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Abstract 
In this paper we shall present a fully synchronous digital 

implementation of the Address Event Representation 

(AER) communication scheme that has been used in the 

PERPLEXUS chip in order to permit the emulation of 

large-scale biologically inspired spiking neural networks 

models. By introducing specific commands in the AER 

protocol it is possible to distribute the AER bus among a 

large number of chips where the functionality of the 

spiking neurons is being emulated. A careful design of the 

AER encoder module using compact Content Addressable 

Memories (CAMs) allows for a feasible realization of 

large-scale models.  

 

 

1. Introduction 
 

The PERPLEXUS project [1] aims at the development 

of a flexible and scalable hardware substrate that will 

enable the efficient emulation of complex, virtually 

unbounded systems. The major outcome of this project is 

an integrated circuit, called Ubichip [2]. The internal 

architecture of the Ubichip has been endowed with 

specific hardware mechanisms, like dynamic routing [3] 

or self-replication [4] so as to provide support for a wide 

range of bio-inspired principles. Additionally, it supports 

massively parallel SIMD (Single Instruction Multiple 

Data) like data flows, thus making it a perfect candidate 

for the efficient emulation of Spiking Neural Networks 

(SNN) models [5]. 

The Address Event Representation (AER) is a 

communication scheme that was conceived specifically to 

address the issues raised by massive and sparse 

interconnection patterns. It was initially proposed in [6], 

[7] and later developed in [8], [9], [10], [11]. It consists in 

translating a sequence of events (spikes) into an ordered 

sequence of addresses that correspond to the individual 

processing elements that produced these events. This 

sequence of addresses is sent through a bus that 

communicates the places (usually chips) where the units 

are physically mapped. Since there is only a single actual 

channel where the addresses can be transmitted the 

implementation of this protocol usually involves the use of 

arbiters based on self-timed asynchronous logic [12]. 

The SpiNNaker system [13] tries to overcome these 

issues by implementing a packet-switched network [14] 

that is used to carry out the communication between the 

processing elements that emulate the spiking neurons. 

The approach taken in the Ubichip consists in 

extending the basic principles presents in the AER scheme 

so as to permit a fully synchronous implementation of the 

protocol. The extension is based in the definition of 

specific commands sent through the address bus that 

permit different chips to synchronize their access to it, 

thus avoiding the need for a dedicated arbiter. 

Additionally, this will permit to share a single address bus 

among a virtually unbounded number of Ubichips, and in 

this way it will be possible to emulate in real time large-

scale biologically inspired SNN models like the one 

presented in [15], [16], which constitutes the target for the 

PERPLEXUS project. 

The structure of the paper is organized as follows. First 

a brief overview of the Ubichip architecture will be 

provided, followed by a description of the basic principles 

on which the AER communication scheme relies. Then the 

data flow used to carry out the emulation of spiking neural 

networks will be outlined, including a specification of the 

commands defined to extend the basic AER scheme. 

Afterwards the implementation details of the AER 

encoder and decoder modules will be provided, 

emphasizing the special care that has to be taken with the 

Content Addressable Memory (CAM) element that is the 

core building block of the AER decoder. Finally, the 

prototyping results of the complete system and our current 

and future work will be outlined. 

 

2. The PERPLEXUS chip architecture 
 

Figure 1 depicts the overall organization of the 

Ubichip. 
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It is constituted by three main building blocks: A 

MacroCell array, a system manager and a CAM 

controller. The MacroCell array is a regular, bi-

dimensional arrangement of functional elements called 

Macrocells (MC in Figure 1). Each MacroCell contains 

four Ubicells, a Dynamic Routing unit and a Self-

Replication unit. The final Ubichip will contain a 10 x 10 

array or MacroCells, and thus a total of 400 Ubicells. 

 

 
 

Figure 1. Internal organization of the Ubichip 

 

The Ubicell is the elementary functional block of the 

Ubichip, and is constructed around four independent 

memory blocks and a 4-bit ALU. The memory blocks can 

be configured to provide several combinational and 

sequential operation modes, apart as being used as 

conventional SRAM. Additionally, they can be used as a 

register file for the ALU, so that a single Ubicell can act 

as an actual 4-bit processor. The Dynamic Routing unit 

takes care of the physical implementation of in-hardware, 

on-line path construction mechanisms among Ubicells. 

The Self-Replication unit permits to implement local and 

distributed self-configuration processes that are the basis 

for allowing the physical realization of self-replication 

mechanisms. 

The system manager is composed of a microprocessor 

interface, a configuration unit, a memory controller and a 

sequencer. The microprocessor interface takes care of the 

communication between the Ubichip and an external 

CPU. The configuration unit manages the configuration 

process of the Ubichip that can be carried out using either 

a parallel or a serial interface. Additionally, it contains the 

necessary resources for facilitating the debugging of the 

complete system, allowing the designer to perform an 

edge-by-edge emulation and inspection of the application. 

The memory controller manages the interface of the 

Ubichip with an external SRAM memory that stores the 

program executed by the sequencer and the data used by 

the MacroCells when the system is configured in SIMD 

multiprocessor mode. The sequencer included in the 

system manager is in charge of controlling the MacroCell 

array when it is configured in SIMD multiprocessor mode. 

This unit reads the instructions stored in the external 

SRAM and dispatches them to the MacroCells that act as 

elementary processors in this mode. 

The AER controller included in the Ubichip is the 

subsystem that carries out the physical implementation of 

the AER protocol. It is constituted by an AER encoder 

and a control unit that communicates with an external 

AER decoder module provided with a CAM unit. 

A detailed explanation of the internal architecture of 

the Ubichip is provided in [17]. 

 

3. The AER communication scheme 
 

As it has been previously stated, the basic principle of 

the AER communication scheme consists in translating a 

sequence of events produced by a set of processing 

elements into an ordered sequence of addresses that are 

sent through a dedicated bus that is broadcasted to the rest 

of the system. In the receiver side, the sequence of 

addresses is converted again into a sequence of events that 

are transferred to the corresponding destinations. Figure 2 

depicts the basic mechanism on which AER is based. 

 

 
 

Figure 2. AER principle 

 

This communication scheme is thus quite efficient for 

overcoming the bottlenecks that appear when information 

has to be exchanged within a system composed of 

massively interconnected components, like is the case of 

SNN models. For these models the events produced in the 

system correspond to spikes, and the processing elements 

are the units emulating the functionality of the neurons. 

There are several issues to be addressed when an 

efficient implementation of the AER communication 

scheme is to be considered. The first one refers to the 

procedure used for scanning the events to be transmitted. 

In the case two or more events are produced at the same 

time it has to be decided in which order they are 

broadcasted through the address bus, because it can 

allocate a single address per time slot. The common way 

to face this problem is by means of asynchronous arbiters 

that establish a priority in the case of a simultaneous 

multi-event situation. 
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Another important issue refers to the access technique 

implemented for the AER bus. Since this bus is shared by 

different components working independently and 

asynchronously, a proper access method has to be 

established in order to avoid collisions in the bus. Several 

access techniques [9], including sequential scanning, 

ALOHA-based access or arbitration access have been 

proposed an used for implementing the AER 

communication principles, but there is not a clear 

guideline for choosing a particular access method for a 

specific application. 

The strategy used in the Ubichip for implementing the 

AER communication protocol simplifies both the 

arbitration required in the encoder module as well as the 

access technique required for the management of the 

global AER bus. It is based in dividing the emulation of 

the SNN model implemented in the Ubichips in two 

phases, an execution phase and a spike transmission 

phase. The spike transmission phase is performed 

sequentially by all the Ubichips present in an ordered way, 

so that only one Ubichip has access to the AER bus at a 

given time. Once the spike transmission phase is 

completed all the Ubichips execute in parallel updating 

their internal state depending on the spikes received from 

the previous phase. 

 

4. Neural emulation principle 
 

The SNN model considered within the framework of 

the PERPLEXUS project is that presented in [15] and 

[16]. It is constituted by Leaky Integrate-and-Fire neuron 

units connected by synapses with variable weight 

depending on the time correlation between pre- and post-

synaptic spikes. The modification of the synaptic strength 

is driven by a discrete activation variable, which is in line 

with recent observations suggesting that synaptic plasticity 

may be based on discrete dynamics [18]. The target for 

the PERPLEXUS project is a network constituted by 

10000 neurons. The connectivity pattern between neurons 

is broad (i.e., a neuron may connect with any other neuron 

in the network), and a single neuron may have up to 300 

synaptic inputs.  

When the Ubichip is configured in multiprocessor 

mode the four Ubicells that constitute a MacroCell are 

joined in order to construct a 16-bit processor which is in 

charge of emulating a single neuron. Therefore, a single 

Ubichip is able to emulate the functionality of 100 spiking 

neurons. Figure 3 depicts the organization of a single 

processor when the Ubichip is configured in 

multiprocessor mode. The 5-bit opcode input determines 

the instruction to be executed by the processor, while the 

3-bit source_dest input specifies which register is the 

source or the destination for a given operation. Each 

processor contains 16 16-bit register, divided in two 

banks, the active and the shadow one. Each bank is 

constituted by 8 registers (from which the first one is the 

accumulator), and operations executed by a processor 

affect only the registers constituting the active bank, even 

though there are instructions for moving data between 

both banks. The result of any arithmetic or logic 

instruction is always stored in the accumulator register 

(labeled ACC in Figure 3, the remaining registers of the 

active bank are labeled R0 to R6, the shadow register 

bank is not represented in the figure for the sake of 

clarity). 

 

 
 

Figure 3. Organization of a 16-bit processor 

 

The contents of the accumulator, as well as the carry 

and zero flags produced by the execution of an operation 

may be transferred to the sequencer using the data_out 

and status_out buses, respectively. These buses are shared 

by all the processors of an Ubichip. Only a single 

processor in the Ubichip may write to these buses at any 

given time, and this is controlled by a cell_select input 

present in every processor that is driven by the sequencer. 

All the processors contained in an Ubichip execute the 

same sequence of instructions. These are stored in the 

external SRAM module and are fetched by the sequencer 

and later dispatched to the processors using an internal 

global bus. This SRAM unit contains also part of the data 

(basically, synaptic weights and overall network 

parameters) needed by the processors to emulate a spiking 

neuron, and the internal register bank is used  to keep 

those variables that are used frequently, like the 

membrane potential or the learning parameters, so as to 

minimize the number of accesses to the external memory. 

Since the target network to be emulated is constituted 

by 10000 neurons and a single Ubichip is able to 

implement 100 neurons, a total of 100 Ubichips will be 

attached to the shared AER bus. Every Ubichip contains 

an internal identifier, called chip_id, which ranges from 1 

to 100, and additionally there is an input, called master, 

that identifies which Ubichip will drive the overall 
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emulation process. This input should be set to „1‟ for the 

Ubichip with the highest value of the chip_id identifier. 

The width of the AER bus is set to 7 bits, because the 

maximum value to be sent on it is 100. An additional pull-

up driven signal, called ready, is included in the bus for 

synchronization purposes, as it will be explained later. 

Figure 4 shows the organization of an Ubichip network 

constructed in order to emulate a 10000 neurons SNN 

network. 

 

 
 

Figure 4. Ubichip network for emulating SNN models 

 

As it has been previously stated, the emulation of a 

SNN network is divided in two phases: a spike 

transmission phase and an execution phase. The spike 

transmission phase is initiated by the Ubichip that is 

acting as a master in the network. This Ubichip first 

places a START_TX command on the AER bus, 

indicating to the network the beginning of the 

transmission phase. Then it places on the bus its chip_id 

value, which will be stored by the remaining Ubichips 

since it will constitute the most significant part of the 

address provided to the CAM units. Afterwards it will 

place sequentially on the bus the addresses of its internal 

processors that produced a spike during the last execution 

phase (these addresses will be concatenated to the 

previous chip_id value in order to obtain the complete 

addresses to be provided to the CAM units). Once all the 

spikes have been sent a NEXT_FRAME command is 

issued by the master Ubichip. At this time all the Ubichips 

will decrement by one unit the chip_id value received just 

after the START_TX command, and the Ubichip whose 

chip_id matches this value will take now control of the 

AER bus, sending its chip_id and the eventual spikes 

produced by its internal processors. This process is 

repeated successively until Ubichip 1 sends the 

NEXT_FRAME command. The master Ubichip knows 

then that the spike transmission phase is over, since the 

value obtained after decrementing the last chip_id value 

sent is 0. Therefore, it will issue the 

START_PROCESSING command, signaling the start of 

the execution phase. Due to the fact that all the processors 

in the Ubichips execute exactly the same sequence of 

instructions, after completing a new emulation step the 

master Ubichip is able to send a START_TX command 

starting a new spike transmission phase. Between the 

START_PROCESSING and START_TX commands the 

master Ubichip is placing the PROCESSING command 

on the AER bus. This command has no effect on the 

Ubichips, and is used just for network debugging 

processes. 

Figure 5 depicts graphically the evolution of the neural 

emulation process, while table 1 summarizes the set of 

commands needed to implement it. 

 

 
 

Figure 5. Evolution in time of a SNN model emulation 

 

Table 1. List of commands defined for the proposed AER 

implementation 

 

Hex value Mnemonic Description 

0x00 – 0x63 p_addr_n Address of 

processor 

producing a 

spike 

0x01 – 0x 64 chip_id Ubichip 

identifier 

0x7F NEXT_FRAME Gives bus 

access to the 

next Ubichip 

0x7E START_TX Start of the 

spike 

transmission 

phase 

0x7D START_PROCESSING Start of the 

execution 

phase 

0x7C PROCESSING Execution 

phase in 

progress 

0x7B NO_SPIKE No spikes 

produced 

 

It is worth noting that the width of the time slot (i.e., a 

spike transmission frame) during which a given Ubichip is 

sending spikes is not fixed, but depends on the number of 

spikes generated by its processors during the last 

execution phase. Additionally, as indicated in Table 1, 

there is a specific command signaling the absence of 
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spikes. This helps to optimize the bus occupancy and 

therefore to minimize the duration of the spike 

transmission phase. 

As it can be easily deduced from the previous 

explanation, the proposed strategy is easily scalable. 

Increasing the number of Ubichips in the network or the 

number of processors per Ubichip implies to add an 

additional line to the bus every time this number is 

doubled. Furthermore, reducing the number of Ubichips in 

the network implies just to reconfigure the internal 

chip_id values and changing the master input for one of 

them, being the remaining connections kept the same. 

The previous explanation refers to the process of 

sending spikes through the AER bus. In order to detect if 

a spike produced by a neuron corresponds to a synaptic 

connection of another neuron, each Ubichip is interfaced 

with an AER decoder and a CAM unit. Actually this CAM 

unit contains as many independent CAM blocks as there 

are processors in an Ubichip (i.e., 100). The contents of 

every CAM block is initialized with the address of the 

neurons driving the synaptic inputs of the neuron it is 

associated with. Therefore, during the spike transmission 

phase the AER decoder concatenates the chip_id value 

sent in a transmission frame with the addresses of the 

processors sent during this frame, obtaining in this way 

the final addresses to be used as input for the CAM blocks 

it is managing. If a given CAM block produces a hit as a 

consequence of a read access this means that there is an 

input spike for the corresponding neuron. The address 

corresponding to the position where the match was 

identified indicates the input synapse of the neuron 

affected by this spike. 

Since a single AER decoder is responsible for 

controlling the eventual hits produced by 100 CAM 

blocks, it may happen that during the spike transmission 

phase an address present in the bus produces a large 

number of hits in the CAM unit of an Ubichip, so that 

processing these hits will take longer than the time 

allocated for the arrival of a new AER address. In this 

case the AER decoder will drive low the ready line of the 

bus, thus indicating the sender Ubichip to stall the spike 

transmission process until this line is asserted again. The 

Ubichip that had access to the bus when the ready line was 

deasserted sends the NO_SPIKE command to the bus 

until it is set again to VDD. 

So as to permit the construction of large Ubichip 

networks (and therefore the emulation of actual large-

scale SNN models) the AER bus is working at a frequency 

that is 10 times slower than the system frequency used for 

the Ubichips (in our current implementation the target is 

100 MHz for the Ubichip and 10 MHz for the AER bus).  

 

 

 

5. AER encoder 
 

The AER encoder is part of the global AER controller 

included in the Ubichip. It is basically a finite state 

machine that handles the spike transmission phase and 

synchronizes with the sequencer in order to maintain the 

overall SNN emulation process. Table 2 summarizes the 

states defined for this unit. 

Before the addresses corresponding to the spikes 

produced are sent to the AER bus the encoder has to scan 

sequentially the processors present in a Ubichip in order 

to detect if the register storing the output spike is set or 

not. This scanning process is carried out row by row. 

Since the Ubichip frequency is 10 times faster than the 

frequency used for the AER bus, a FIFO queue with depth 

of 10 lines is used in order to keep the spike transmission 

process without missing spikes. 

 

Table 2. States of the AER controller 

 

Mnemonic Description 

OFF The AER controller is disabled. It may 

be enabled by setting a specific 

configuration bit of the Ubichip 

IDLE The controller is listening to the AER 

bus 

SEND_S_TX The master Ubichip sends a 

START_TRANSMISSION command 

to the AER bus 

SEND_ID The Ubichip with access to the bus 

sends its chip_id identifier 

SEND_SPIKES The Ubichip with access to the bus 

sends the addresses corresponding to 

the spikes produced during the 

execution phase 

SEND_N_F The Ubichip with access to the bus 

sends the NEXT_FRAME command 

STALL The ready line is low and the active 

Ubichip sends the NO_SPIKE 

command until it is asserted again 

SYNCH Ubichips store the chip_id identifier 

sent to the bus in the current spike 

frame 

SEND_S_PROC The master Ubichip sends the 

START_PROCESSING command 

that initiates the execution phase 

DATA_PROC The processors contained in the 

Ubichip perform an execution cycle 

with the spikes produced during the 

spike transmission phase 
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6. AER decoder and CAM unit 
 

The overall organization of the AER decoder and 

CAM unit is depicted in figure 6. As it can be deduced 

from this figure, it is constituted by a FIFO queue, a CAM 

array and a priority encoder. The inputs for this subsystem 

are the chip_id identifier sent in the current spike 

transmission frame and the addresses present in the AER 

bus (p_addr_n in Figure). By combining these two values 

the read address for the CAM blocks is obtained. 

The outputs of this unit are a signal indicating that a hit 

has happened in one of the CAM blocks (hit signal), the 

identifier of the neuron for which a spike has been 

produced (neuron_id signal) and the identifier of the 

synaptic input of this neuron affected by the spike 

(synapse_id signal). 

 

 
 

Figure 6. Organization of the AER decoder and CAM unit 

 

The FIFO unit, whose depth is 10 words, is needed in 

order to allocate some time for handling the eventual 

matches produced in the CAM blocks. 

The CAM array is constituted by 100 CAM blocks, 

one per processor in the Ubichip. Each CAM block has a 

depth of 300 words, since this is the maximum number of 

synaptic inputs per neuron in the SNN model considered. 

The width of these CAM blocks is 14 bits, since each 

position in the CAM stores the identifier corresponding to 

the neuron that produced a spike for the synaptic input 

corresponding to this position, and this information is 

encoded using the chip_id and the addresses sent in a 

given spike transmission frame and both values are 

encoded using 7 bits. 

The priority encoder just encodes the hit lines 

produced by the CAM blocks into the neuron_id 

identifier. This signal is also used to select the address of 

the CAM block for which a hit was found. This subsystem 

is actually a sequential component, since there may be 

more than one CAM block producing a hit for the same 

input address to the CAM array. In this case, by properly 

setting the multi_hit signal that drives the read_enable 

input of the CAM blocks and the FIFO, the priority 

encoder guarantees that all the hits in the CAM array are 

properly processed in a sequential order. 

As it has been stated previously, the AER encoder and 

the CAM unit are external to the Ubichip. This decision 

has been taken just for maximizing the number of Ubicells 

in the prototype, but both blocks couls be easily integrated 

in the Ubichip to facilitate a compact system 

implementation. They will be implemented using a 

commercial FPGA (a Xilinx XC3S5000fg900-4 device), 

and therefore special attention has been paid to the design 

of the CAM block in order to allow for a feasible 

implementation of the system. 

 

7. CAM block design 
 

The CAM unit needed to implement the AER protocol 

for the current realization of the Ubichip is constituted by 

100 CAM blocks whose size is 300 x 15-bit. Since this 

unit will be implemented using a commercial FPGA, the 

first approach should be based on the use of the dedicated 

memory resources present in the device (either distributed 

or concentrated RAM elements) to create efficient 

memory structures. 

If a BlockRAM (this is the term used for concentrated 

memory elements in the Xilinx devices) implementation is 

used it would require 20 blocks of memory for every 

CAM block, i.e., a total of 2000 blocks for the complete 

CAM unit. This number exceeds the maximum of 104 

RAM blocks available in the target device (by the way, 

the largest one of the Xilinx Spartan-3 family). 

When trying to implement the CAM block using 

distributed memory (actually the compact shift register 

mode, SLR16, of the Xilinx logic cells), the realization 

requires 2400 logic cells per CAM block, i.e., a total of 

240000 logic cells for the complete CAM unit. This also 

exceeds the maximum of 74880 logic cells available in the 

target device. 

Therefore, the approach taken has consisted in 

implementing a CAM block as a dedicated combinational 

unit. This means that after the actual connections between 

the neurons of the network to be emulated are known it is 

possible to set the contents of the CAM in the form of a 

table that can be later translated into simple combinational 

logic. For this purpose a generic and configurable 

behavioral VHDL description has been created. The 

synthesis and compilation of this description with a 

sample connectivity pattern for one neuron demonstrate 

that it occupies just 0.29 % of the resources available in 

the target device, thus making it a very efficient solution 

for implementing the whole system (the complete CAM 

array will occupy just 29 % of the device). This provides 

margin for extending the synaptic connectivity of the 

neurons beyond 300 inputs of for implementing in a single 

FPGA the AER encoder and CAM unit of two Ubichips, 

thus simplifying the implementation of the whole AER 

network. 
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This generic description can be customized 

automatically for a given SNN model connectivity pattern 

using the tools presented in [5]. These tools permit to 

adjust the network parameters using a graphical user 

interface, and they also provide as an output not only the 

program to be executed by the processors contained in the 

Ubichips, but also the configuration parameters for the 

CAM array of every Ubichip. This facilitates considerably 

the prototyping and implementation tasks. 

 

 

8. Prototyping results 
 

A system prototype constituted by an array of 4 x 4 

Ubicells (i.e., 2 x 2 MacroCells or neural processors) has 

been implemented and physically mapped onto a Xilinx 

XC3S5000fg900-4 device. The prototype contains also 

the AER decoder and CAM array. The system occupies 

33 % of the resources available, and the behavior of the 

different subsystems has been successfully tested. The 

FPGA device is part of a specific board developed within 

the framework of the PERPLEXUS project whose core is 

a Marvell PXA270 microprocessor that is used as an 

overall system controller and debugger. 

 

9. Conclusions and future work 
 

In this paper a synchronous implementation of the 

AER communication protocol has been presented. It has 

been implemented within the framework of the 

PERPLEXUS project as a basic mechanism for supporting 

the efficient emulation of large-scale biologically inspired 

SNN models. 

The proposed implementation of the protocol includes 

some commands that alleviate the arbitration and access 

mechanisms that are required in the original AER 

proposal. This facilitates the construction of large SNN 

networks that are emulated by clusters of processors 

(included in an Ubichip in the case of the PERPLEXUS 

project) that may work locally independent system clocks 

and can synchronize its operation by means of the 

commands sent through the AER bus. 

The proposed implementation is scalable, since it is not 

very sensitive to the number of processor clusters neither 

to the number of processors included in them. 

In the physical implementation of the proposal special 

attention has been paid to the realization of the CAM 

blocks on which the AER decoding subsystem is based. 

By optimizing the behavioral description of an elementary 

CAM block it has been possible to include a complete 100 

CAM array into a single commercial FPGA device 

occupying just 29 % of the available resources. 

A system prototype has been physically implemented 

and successfully tested in a Xilinx XC3S5000fg900-4 

device.  

Our current work is concentrated in the final stages of 

the physical implementation of the Ubichip in the form of 

an ASIC. It will be fabricated using a commercial 180 nm 

6-metal CMOS process, and it will contain an array of 10 

x 10 Macrocells (20 x 20 Ubicells).  
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