
http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 1 of 14

The CREATE USB Interface - where art meets electronics

CUI version 1.0

Dan Overholt
U.C. Santa Barbara
Center for Research in Electronic Art Technology

The need for the "CUI"

In the Media Arts and Technology program, we explore new metaphors for artistic interactivity that
connect the physical world with the virtual realm. We develop new techniques for computing that generate
music and visual arts in a myriad of ways; but in order to put forth these techniques, we must create new
sensors, and build interfaces that can better grasp their control and generation. The CUI allows us to bind
physical processes or actions to corresponding digital expressions.

 To simplify this process of connecting the real world to the virtual, the CUI provides the necessary
electronics to capture sensor input or control actuator output. The CUI comes with a USB port, a power LED,
a Reset switch, a Programming switch, and a prototyping area. At the heart of the board is the PIC18F4550,
a versatile microcontroller made by Microchip Technologies, Inc. The PIC18F4550 features thirteen A/D
inputs, eighteen general I/O ports, and an efficient RISC-like instruction set. The CUI only uses one of the
PIC's general I/O ports; the remaining ports are available for user applications to be built in the
prototyping area. The total cost of the CUI is around $30 US when built in small quantities.

About this Document

This document is written primarily for anyone who wants to create an interface using the CUI. It is also
useful for anyone who wants to understand the process of developing applications for microcontrollers in
general, and for Microchip PIC processors in particular.

 Here's what you'll find in this document:

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 2 of 14

Section 1 offers some ideas of the kinds of interfaces you could build using the CUI and gives an
overview of the development process.
Section 2 gives a guided tour of the CUI board, and includes the board layout, the schematic, and a
detailed description of each major component on the board.
Section 3 tells you everything you'll need to know to build your own CUI board, including
purchasing components for the board and fabrication hints.
Section 4 details the process of designing and programming the CUI board.
Section 5 offers some debugging techniques and programming tips.
Appendix A contains a few related web links.

Acknowledgements

The author gratefully acknowledges the support and inspiration from the following people. Curtis Roads,
JoAnn Kuchera-Morin, Stephen Travis Pope, George Legrady, and other faculty members of the MAT, ART,
and CS departments.

 Wesley Smith and Rama Hoetzlein kept things moving through the formative stage of the CUI project.
They volunteered many hours to help develop the code and teach other students about PICs and basic
electronic circuitry. All of the students involved in the Media Interface Technology course have made this a
fun project. And thanks to Robert Poor for the web page layout, taken from his iRX page.

1.0
Overview

What you get out of the CUI depends on what you put into it. It's unlikely that there will be any
"pre-canned" configurations that exactly suit your needs--you will generally need to add custom hardware on
the board and create a PIC program specifically for your application. But that's the fun part of the process!

 To give you a taste of what's possible with a PIC and CUI board, here are some projects that people could
create using the CUI (or should be able to create):

A musical interface. The CUI board can be programmed to convert analog sensor inputs to a standard
USB protocol, allowing you to control an interactive composition or performance setup.
A novel visual interface. The PIC can measure input from a sensor such as an acceleromoter, and the
host computer can run a visualization algorithm which interprets user input as gestural data to control
different aspects of the visual output.
An Ultrasonic Ranging device (for example, using devices such as the SRF04). The PIC is
sufficiently fast to generate outgoing pulses and measure the results accurately.
A game controller. The PIC can be programmed to behave as a joystick-type device by enumerating
(telling the host computer about itself) as a game pad. The addition of sensors for input and actuators
for force-feedback can provide an easy way of getting data in and out of various host applications
(e.g. Max/MSP/Jitter, Pd, SuperCollider, Processing, etc). Using the standard game controller input
method bypasses the need to write your own driver for the USB protocol by piggy-backing on the
HID (Human Input Device) standard.

Overview of the Development Process

This section briefly describes the steps you'll need to take to create your very own CUI application.

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 3 of 14

R e a d y . . .

The first step is to make sure you have all the materials at hand. You'll need both some hardware and some
software:

Acquire one or more CUI boards. Section 3 gives you information on how to fabricate the CUI board,
where to purchase the required components, and how to assemble your own boards.
Obtain a copy of MPLAB. MPLAB is an integrated development environment from Microchip. It
includes a text editor, assembler, simulator, and programmer support. Best of all, you can download it
from the WEB free of charge.
Obtain the PIC C18 C-compiler. Student Edition, version 2.4 or later. Install it in the default
location--examples in this document presume that you're using the C18 compiler. This is also a free
download from Microchip, but some functionality is limited after 60 days.
Acquire the CUI example code. Download the CUI examples based on Microchip's HID connectivity
solutions. The CUI Example Code contains everything needed to get to the point of "Hello World"
with the PIC. It should be extracted to the root directory of your hard disc, preserving the names and
directory structures within.

S e t . . .

It's unlikely that you will find any pre-compiled firmware for the PIC and CUI that will do exactly what you
want. Usually, you'll need to write a program for the PIC (or perhaps modify an existing one). In most
cases, you'll also be adding extra components and wires to the CUI board.

 The CUI was meant to be customized, so go for it!

Understand the fundamentals of the PIC architecture. Appendix A has pointers to the Microchip site,
where you can find details such as the data sheet for the PIC18F4550.
Understand the fundamentals of the USB protocol. Appendix A also has pointers to useful
documentation and software for developing USB HID devices.
Find related firmware. Perhaps someone has already created something similar to what you need.
There are three rich sources of firmware: the Microchip Application Notes (but most of those are
written in assembly), the C18 C Compiler examples, and other user's CUI firmware from previous
projects (check the Sensors Wiki to see if there's anything similar to what you want to do). Consult
these resources first; it can save you lots of time.
Decide on what modifications, if any, you must make to your CUI board. Section 4 details the features
and differences of the various I/O pins available.

G o . . .

Creating and downloading code for the PIC is a five step process, described in the picture and in the text
below.

Figure 1: The development process

Write your program using your favorite text editor or the editor included in Microchip's MPLAB.
Generally, you'll write your program in C. In exceptional cases, you may write your program in
assembly code.

1 .

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 4 of 14

Compile your program. Normally, you'll use the MPLAB environment to invoke the C18
C-compiler. C18 will compile your C code into a .hex file. If you've written assembly code, MPLAB
will assemble your .asm file into a .hex file.

2 .

Program the PIC18F4550 by downloading the .hex file via bootloader using the PDFSUSB.EXE
program (located at C:\CUI\Pdfsusb\ by default). In order to get the CUI to show up in the
PDFSUSB.EXE menu, you must reset your board while holding down the "program" button. NOTE: if
this is the first time you have ever programmed a newly built CUI board, you must first burn the
bootloader code into the PIC. Section 5 details this one-time procedure that requires the use of a PIC
programmer such as the ICD2.

3 .

Run your application. This is as simple as hitting the "execute" button in PDFSUSB.EXE, or hitting
the reset button on your board, and watching it run. If it runs okay, hooray! If it doesn't, go to the
next step.

4 .

(Oops.) Debug your application. Section 4 offers tips and techniques for debugging. 5 .

2.0
Guided Tour of the CUI "0.9" DIY approach

This section describes the layout and schematic of the CUI 0.9. It will show you where each component is located, and describes what each
component does. Figure 2 shows the layout of the components on the CUI 0.9 board, Figure 3 is the schematic for the board.

2.1 Layout of the CUI 0.9

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 5 of 14

Figure 2: Layout of the CUI board

Note that this layout is slightly out of date and needs to be corrected. The resistors above the ICSP (In-Circuit Serial Programming) Connector are
not needed, and the pull-up resistors for the Reset and Program buttons values have changed. The 100uF capacitor is not shown, and you just barely
see the 15pF capacitors next to the 20 MHz crystal. The bypass capacitors and VUSB capacitor are not labelled in the photo.

2.2 Schematic of the CUI 0.9

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 6 of 14

 Figure 3: Schematic of the CUI 0.9 board

2.3 Component Description

2.3.1 USB Connector

The USB Connector is a standard "type B" connector. You can plug any "A-to-B" type cable into it, with other end (the flat connector) going to
your computer. There are four connections in a USB cable, two of which supply power to the CUI board, while the other two are the
communications lines D+ and D-. This is how information is transferred between the host computer and the PIC both when it is being programmed,
and while your firmware sends or receives data with the computer if it is a HID application.

2.3.2 Power indicator

When USB power is applied, the LED is lit. Note that some CUI circuits may not be able to use USB power if they require more than 100mA of
current (this is maximum amount of current that is allowed to be drawn from a single USB port). The alternative is to use a standard voltage
regulator such as the LM7805, which then provides +5V at 1000mA (1Amp) from a 7-15VDC "wall wart" power supply. An LM7805 can also let
you use a 9V battery connector and power the CUI 0.9 from a standard 9V battery for stand-alone applications.

2.3.4 Push buttons "Reset" and "Program"

The two buttons on the CUI are used during the process of programming your application. They are labelled "Reset" and "Program" - pushing the
Reset button is the equivalent of unplugging the USB cable and plugging it back in (which should cause your computer to recognize the CUI and
initialize the corresponding driver). If you push the Reset button while holding down the Program button, the CUI will enter the bootloader mode,
which will allow a new application to be loaded into the PIC (via the PDFSUSB.EXE program).

2.3.5 ICSP Connector

The In-Circuit Serial Programming (ICSP) connector is only used one time for each new CUI board. It allows the bootloader to be burned into the
PIC's memory via a standard PIC programmer such as Microchip's ICD2. Section 5 details the process of installing the bootloader.

2.3.6 PIC I/O Ports

All of the unused pins of the PIC on the CUI board are user I/O ports that can be connected to custom circuit extensions along with power, ground,
etc. You can solder some "Molex headers" into the board if you want a simple means to temporarily connect wires and components to your CUI
board. The layout of the I/O ports follows the pinout of the PIC18F4550 as shown below. A description of the characteristics of each I/O is in
Section 4.

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 7 of 14

 Figure 5: PIC I/O Ports

2.3.7 PIC18F4550

The PIC is the heart of the board. It's a programmable microcontroller with 32Kbytes of flash program memory and 2kbytes of general purpose
SRAM. It has 13 A/D inputs and 18 general purpose I/O ports. On the CUI board, one of the general purpose I/O pins is dedicated to the "program"
button to enter bootloading mode. You can use the remaining ports for anything you wish.

2.3.8 20MHz Crystal oscillator

This particular part has the job of providing a clock signal to the PIC, and it's corresponding 15pF capacitors and 1Mohm resistor are required to
make it oscillate properly. Crystals with other frequencies are available, but 20MHz was chosen since it's the same as the evaluation board from
Microchip.

2.3.9 PTC Fuse

This part protects your computer and the CUI board from damage in the event of a short circuit or over-current condition. It is a Positive
Temperature Coefficient (PTC) type fuse, which means that it is resettable, and will automatically allow your circuit to work again once the short
circuit is fixed.

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 8 of 14

3.0
Building a CUI 0.9

This section details the process of building complete CUI 0.9 boards from scratch:

Purchase the components
Solder the components onto the board

3.1 Purchasing the components

All of the components are included in the lab kit for class, or they are available from Digi-Key, Mouser, or
other mail-order electronics parts suppliers. While those mentioned are not always the cheapest, they have
most all of the compoents in stock, take online card orders, and will get you your parts however fast you
want them (FedEx, etc). If you have more time than money on your hands, you may be able to shop around
and get a better price on some of the parts shown here. Additional parts, such as a 7805 voltage regulator or
special sensors you wish to use can also be acquired from Digi-Key, Mouser, etc., or possibly at a local
store such as Marvac or Radio Shack if the component is not too esoteric.

 The following lists details the parts required to build a single CUI board. The first column specifies
component name, and the Mouser part # is shown in the second column (or other alternatives if Mouser
does not stock them). When possible, I've shown Mouser's prices (as of April 2005), but these reflect
pricing when purchasing supplies for more than just one CUI (10 or more). If you would like the list of parts
in Excel format, this is the bill of materials spreadsheet.

3.2 Soldering the components onto the board

Soldering the components onto the CUI board isn't difficult. Assuming you've already had basic experience
with soldering, here are some hints:

 The only components that don't care which way they're inserted are the resistors, the ceramic capacitors
(the 100uF is an electrolytic cap so it needs to be oriented with its minus leg to ground), and the crystal

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 9 of 14

oscillator. For all others, use the schematic diagram as a guide. Note that for the LED, the longer wire is the
positive '+' side.

 There are a few components that should be placed as close as possible to the PIC, should you decide to
change the layout on your board. These are the 0.1uF bypass capacitors, and the 20MHz crystal oscillator -
the bypass capacitors help keep the power supply clean, and the crystal needs to be close to ensure a good
clock signal is provided to the PIC (shorter traces provide lower inductance for this high frequency signal).

 To keep components from falling out while you're soldering others (since you have to flip the board over
to solder the leads) it may help to work from the "shortest" to the "tallest" components. Be careful not to
overheat the sensitive components during soldering, especially the PTC, and the smaller capacitors.

4.0
Developing an Application

The steps towards creating your PIC application are straightforward and have been outlined in Section 2. In
this section, we jump into the details.

4.1 Not all I/O Ports are created Equal

The PIC18F4550 has thirteen A/D ports: RA0 - RA3, RA5, RB0 - RB4, and RE0 - RE2. Among these, the
order is somewhat random so be sure to look up the correct pin number in the data sheet. (Note: you can still
use these pins as general purpose I/O pins if you're willing to give up A/D converter inputs). Some ports
have particular traits that may make them more or less suited for your particular application. The following
table summarizes the differences; for the full scoop, consult the Microchip data sheets.

 Except as noted, all ports support TTL levels and are bi-directional under program control.

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 10 of 14

Table 3. Summary of I/O ports on PIC18F4550
Port Other Functions Traits
RA0 Analog input 0
RA1 Analog input 1
RA2 Analog input 2
RA3 Analog input 3

RA4 Digital I/O Schmitt Trigger input, can be programmed to be input to TMR0 clock
RA5 Analog input 4
RB0 Analog input12 can be programmed for external interrupt (INT0)
RB1 Analog input10 can be programmed for external interrupt (INT1)
RB2 Analog input 8 can be programmed for external interrupt (INT2)

RB3 Analog input 9
RB4 Analog input11 can be programmed for interrupt on change
RB5 Digital I/O can be programmed for interrupt on change
RB6 Digital I/O can be programmed for interrupt on change
RB7 Digital I/O can be programmed for interrupt on change

RC0 Digital I/O
RC1 Digital I/O can be programmed for PWM output
RC2 Digital I/O can be programmed for PWM output
RC6 Digital I/O can be programmed for UART TX line
RC7 Digital I/O can be programmed for UART RX line

RD0 Digital I/O
RD1 Digital I/O
RD2 Digital I/O
RD3 Digital I/O
RD4 Digital I/O

RD5 Digital I/O
RD6 Digital I/O
RD7 Digital I/O
RE0 Analog input5
RE1 Analog input6

RE2 Analog input7

The CUI 0.9 board leaves many of these pins entirely untouched. This makes it possible to build your own
circuit around the microcontroller. Port B, when used as inputs, can be programmed in software for internal
weak pull-ups (this is useful when connecting simple switches or buttons to the PIC).

4.2 C versus Assembly code
Whenever possible, program in C instead of in assembly language. You'll find the development and
maintenance of firmware programs to be much faster and easier. However, there are some times when you
may still need to program in assembly (or put sections of assembly "in-line" using the #asm construct):

Time critical applications, where you must be able to account for every cycle. In general, you can't

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 11 of 14

rely on what code the C compiler will generate nor what run-time support code will be run in the
course of execution.
Code critical applications. The C compiler can't assume much about the state of ports and registers,
so it generates some extra code in the name of saving and restoring state.

The PIC18F4550 is a monster compared to some of the smaller devices, so most likely you won't have to
worry about assembly though.

4.3 Compilers
There are a number of different PIC C compilers available. Till now, we have stuck with C18 from
Microchip, but there are also CCS, Hitech, and GCC compilers available. The C18 compiler comes with
good examples, which is one benefit, but the 60 day student trial is possibly a hassle. However, we have
yet to run into any real problems with this. As for assemblers, it's easiest just to use MPASM, the free PIC
assembler from Microchip that's built into MPLAB.

4.4 Burning your program into the PIC

The wonderful thing about a bootloader is that you don't need to have a device programmer to load new code
into your PIC. In a few rare circumstances though, you may want one anyway. Though there are many PIC
programmers available, we've settled on the ICD2 programmer from Olimex. If needed, it can purchased
online via Spark Fun Electronics, and it has proven to be robust and reliable so far, with upgrades for the
programmer after they introduce new chips a non-issue (it emulates a "real" ICD2 as far as MPLAB is
concerned).

 The easiest way to download your bootloader into the PIC is through the ICD2 programmer menus in
MPLAB.

4.5 PIC Simulators

A PIC simulator lets you step through your program, set breakpoints, examine registers; some of these
things can be done with the real chip as well if you have the ICD2 (In-Circuit Debugger) hooked up to your
CUI board. If you don't have an ICD2, the simulator built into MPLAB can give good results.

5.0
Debugging Tips & Techniques

Following is a random collection of tips, techniques, art and lore. Your mileage may vary, but little things such as
these can sometimes be the difference between success and complete lunacy.

5.1 First principles

When you write your program, it is always a good idea to make an LED blink, just to indicate that the chip is alive and
running. Obviously, this cannot be the power LED, but another LED wired up to a Digital I/O pin that is configured as
an output.

 So assume you've written your program, compiled and loaded the code, and powered up your CUI. And the LED doesn't
blink. Now what?

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 12 of 14

Are you getting power? Measure with a multimeter between the +5V and GND on your board. You should see a
stable +5 volts. If not, make sure that the PIC is inserted correctly: the "dimple" (indicating pin 1) should be
pointing towards the USB connector at the "top" of the board.
Is the PIC's oscillator running? Look between ground and pin 13 or 14 on the PIC using a 10x oscilliscope
probe (the impedance of a 1x probe is sufficiently small to kill the oscillations.) If you don't see a 20MHz
waveform, did you remember to configure the programming fuses for an "HS" oscillator type?

5.2 Debugging

Program all unused I/O pins to be outputs. This way, you can set the state of a particular I/O pin to be TRUE
when you enter a routine and FALSE when you leave it. At the very least, this practice, along with an
oscilloscope, can give you confirmation that a particular piece of code is being executed.
Make the board do something visible or audible for help debugging. In the case of the CUI 0.9, consider adding
different color LEDs for status indicators, and turning them on or off before or after the different parts of your
program are executed.

5.3 Burning the bootloader

As mentioned before, the very first time you program your CUI it has to be done with the ICD2 programmer
instead of PDFSUSB.EXE. This is because the PIC is completely blank from the factory, and you must program
the hex file for the bootloader into the PIC in order to enable future programming sessions to be done via
PDFSUSB.EXE.
The bootloader hex file is located in the CUI Example Code that you downloaded earlier. In MPLAB, open the
hex file C:\CUI\Boot_output\MCHPUSB.hex, select the ICD2 as the programmer, and click program device.
This bootloader is slightly different from the bootloader that can be downloaded directly from Microchip's
website, so make sure to use this one (Microchip's will not work with the CUI circuit).
To enter bootloader mode, hold down the program button on the CUI while plugging in the USB cable, or
resetting the board. Your computer will not recognize the bootloader firmware, so you must install the correct
driver (only necessary this one time). When windows says "Found New Hardware", click "No, Not This Time",
then choose "Install from List". Then click on "Browse..." and choose the directory "C:\CUI\MCHPUSB
Driver\Release" - then "Next", "Continue Anyway", and "Finish". Well, that's it - you've got a working
CREATE USB Interface now, to be modified and customized to do whatever you want!

Pre-made, ready-to-use CUI v1.0

Feel free to email me if you're interested in a getting a pre-built/bootloaded CUI v1.0 for $50. It comes ready to use
with Max/MSP/Jitter, SuperCollider, or any other program that receives USB HID data - just hook up your own
sensors to the 13 analog inputs (10-bit resolution) and buttons/switches to the digital inputs, etc... You can also get
ready made sensors from the phidgets website, and of course you can re-program it using the bootloader (no need for a
PIC programmer), and use the prototyping area to do whatever you want.

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 13 of 14

CUI v1.0 can be custom-ordered with Bluetooth for wireless functionality (works with Max/MSP and Pd, same features
as wired version), powered by rechargeable Li-Ion battery!

Also, a forum has been started for those working with the CUI v1.0: CUI ideas and support forum

Plus a couple of mailing lists for those working with the CUI: CUI-users subscribe here and CUI-dev subscribe here

Links to example Max/MSP/Jitter, Pd, and SuperCollider Patches:
USB CUI for Macintosh
USB CUI for Windows
Bluetooth CUI for Macintosh and Windows
Bluetooth CUI for PD
USB CUI for for Max4.6 - on intel Macs with Max/MSP 4.6, the [hi] object seems to have changed, this firmware
update and corresponding test patch resolves the problem. Also includes "CUI IO v1.0" firmware for compatibility
with [hidio] object for both Max and Pd (currently in progress 17 January 2007).
SuperCollider3 HIDControl - port of Jan truzschler's HIDControl Ugen to intel Macs - also removes the autoscaling to
avoid clicks.

Here are some new and useful tools for the CUI made by users!
CUIOSC by MarkDavid Hosale - a stand alone OS X program that converts the CUI's USB input to OSC (Open Sound
Control).
Boot Down by Craig Schimmel - a CUI bootloader utility for OS X that allows firmware updates without a windows
box (be careful not to overwrite the bootloader itself though).

App A
Related Links

Publications about the CUI

Musical Interaction Design with the CREATE USB Interface: Teaching HCI with CUIs instead of GUIs
- presented at the International Computer Music Conference (New Orleans, USA, 6-11 November
2006).

Microcontroller Info

PIC18F4550 - information at Microchip.com (datasheet, help forums, etc).
C18 User's Guide - Microchip's C18 C Compiler User's Guide.
C18 Compiler Libraries - References specific C function calls to access on-chip hardware peripherals,

http://www.create.ucsb.edu/%7Edano/CUI/

The CREATE USB Interface 14 of 14

etc.

USB Info

The USB specification - more info than you really need, chapter 9 is the most relevant.
HID Usage Tables - setting up a HID device, the gamepad example on page 141 is particularly useful.
HID Descriptor Tool - a useful GUI tool for constructing HID usage tables that enumerate correctly.
The HID Page - a good resource with example code, etc. by Jan Axelson the author of USB Complete.

Host Info

USB Sniffer/Analyzer - USB debugging tool that lets you see bytes transfered between the host and
the device.
HID Explorer - if you use Mac OS X, this debugging tool allows you to examine device properties and
data.
USB Monitor - a useful utility for OS X; notifies you whenever a USB device is added or removed.

Parts Supply Houses

Digikey: Great online ordering. Fast, costs a little bit more.
Mouser: About like Digikey. Fast, also costs a little bit more.
Allied Electronics: Great service, slightly slower.
Hosfelt: Great surplus supplier

...[Media Interface Technology]

...[Dan Overholt - email]

