift mobility, ¥, is the device pinchoff
voltage, v, is the carrier saturation drift velocity, and L is the gate
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