Chapter 13: Introduction to SwitchedCapacitor Circuits

13.1 General Considerations
13.2 Sampling Switches
13.3 Switched-Capacitor Amplifiers
13.4 Switched-Capacitor Integrator
13.5 Switched-Capacitor Common-Mode Feedback

General Considerations

(a)

- For continuous-time amplifier [Fig. (a)], $V_{\text {out }} / V_{\text {in }}=-R_{2} / R_{1}$ ideally
- Difficult to implement in CMOS technology
- Typically, open-loop output resistance of CMOS opamps is maximized to maximize A_{v}
- R_{2} heavily drops open-loop gain, affecting precision

General Considerations

(b)

- In equivalent circuit of Fig. (b), we can write

$$
-A_{v}\left(\frac{V_{\text {out }}-V_{\text {in }}}{R_{1}+R_{2}} R_{1}+V_{\text {in }}\right)-R_{\text {out }} \frac{V_{\text {out }}-V_{\text {in }}}{R_{1}+R_{2}}=V_{\text {out }}
$$

- Hence,

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{2}}{R_{1}} \cdot \frac{A_{v}-\frac{R_{\text {out }}}{R_{2}}}{1+\frac{R_{\text {out }}}{R_{1}}+A_{v}+\frac{R_{2}}{R_{1}}}
$$

- Closed-loop gain is inaccurate compared to when $\boldsymbol{R}_{\text {out }}$ = 0

General Considerations

- To reduce open-loop gain, resistors can be replaced by capacitors [Fig. (a)]
- Gain of this circuit is ideally $-C_{1} / C_{2}$
- To set bias voltage at node X, large feedback resistor can be added [Fig. (b)]

(a)

(b)

General Considerations

- Feedback resistor is not suited to amplify wideband signals
- Charge on C_{2} is lost through R_{F} resulting in "tail"
- Circuit exhibits high-pass transfer function given by

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{\text {in }}}(s) & \approx-\frac{R_{F} \frac{1}{C_{2} s}}{R_{F}+\frac{1}{C_{2} s}} \div \frac{1}{C_{1} s} \\
& =-\frac{R_{F} C_{1} s}{R_{F} C_{2} s+1},
\end{aligned}
$$

- $V_{\text {out }} / V_{\text {in }} \approx-C_{1} / C_{2}$ only if $\omega \gg\left(R_{F} C_{2}\right)^{-1}$

General Considerations

- \boldsymbol{R}_{F} can be replaced by a switch
- S_{2} is turned on to place op amp in unity gain feedback to force V_{x} equal to V_{B}, a suitable common-mode value
- When S_{2} turns off, node X retains the voltage allowing amplification
- When S_{2} is on, circuit does not amplify $V_{\text {in }}$

General Considerations

- In above circuit, S_{1} and S_{3} connect left plate of C_{1} to Vin and ground, S_{2} for unity-gain feedback
- Assume large open-loop gain of op amp
- First phase: S_{1} and S_{2} on, S_{3} off [Fig. (a)]

(a)

General Considerations

(a)

- Here, $V_{B}=V_{\text {out }} \approx 0$ and \boldsymbol{C}_{1} samples the input $V_{\text {in }}$
- Second phase: At $t=t_{0}, S_{1}$ and S_{2} turn off and S_{3} turns on, pulling node A to ground [Fig. (b)]
- V_{A} changes from $V_{i n}$ to 0 , therefore $V_{\text {out }}$ must change from zero to $V_{i n o} C_{1} / C_{2}$ [Fig. (c)]

(b)

General Considerations

- Circuit devotes some time to sample input, setting output to zero and providing no amplification
- After sampling, for $t>t_{0}$, circuit ignores input voltage, amplifies sampled voltage

General Considerations

- Switched-capacitor amplifiers operate in two phases: Sampling and Amplification
- Clock needed in addition to analog input $V_{i n}$

MOSFETS as Switches

- Sampling circuit consists of a switch and a capacitor [Fig. (a)]
- MOS transistor can function as switch [Fig. (b)] since it can be on while carrying zero current

MOSFETS as Switches

(a)

- CK goes high at $t=t_{0}$
- Assume $V_{i n}=0$ and capacitor has initial voltage $V_{D D}$
- At $t=t_{0}, M_{1}$ is in saturation and draws current
- As $V_{\text {out }}$ falls, at some point M_{1} goes into triode region
- C_{H} is discharged until $V_{\text {out }}$ reaches zero
- For $V_{\text {out }} \ll 2\left(V_{D D}-V_{T H}\right)$, transistor is an equivalent resistor

MOSFETS as Switches

(b)

- If $V_{\text {in }}=+1 V, V_{\text {out }}\left(t=t_{0}\right)=+0 V$ and $V_{D D}=+3 V$
- Terminal of M_{1} connected to C_{H} acts as source, and the transistor turns on with $V_{G S}=+3 V$ but $V_{D S}=+1 V$
- M_{1} operates in triode region and charges C_{H} until Vout approaches +1 V

MOSFETS as Switches

(a)

(b)

- When switch is on [Fig. (a)], $V_{\text {out }}$ follows $V_{\text {in }}$
- When switch is off [Fig. (b)], $V_{\text {out }}$ remains constant
- Circuit "tracks" signal when CK is high and "freezes" instantaneous value of $V_{i n}$ across C_{H} when CK goes low

MOSFETS as Switches

- Suppose $V_{i n}=V_{o}$ instead of $+1 V$
- M_{1} is saturated and we have:

$$
\begin{aligned}
C_{H} \frac{d V_{\text {out }}}{d t} & =I_{D 1} \\
& =\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{D D}-V_{\text {out }}-V_{T H}\right)^{2}
\end{aligned}
$$

- Solving,

$$
V_{\text {out }}=V_{D D}-V_{T H}-\frac{1}{\frac{1}{2} \mu_{n} \frac{C_{o x}}{C_{H}} \frac{W}{L} t+\frac{1}{V_{D D}-V_{T H}}}
$$

- As $\mathrm{t} \rightarrow \infty, V_{\text {out }} \rightarrow V_{D D}-V_{T H}$ so NMOS cannot pull up to $V_{D D}$

MOSFETS as Switches

- Similarly, PMOS transistor fails to operate as a switch if gate is grounded and drain senses an input voltage of $\left|V_{\text {тHP }}\right|$ or less
- On resistance rises rapidly as input and output levels fall to $\left|V_{T H P}\right|$ above ground

- Measure of speed is the time required for output to go from zero to the maximum input level after switch turns on
- Consider output settled within a certain "error band" ΔV around final value
- If output settles to 0.1% accuracy after t_{s} seconds, then $\Delta V / V i n 0=0.1 \%$
- After $t=t_{s}$, consider source and drain voltages to be approximately equal
- Sampling speed is given by two factors: switch onresistance and sampling capacitance
- For higher speed, large aspect ratio and small capacitance are needed
- On-resistance also depends on input level for both NMOS and PMOS

(a)

(b)
- To allow greater input swings, we can use "complementary" switches, requiring complementary clocks [Fig. (a)]
- Equivalent on-resistance shows following behavior [Fig. (b)], revealing much less variation

(a)

(b)
- For high speed signals, NMOS and PMOS switches must turn off simultaneously to avoid ambiguity in sampled value
- If NMOS turns off Δt seconds before PMOS, output tends to track input for the remaining Δt seconds, causing distortion
- For moderate precision, circuit below is used to provide complementary clocks

Considerations

- Speed trades with precision
- Channel Charge Injection:
- For MOSFET to be on, a channel must exist at the oxide-silicon interface
- Assuming $V_{\text {in }} \approx V_{\text {out }}$, total charge in the inversion layer is

$$
Q_{c h}=W L C_{o x}\left(V_{D D}-V_{i n}-V_{T H}\right)
$$

- When switch turns off, $Q_{c h}$ exits through the source and drain terminals ("channel charge injection")

Considerations

- Charge injected to the left is absorbed by input source, creating no error
- Charge injected to the right deposited on C_{H}, introducing error in voltage stored on capacitor
- For half of $Q_{c h}$ injected onto C_{H}, error (negative pedestal) equals

$$
\Delta V=\frac{W L C_{o x}\left(V_{D D}-V_{i n}-V_{T H}\right)}{2 C_{H}}
$$

- If all of the charge is deposited on \boldsymbol{C}_{H},

$$
\begin{gathered}
V_{\text {out }} \approx V_{\text {in }}-\frac{W L C_{o x}\left(V_{D D}-V_{\text {in }}-V_{T H}\right)}{C_{H}} \\
V_{\text {out }}=V_{\text {in }}\left(1+\frac{W L C_{o x}}{C_{H}}\right)-\frac{W L C_{o x}}{C_{H}}\left(V_{D D}-V_{T H}\right)
\end{gathered}
$$

- Since we assume $Q_{c h}$ is a linear function of $V_{i n}$, circuit exhibits only gain error and dc offset

Considerations

- Clock Feedthrough:
- MOS switch couples clock transitions through $C_{G D}$ or $C_{G S}$
- Sampled output voltaqe has error due to this give by

$$
\Delta V=V_{C K} \frac{W C_{o v}}{W C_{o v}+C_{H}}
$$

- $C_{o v}$ is the overlap capacitance per unit width
- Error ΔV is independent of input level, manifests as constant offset in the input/output characteristic

Considerations

- kT/C Noise:
- Resistor charging a capacitor gives a total RMS noise voltage of $\sqrt{k T / C}$.
- On resistance of switch introduces thermal noise at output which is stored on the capacitor when switch turns off
- RMS voltage of sampled noise is still approximately equal to $\sqrt{k T / C}$.

Charge Injection Cancellation

- Charge injected by main transistor removed by a dummy transistor M_{2}
- M_{2} is driven by $\overline{C K}$ so that after M_{1} turns off and M_{2} turns on, channel charge deposited by M_{1} on C_{H} is absorbed by \boldsymbol{M}_{2} to create a channel
- If $W_{2}=0.5 W_{1}$, then charge injected by $M_{1}, \Delta q_{1}$ is equal to that absorber hw пм

$$
\begin{aligned}
& \Delta q_{1}=\frac{W_{1} L_{1} C_{o x}}{2}\left(V_{C K}-V_{i n}-V_{T H 1}\right) \\
& \Delta q_{2}=W_{2} L_{2} C_{o x}\left(V_{C K}-V_{i n}-V_{T H 2}\right)
\end{aligned}
$$

Charge Injection Cancellation

- If $W_{2}=0.5 W_{1}$ and $L_{2}=L_{1}$, effect of clock feedthrough is suppressed
- Total change in $V_{\text {out }}$ is zero because

$$
-V_{C K} \frac{W_{1} C_{o v}}{W_{1} C_{o v}+C_{H}+2 W_{2} C_{o v}}+V_{O K} \frac{2 W_{2} C_{o v}}{W_{1} C_{o v}+C_{H}+2 W_{2} C_{o v}}=0
$$

Charge Injection Cancellation

- Incorporate both PMOS and NMOS devices so that opposite charge packets injected cancel each other

- For $\Delta \boldsymbol{q}_{1}$ to cancel $\boldsymbol{\Delta} \boldsymbol{q}_{\mathbf{2}}$, we must have

$$
W_{1} L_{1} C_{o x}\left(V_{C K}-V_{i n}-V_{T H N}\right)=W_{2} L_{2} C_{o x}\left(V_{i n}-\left|V_{T H P}\right|\right)
$$

- Cancellation occurs for only one input level
- Clock feedthrough is not completely suppressed since $C_{G D}$ of NFETs is not equal to that PFETs

Charge Injection Cancellation

- Charge injection appears as a common-mode disturbance, may be countered by differential operation

$\forall \Delta q_{1}=\Delta q_{2}$ only if $V_{\text {in } 1}=V_{\text {in2 } 2}$, thus overall error is not suppressed for differential signals
- Removes constant offset and nonlinear component

$$
\begin{aligned}
\Delta q_{1}-\Delta q_{2} & =W L C_{o x}\left[\left(V_{i n 2}-V_{i n 1}\right)+\left(V_{T H 2}-V_{T H 1}\right)\right] \\
& =W L C_{o x}\left[V_{i n 2}-V_{i n 1}+\gamma\left(\sqrt{2 \phi_{F}+V_{i n 2}}-\sqrt{2 \phi_{F}+V_{i n 1}}\right)\right]
\end{aligned}
$$

Unity-Gain Sampler/ Buffer

(a)

(b)

- For discrete-time applications, unity-gain amplifier [Fig. (a)] requires a sampling circuit [Fig. (b)]
- Accuracy limited by input-dependent charge injected by S_{1} onto C_{H}

Unity-Gain Sampler/ Buffer

- Consider the topology shown in Fig. (a)

(a)

(b)

(c)
- In sampling mode, S_{1} and S_{2} are on, S_{3} is off yielding circuit in Fig. (b)
- Thus, $V_{\text {out }}=V_{X} \approx 0$, and the voltage across C_{H} tracks $V_{i n}$
- At $t=t_{0}$, when $V_{i n}=V_{0}, S_{1}$ and S_{2} turn off and S_{3} turns on, yielding circuit of Fig. (c) [amplification mode]
- Op amp requires node X is still a virtual ground, $V_{\text {out }}$ rises to approximately $V_{0} \rightarrow$ "frozen" for processing by subsequent stages

Unity-Gain Sampler/ Buffer

(a)

(b)

(c)

- S_{2} turns off slightly before S_{1} during transition from sampling mode to amplification mode
- Charge injected by $S_{2}, \Delta q_{2}$ is input-independent and constant, producing only an offset
- After S_{2} turns off, total charge at node X stays constant and charge injected by S_{1} does not affect

(a)

(b)

(c)

Unity-Gain Sampler/ Buffer

- Input-independent charge injected by S_{2} can be cancelled by differential operation as shown
- Charge injected by S_{2} and $S_{2}{ }^{\prime}$ appears as commonmode disturbance at nodes X and Y
- Charge injection mismatch between S_{2} and $S_{2}{ }^{\prime}$ resolved by adding another switch $S_{e q}$ that turns off slightly after S_{2} and S_{2}, equalizing the charge at nodes X and Y

Unity-Gain Sampler/ Buffer

- Precision Considerations:

- Assume op-amp has a finite input capacitance $C_{i n}$ and calculate output voltage when circuit goes from sampling to amplification mode

- It can be shown from the above fia. that

$$
\begin{aligned}
V_{\text {out }} & =\frac{1}{1+\frac{1}{A_{v 1}}\left(\frac{C_{i n}}{C_{H}}+1\right)} \\
& \approx V_{0}\left[1-\frac{1}{A_{v 1}}\left(\frac{C_{i n}}{C_{H}}+1\right)\right]
\end{aligned}
$$

- Circuit suffers from gain error of approximately $-\left(C_{i n} / C_{H}+1\right) / A_{v 1}$

Unity-Gain Sampler/ Buffer

- Speed Considerations:

- In sampling mode, circuit appears as in Fig. (a)

(a)

(b)
- Use equivalent circuit of Fig. (b) to find time constant in sampling mode
- Total resistance in series with C_{H} is $R_{\text {on } 1}$ and the resistance between X and ground, R_{X}

$$
R_{X}=\frac{R_{0}+R_{o n 2}}{1+G_{m} R_{0}}
$$

Unity-Gain Sampler/ Buffer

- Since typically $R_{o n 2} \ll R_{0}$ and $G_{m} R_{0} \gg 1, R_{X} \approx 1 / G_{m}$
- Time constant in sampling mode is thus

$$
\tau_{s a m}=\left(R_{o n 1}+\frac{1}{G_{m}}\right) C_{H}
$$

- Consider circuit as it enters amplification mode

- Circuit must begin with $V_{\text {out }} \approx 0$ and eventually produce $V_{\text {out }} \approx V_{0}$
- For relatively small $C_{i n}$, voltages across C_{L} and C_{H} do not change instantaneously so that $V_{x}=-V_{0}$ at the

Unity-Gain Sampler/ Buffer

- Represent charge on C_{H} by a voltage source V_{S} that goes from zero to V_{0} at $t=t_{0}$, while C_{H} carries no charge itself

- The transfer function $V_{n, 1,(s)} / V_{\text {in }}(s)$ can be obtained as

$$
\frac{V_{\text {out }}}{V_{S}}(s)=\frac{\left(G_{m}+C_{i n} s\right) C_{H}}{\left(C_{L} C_{\text {in }}+C_{i n} C_{H}+C_{H} C_{L}\right) s+G_{m} C_{H}}
$$

- This response is characterized by a time constant independent of an_omn niturit racictance

$$
\begin{aligned}
\tau_{a m p} & =\frac{C_{L} C_{i n}+C_{i n} C_{H}+C_{H} C_{L}}{G_{m} C_{H}} \\
& =\frac{1}{G_{m}}\left[C_{i n}+\left(1+\frac{C_{i n}}{C_{H}}\right) C_{L}\right]
\end{aligned}
$$

Noninverting Amplifier

- In non-inverting amplifier of Fig. (a), in sampling mode, S_{1} and S_{2} are on while S_{3} is off, creating a virtual ground at X and allowing voltage across C_{1} to track $V_{\text {in }}$ [Fig. (b)]

Noninverting Amplifier

- At the end of sampling mode, S_{2} turns off first, injecting a constant charge $\Delta \boldsymbol{q}_{\mathbf{2}}$ onto node X, after which S_{1} turns off and S_{3} turns on [Fig. (c)]
- Since V_{P} goes from $V_{i n o}$ to 0 , output voltage changes from 0 to approximately $V_{\text {ino }}\left(C_{1} / C_{2}\right)$, providing a gain of C_{1} / C_{2}
- Called a "noninverting amplifier" since output polarity is the same as $V_{i n o}$ and the gain can be greater than unit

(c)

Noninverting Amplifier

- Noninverting amplifier avoids input-depending charge injection by turning off S_{2} before S_{1}
- After S_{2} is off, total charge at node X remains constant, making the circuit insensitive to charge injection of S_{1} or charge "absorption" of S_{3}

Noninverting Amplifier

- Charge injected by $S_{1}, \Delta q_{1}$ changes voltage at node P by $\Delta V_{P}=\Delta q_{1} / C_{1}$ and output voltage by $-\Delta q_{1} C_{1} / C_{2}$
- After S_{3} turns on, V_{P} becomes zero so overall change in V_{P} is $0-V_{i n o}=-V_{i n 0}$, producing overall change in output of $-V_{\text {ino }}\left(-C_{1} / C_{2}\right)=V_{\text {ino }} C_{1} / C_{2}$
- V_{P} goes from V_{0} to 0 with a perturbation due to S_{1}
- Since output is measure after node P is connected to ground, charge injected by S_{1} does not affect final outpı

Noninverting Amplifier

- Precision Considerations:

- Calculate actual gain if op amp has finite open-loop gain of $A_{v 1}$ and input capacitance $C_{i n}$

$$
\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right| \approx \frac{C_{1}}{C_{2}}\left(1-\frac{C_{2}+C_{1}+C_{\text {in }}}{C_{2}} \cdot \frac{1}{A_{v 1}}\right)
$$

- It can be shown that

$$
\left(C_{2}+C_{1}+C_{i n}\right) /\left(C_{2} A_{v 1}\right)
$$

- Amplifier suffers from a gain error of

Noninverting Amplifier

- Speed Considerations:

- Consider equivalent circuit in amplification mode [Fig. (a)]

(a)
- It can be shown for a large $\boldsymbol{G}_{\boldsymbol{m}} \boldsymbol{R}_{0}$ that

$$
\frac{V_{\text {out }}}{V_{\text {in }}}(s) \approx \frac{-C_{\text {eq }} \frac{C_{1}}{C_{1}+C_{\text {in }}}\left(G_{m}-C_{2} s\right) R_{0}}{R_{0}\left(C_{L} C_{\text {eq }}+C_{L} C_{2}+C_{\text {eq }} C_{2}\right) s+G_{m} R_{0} C_{2}}
$$

- This gives a time constant of

$$
\tau_{a m p}=\frac{C_{L} C_{e q}+C_{L} C_{2}+C_{\epsilon q} C_{2}}{G_{m} C_{2}}
$$

Precision Multiply-by-Two Circuit

- Topology shown in Fig. (a) provides a nominal gain of two while achieving higher speed and lower gain error

(a)
- Incorporates two equal capacitors $C_{1}=C_{2}=C$
- In sampling mode [Fig. (b)], node X is a virtual ground, allowing voltage across C_{1} and C_{2} to track $V_{\text {in }}$

Precision Multiply-by-Two Circuit

- During transition to amplification mode [Fig. (c)], S_{3} turns off first, placing C_{1} around op-amp and left plate of C_{2} is grounded
- At the moment S_{3} turns off, total charge on C_{1} and C_{2} equals $2 V_{i n 0} C$ and since voltage across C_{2} approaches zero in amplification mode, final voltage across C_{1} and hence outpu

$2 V_{\text {ino }}$
(c)

Switched-Capacitor Integrator

(a)

- Output of a continuous-time integrator can be expressed as

$$
V_{\text {out }}=-\frac{1}{R C_{F}} \int V_{\text {in }} d t
$$

(b)

- In Fig. (a), resistor R carries a current of $\left(V_{A}-V_{B}\right) / R$
- In circuit of Fig. (b), C_{s} is alternately connected to nodes A and B at a clock rate $f_{c k}$
- Average current flowing from A to B is the charge moved in one clock period
- Can be viewed ac a rocistrr of valise

$$
=C_{S} f_{C K}\left(V_{A}-V_{B}\right)
$$

Switched-Capacitor Integrator

- Fig. (a) shows discrete-time integrator
- In every clock cycle, C_{1} absorbs a charge equal to $C_{1} V_{i n}$ when S_{1} is on and deposits it on C_{2} when S_{2} is on
- If $V_{i n}$ is constant, output changes by $V_{i n} C_{1} / C_{2}$ every clock cycle [Fig. (b)]
- Final value of $\boldsymbol{V}_{\text {nut }}$ after clock cycle can be written as

$$
V_{\text {out }}\left(k T_{C K}\right)=V_{\text {out }}\left[(k-1) T_{C K}\right]-V_{\text {in }}\left[(k-1) T_{C K}\right] \cdot \frac{C_{1}}{C_{2}}
$$

Switched-Capacitor Integrator

- Input-dependent charge injection of S_{1} introduces nonlinearity in output voltage
- Nonlinear capacitance at node P resulting from source/drain junctions of S_{1} and S_{2} leads to a nonlinear charge-to-voltage conversion when C_{1} is switched to ${ }^{Y}$

- Charge stored on the total junction capacitance, C_{j} is

$$
q_{c j}=\int_{0}^{V i n 0} C_{j} d V
$$

Switched-Capacitor Integrator

(a)

(b)

(c)

- Circuit of Fig. (a) resolves the issues in the simple integrator
- In sampling mode [Fig. (b)], S_{1} and S_{3} are on, S_{2} and S_{4} are off, allowing voltage across C_{1} to track $V_{\text {in }}$ while op amp and C_{2} hold previous value
- In the transition to integration mode, S_{3} turns off first, injecting a constant charge onto C_{1}, S_{1} turns off next, and subsequently S_{2} and S_{4} turn on
- Charge stored on C_{1} is transferred to C_{2} through the virtual ground node
- In switched-capacitor common-mode feedback, outputs are sensed by capacitors rather than resistors

- In circuit above, equal capacitors C_{1} and C_{2} reproduce at node X the average of the changes in each output voltage
- If $V_{\text {out1 }}$ and $V_{\text {out } 2}$ experience a positive CM change, then V_{X} and $I_{D 5}$ increase, pulling $V_{\text {out } 1}$ and $V_{\text {out } 2}$ down
- Output CM is $V_{\text {GS2 }}$ plus voltage across C_{1} and C_{2}

- Voltage across C_{1} and C_{2} defined as shown above
- During CM level definition, amplifier differential input is zero and S_{1} is on
- M_{6} and M_{7} act as a linear sense circuit since their gate voltages are nominally equal
- Circuit settles such that output CM level is equal to $V_{\text {GSG }, 7}+V_{\text {GS5 }}$
- At the end of this mode, S_{1} turns off, leaving a voltage equal to $V_{G S \sigma_{7}}$ across C_{1} and C_{2}

Feedback

- For more accuracy in CM level definition, above circuit may be used
- In the reset mode, one plate of C_{1} and C_{2} is switched to $V_{C M}$ while the other is connected to the gate of \boldsymbol{M}_{6}
- Each capacitor sustains a voltage of $V_{C M}-V_{G S 6}$
- In the amplification mode, S_{2} and S_{3} are on and the other switches are off, yielding an output CM level of $V_{C M}-V_{G S 6}+V_{G S 5}$, which is equal to $V_{C M}$ if $I_{D 3}$ and $I_{D 4}$ are

