

Synchronous Digital Implementation of the AER Communication Scheme for

Emulating Large-Scale Spiking Neural Networks Models

J.M. Moreno, J. Madrenas

Technical University of Catalunya-Dept. of

Electronic Engineering

moreno@eel.upc.edu, madrenas@eel.upc.edu

L. Kotynia

Technical University of Lodz-Dept. of

Microelectronics and Computer Science

lkotynia@dmcs.p.lodz.pl

Abstract
In this paper we shall present a fully synchronous digital

implementation of the Address Event Representation

(AER) communication scheme that has been used in the

PERPLEXUS chip in order to permit the emulation of

large-scale biologically inspired spiking neural networks

models. By introducing specific commands in the AER

protocol it is possible to distribute the AER bus among a

large number of chips where the functionality of the

spiking neurons is being emulated. A careful design of the

AER encoder module using compact Content Addressable

Memories (CAMs) allows for a feasible realization of

large-scale models.

1. Introduction

The PERPLEXUS project [1] aims at the development

of a flexible and scalable hardware substrate that will

enable the efficient emulation of complex, virtually

unbounded systems. The major outcome of this project is

an integrated circuit, called Ubichip [2]. The internal

architecture of the Ubichip has been endowed with

specific hardware mechanisms, like dynamic routing [3]

or self-replication [4] so as to provide support for a wide

range of bio-inspired principles. Additionally, it supports

massively parallel SIMD (Single Instruction Multiple

Data) like data flows, thus making it a perfect candidate

for the efficient emulation of Spiking Neural Networks

(SNN) models [5].

The Address Event Representation (AER) is a

communication scheme that was conceived specifically to

address the issues raised by massive and sparse

interconnection patterns. It was initially proposed in [6],

[7] and later developed in [8], [9], [10], [11]. It consists in

translating a sequence of events (spikes) into an ordered

sequence of addresses that correspond to the individual

processing elements that produced these events. This

sequence of addresses is sent through a bus that

communicates the places (usually chips) where the units

are physically mapped. Since there is only a single actual

channel where the addresses can be transmitted the

implementation of this protocol usually involves the use of

arbiters based on self-timed asynchronous logic [12].

The SpiNNaker system [13] tries to overcome these

issues by implementing a packet-switched network [14]

that is used to carry out the communication between the

processing elements that emulate the spiking neurons.

The approach taken in the Ubichip consists in

extending the basic principles presents in the AER scheme

so as to permit a fully synchronous implementation of the

protocol. The extension is based in the definition of

specific commands sent through the address bus that

permit different chips to synchronize their access to it,

thus avoiding the need for a dedicated arbiter.

Additionally, this will permit to share a single address bus

among a virtually unbounded number of Ubichips, and in

this way it will be possible to emulate in real time large-

scale biologically inspired SNN models like the one

presented in [15], [16], which constitutes the target for the

PERPLEXUS project.

The structure of the paper is organized as follows. First

a brief overview of the Ubichip architecture will be

provided, followed by a description of the basic principles

on which the AER communication scheme relies. Then the

data flow used to carry out the emulation of spiking neural

networks will be outlined, including a specification of the

commands defined to extend the basic AER scheme.

Afterwards the implementation details of the AER

encoder and decoder modules will be provided,

emphasizing the special care that has to be taken with the

Content Addressable Memory (CAM) element that is the

core building block of the AER decoder. Finally, the

prototyping results of the complete system and our current

and future work will be outlined.

2. The PERPLEXUS chip architecture

Figure 1 depicts the overall organization of the

Ubichip.

2009 NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3714-6/09 $25.00 © 2009 IEEE

DOI 10.1109/AHS.2009.14

189

Authorized licensed use limited to: New York University. Downloaded on June 18,2010 at 14:33:01 UTC from IEEE Xplore. Restrictions apply.

It is constituted by three main building blocks: A

MacroCell array, a system manager and a CAM

controller. The MacroCell array is a regular, bi-

dimensional arrangement of functional elements called

Macrocells (MC in Figure 1). Each MacroCell contains

four Ubicells, a Dynamic Routing unit and a Self-

Replication unit. The final Ubichip will contain a 10 x 10

array or MacroCells, and thus a total of 400 Ubicells.

Figure 1. Internal organization of the Ubichip

The Ubicell is the elementary functional block of the

Ubichip, and is constructed around four independent

memory blocks and a 4-bit ALU. The memory blocks can

be configured to provide several combinational and

sequential operation modes, apart as being used as

conventional SRAM. Additionally, they can be used as a

register file for the ALU, so that a single Ubicell can act

as an actual 4-bit processor. The Dynamic Routing unit

takes care of the physical implementation of in-hardware,

on-line path construction mechanisms among Ubicells.

The Self-Replication unit permits to implement local and

distributed self-configuration processes that are the basis

for allowing the physical realization of self-replication

mechanisms.

The system manager is composed of a microprocessor

interface, a configuration unit, a memory controller and a

sequencer. The microprocessor interface takes care of the

communication between the Ubichip and an external

CPU. The configuration unit manages the configuration

process of the Ubichip that can be carried out using either

a parallel or a serial interface. Additionally, it contains the

necessary resources for facilitating the debugging of the

complete system, allowing the designer to perform an

edge-by-edge emulation and inspection of the application.

The memory controller manages the interface of the

Ubichip with an external SRAM memory that stores the

program executed by the sequencer and the data used by

the MacroCells when the system is configured in SIMD

multiprocessor mode. The sequencer included in the

system manager is in charge of controlling the MacroCell

array when it is configured in SIMD multiprocessor mode.

This unit reads the instructions stored in the external

SRAM and dispatches them to the MacroCells that act as

elementary processors in this mode.

The AER controller included in the Ubichip is the

subsystem that carries out the physical implementation of

the AER protocol. It is constituted by an AER encoder

and a control unit that communicates with an external

AER decoder module provided with a CAM unit.

A detailed explanation of the internal architecture of

the Ubichip is provided in [17].

3. The AER communication scheme

As it has been previously stated, the basic principle of

the AER communication scheme consists in translating a

sequence of events produced by a set of processing

elements into an ordered sequence of addresses that are

sent through a dedicated bus that is broadcasted to the rest

of the system. In the receiver side, the sequence of

addresses is converted again into a sequence of events that

are transferred to the corresponding destinations. Figure 2

depicts the basic mechanism on which AER is based.

Figure 2. AER principle

This communication scheme is thus quite efficient for

overcoming the bottlenecks that appear when information

has to be exchanged within a system composed of

massively interconnected components, like is the case of

SNN models. For these models the events produced in the

system correspond to spikes, and the processing elements

are the units emulating the functionality of the neurons.

There are several issues to be addressed when an

efficient implementation of the AER communication

scheme is to be considered. The first one refers to the

procedure used for scanning the events to be transmitted.

In the case two or more events are produced at the same

time it has to be decided in which order they are

broadcasted through the address bus, because it can

allocate a single address per time slot. The common way

to face this problem is by means of asynchronous arbiters

that establish a priority in the case of a simultaneous

multi-event situation.

190

Authorized licensed use limited to: New York University. Downloaded on June 18,2010 at 14:33:01 UTC from IEEE Xplore. Restrictions apply.

Another important issue refers to the access technique

implemented for the AER bus. Since this bus is shared by

different components working independently and

asynchronously, a proper access method has to be

established in order to avoid collisions in the bus. Several

access techniques [9], including sequential scanning,

ALOHA-based access or arbitration access have been

proposed an used for implementing the AER

communication principles, but there is not a clear

guideline for choosing a particular access method for a

specific application.

The strategy used in the Ubichip for implementing the

AER communication protocol simplifies both the

arbitration required in the encoder module as well as the

access technique required for the management of the

global AER bus. It is based in dividing the emulation of

the SNN model implemented in the Ubichips in two

phases, an execution phase and a spike transmission

phase. The spike transmission phase is performed

sequentially by all the Ubichips present in an ordered way,

so that only one Ubichip has access to the AER bus at a

given time. Once the spike transmission phase is

completed all the Ubichips execute in parallel updating

their internal state depending on the spikes received from

the previous phase.

4. Neural emulation principle

The SNN model considered within the framework of

the PERPLEXUS project is that presented in [15] and

[16]. It is constituted by Leaky Integrate-and-Fire neuron

units connected by synapses with variable weight

depending on the time correlation between pre- and post-

synaptic spikes. The modification of the synaptic strength

is driven by a discrete activation variable, which is in line

with recent observations suggesting that synaptic plasticity

may be based on discrete dynamics [18]. The target for

the PERPLEXUS project is a network constituted by

10000 neurons. The connectivity pattern between neurons

is broad (i.e., a neuron may connect with any other neuron

in the network), and a single neuron may have up to 300

synaptic inputs.

When the Ubichip is configured in multiprocessor

mode the four Ubicells that constitute a MacroCell are

joined in order to construct a 16-bit processor which is in

charge of emulating a single neuron. Therefore, a single

Ubichip is able to emulate the functionality of 100 spiking

neurons. Figure 3 depicts the organization of a single

processor when the Ubichip is configured in

multiprocessor mode. The 5-bit opcode input determines

the instruction to be executed by the processor, while the

3-bit source_dest input specifies which register is the

source or the destination for a given operation. Each

processor contains 16 16-bit register, divided in two

banks, the active and the shadow one. Each bank is

constituted by 8 registers (from which the first one is the

accumulator), and operations executed by a processor

affect only the registers constituting the active bank, even

though there are instructions for moving data between

both banks. The result of any arithmetic or logic

instruction is always stored in the accumulator register

(labeled ACC in Figure 3, the remaining registers of the

active bank are labeled R0 to R6, the shadow register

bank is not represented in the figure for the sake of

clarity).

Figure 3. Organization of a 16-bit processor

The contents of the accumulator, as well as the carry

and zero flags produced by the execution of an operation

may be transferred to the sequencer using the data_out

and status_out buses, respectively. These buses are shared

by all the processors of an Ubichip. Only a single

processor in the Ubichip may write to these buses at any

given time, and this is controlled by a cell_select input

present in every processor that is driven by the sequencer.

All the processors contained in an Ubichip execute the

same sequence of instructions. These are stored in the

external SRAM module and are fetched by the sequencer

and later dispatched to the processors using an internal

global bus. This SRAM unit contains also part of the data

(basically, synaptic weights and overall network

parameters) needed by the processors to emulate a spiking

neuron, and the internal register bank is used to keep

those variables that are used frequently, like the

membrane potential or the learning parameters, so as to

minimize the number of accesses to the external memory.

Since the target network to be emulated is constituted

by 10000 neurons and a single Ubichip is able to

implement 100 neurons, a total of 100 Ubichips will be

attached to the shared AER bus. Every Ubichip contains

an internal identifier, called chip_id, which ranges from 1

to 100, and additionally there is an input, called master,

that identifies which Ubichip will drive the overall

191

Authorized licensed use limited to: New York University. Downloaded on June 18,2010 at 14:33:01 UTC from IEEE Xplore. Restrictions apply.

emulation process. This input should be set to „1‟ for the

Ubichip with the highest value of the chip_id identifier.

The width of the AER bus is set to 7 bits, because the

maximum value to be sent on it is 100. An additional pull-

up driven signal, called ready, is included in the bus for

synchronization purposes, as it will be explained later.

Figure 4 shows the organization of an Ubichip network

constructed in order to emulate a 10000 neurons SNN

network.

Figure 4. Ubichip network for emulating SNN models

As it has been previously stated, the emulation of a

SNN network is divided in two phases: a spike

transmission phase and an execution phase. The spike

transmission phase is initiated by the Ubichip that is

acting as a master in the network. This Ubichip first

places a START_TX command on the AER bus,

indicating to the network the beginning of the

transmission phase. Then it places on the bus its chip_id

value, which will be stored by the remaining Ubichips

since it will constitute the most significant part of the

address provided to the CAM units. Afterwards it will

place sequentially on the bus the addresses of its internal

processors that produced a spike during the last execution

phase (these addresses will be concatenated to the

previous chip_id value in order to obtain the complete

addresses to be provided to the CAM units). Once all the

spikes have been sent a NEXT_FRAME command is

issued by the master Ubichip. At this time all the Ubichips

will decrement by one unit the chip_id value received just

after the START_TX command, and the Ubichip whose

chip_id matches this value will take now control of the

AER bus, sending its chip_id and the eventual spikes

produced by its internal processors. This process is

repeated successively until Ubichip 1 sends the

NEXT_FRAME command. The master Ubichip knows

then that the spike transmission phase is over, since the

value obtained after decrementing the last chip_id value

sent is 0. Therefore, it will issue the

START_PROCESSING command, signaling the start of

the execution phase. Due to the fact that all the processors

in the Ubichips execute exactly the same sequence of

instructions, after completing a new emulation step the

master Ubichip is able to send a START_TX command

starting a new spike transmission phase. Between the

START_PROCESSING and START_TX commands the

master Ubichip is placing the PROCESSING command

on the AER bus. This command has no effect on the

Ubichips, and is used just for network debugging

processes.

Figure 5 depicts graphically the evolution of the neural

emulation process, while table 1 summarizes the set of

commands needed to implement it.

Figure 5. Evolution in time of a SNN model emulation

Table 1. List of commands defined for the proposed AER

implementation

Hex value Mnemonic Description

0x00 – 0x63 p_addr_n Address of

processor

producing a

spike

0x01 – 0x 64 chip_id Ubichip

identifier

0x7F NEXT_FRAME Gives bus

access to the

next Ubichip

0x7E START_TX Start of the

spike

transmission

phase

0x7D START_PROCESSING Start of the

execution

phase

0x7C PROCESSING Execution

phase in

progress

0x7B NO_SPIKE No spikes

produced

It is worth noting that the width of the time slot (i.e., a

spike transmission frame) during which a given Ubichip is

sending spikes is not fixed, but depends on the number of

spikes generated by its processors during the last

execution phase. Additionally, as indicated in Table 1,

there is a specific command signaling the absence of

192

Authorized licensed use limited to: New York University. Downloaded on June 18,2010 at 14:33:01 UTC from IEEE Xplore. Restrictions apply.

spikes. This helps to optimize the bus occupancy and

therefore to minimize the duration of the spike

transmission phase.

As it can be easily deduced from the previous

explanation, the proposed strategy is easily scalable.

Increasing the number of Ubichips in the network or the

number of processors per Ubichip implies to add an

additional line to the bus every time this number is

doubled. Furthermore, reducing the number of Ubichips in

the network implies just to reconfigure the internal

chip_id values and changing the master input for one of

them, being the remaining connections kept the same.

The previous explanation refers to the process of

sending spikes through the AER bus. In order to detect if

a spike produced by a neuron corresponds to a synaptic

connection of another neuron, each Ubichip is interfaced

with an AER decoder and a CAM unit. Actually this CAM

unit contains as many independent CAM blocks as there

are processors in an Ubichip (i.e., 100). The contents of

every CAM block is initialized with the address of the

neurons driving the synaptic inputs of the neuron it is

associated with. Therefore, during the spike transmission

phase the AER decoder concatenates the chip_id value

sent in a transmission frame with the addresses of the

processors sent during this frame, obtaining in this way

the final addresses to be used as input for the CAM blocks

it is managing. If a given CAM block produces a hit as a

consequence of a read access this means that there is an

input spike for the corresponding neuron. The address

corresponding to the position where the match was

identified indicates the input synapse of the neuron

affected by this spike.

Since a single AER decoder is responsible for

controlling the eventual hits produced by 100 CAM

blocks, it may happen that during the spike transmission

phase an address present in the bus produces a large

number of hits in the CAM unit of an Ubichip, so that

processing these hits will take longer than the time

allocated for the arrival of a new AER address. In this

case the AER decoder will drive low the ready line of the

bus, thus indicating the sender Ubichip to stall the spike

transmission process until this line is asserted again. The

Ubichip that had access to the bus when the ready line was

deasserted sends the NO_SPIKE command to the bus

until it is set again to VDD.

So as to permit the construction of large Ubichip

networks (and therefore the emulation of actual large-

scale SNN models) the AER bus is working at a frequency

that is 10 times slower than the system frequency used for

the Ubichips (in our current implementation the target is

100 MHz for the Ubichip and 10 MHz for the AER bus).

5. AER encoder

The AER encoder is part of the global AER controller

included in the Ubichip. It is basically a finite state

machine that handles the spike transmission phase and

synchronizes with the sequencer in order to maintain the

overall SNN emulation process. Table 2 summarizes the

states defined for this unit.

Before the addresses corresponding to the spikes

produced are sent to the AER bus the encoder has to scan

sequentially the processors present in a Ubichip in order

to detect if the register storing the output spike is set or

not. This scanning process is carried out row by row.

Since the Ubichip frequency is 10 times faster than the

frequency used for the AER bus, a FIFO queue with depth

of 10 lines is used in order to keep the spike transmission

process without missing spikes.

Table 2. States of the AER controller

Mnemonic Description

OFF The AER controller is disabled. It may

be enabled by setting a specific

configuration bit of the Ubichip

IDLE The controller is listening to the AER

bus

SEND_S_TX The master Ubichip sends a

START_TRANSMISSION command

to the AER bus

SEND_ID The Ubichip with access to the bus

sends its chip_id identifier

SEND_SPIKES The Ubichip with access to the bus

sends the addresses corresponding to

the spikes produced during the

execution phase

SEND_N_F The Ubichip with access to the bus

sends the NEXT_FRAME command

STALL The ready line is low and the active

Ubichip sends the NO_SPIKE

command until it is asserted again

SYNCH Ubichips store the chip_id identifier

sent to the bus in the current spike

frame

SEND_S_PROC The master Ubichip sends the

START_PROCESSING command

that initiates the execution phase

DATA_PROC The processors contained in the

Ubichip perform an execution cycle

with the spikes produced during the

spike transmission phase

193

Authorized licensed use limited to: New York University. Downloaded on June 18,2010 at 14:33:01 UTC from IEEE Xplore. Restrictions apply.

6. AER decoder and CAM unit

The overall organization of the AER decoder and

CAM unit is depicted in figure 6. As it can be deduced

from this figure, it is constituted by a FIFO queue, a CAM

array and a priority encoder. The inputs for this subsystem

are the chip_id identifier sent in the current spike

transmission frame and the addresses present in the AER

bus (p_addr_n in Figure). By combining these two values

the read address for the CAM blocks is obtained.

The outputs of this unit are a signal indicating that a hit

has happened in one of the CAM blocks (hit signal), the

identifier of the neuron for which a spike has been

produced (neuron_id signal) and the identifier of the

synaptic input of this neuron affected by the spike

(synapse_id signal).

Figure 6. Organization of the AER decoder and CAM unit

The FIFO unit, whose depth is 10 words, is needed in

order to allocate some time for handling the eventual

matches produced in the CAM blocks.

The CAM array is constituted by 100 CAM blocks,

one per processor in the Ubichip. Each CAM block has a

depth of 300 words, since this is the maximum number of

synaptic inputs per neuron in the SNN model considered.

The width of these CAM blocks is 14 bits, since each

position in the CAM stores the identifier corresponding to

the neuron that produced a spike for the synaptic input

corresponding to this position, and this information is

encoded using the chip_id and the addresses sent in a

given spike transmission frame and both values are

encoded using 7 bits.

The priority encoder just encodes the hit lines

produced by the CAM blocks into the neuron_id

identifier. This signal is also used to select the address of

the CAM block for which a hit was found. This subsystem

is actually a sequential component, since there may be

more than one CAM block producing a hit for the same

input address to the CAM array. In this case, by properly

setting the multi_hit signal that drives the read_enable

input of the CAM blocks and the FIFO, the priority

encoder guarantees that all the hits in the CAM array are

properly processed in a sequential order.

As it has been stated previously, the AER encoder and

the CAM unit are external to the Ubichip. This decision

has been taken just for maximizing the number of Ubicells

in the prototype, but both blocks couls be easily integrated

in the Ubichip to facilitate a compact system

implementation. They will be implemented using a

commercial FPGA (a Xilinx XC3S5000fg900-4 device),

and therefore special attention has been paid to the design

of the CAM block in order to allow for a feasible

implementation of the system.

7. CAM block design

The CAM unit needed to implement the AER protocol

for the current realization of the Ubichip is constituted by

100 CAM blocks whose size is 300 x 15-bit. Since this

unit will be implemented using a commercial FPGA, the

first approach should be based on the use of the dedicated

memory resources present in the device (either distributed

or concentrated RAM elements) to create efficient

memory structures.

If a BlockRAM (this is the term used for concentrated

memory elements in the Xilinx devices) implementation is

used it would require 20 blocks of memory for every

CAM block, i.e., a total of 2000 blocks for the complete

CAM unit. This number exceeds the maximum of 104

RAM blocks available in the target device (by the way,

the largest one of the Xilinx Spartan-3 family).

When trying to implement the CAM block using

distributed memory (actually the compact shift register

mode, SLR16, of the Xilinx logic cells), the realization

requires 2400 logic cells per CAM block, i.e., a total of

240000 logic cells for the complete CAM unit. This also

exceeds the maximum of 74880 logic cells available in the

target device.

Therefore, the approach taken has consisted in

implementing a CAM block as a dedicated combinational

unit. This means that after the actual connections between

the neurons of the network to be emulated are known it is

possible to set the contents of the CAM in the form of a

table that can be later translated into simple combinational

logic. For this purpose a generic and configurable

behavioral VHDL description has been created. The

synthesis and compilation of this description with a

sample connectivity pattern for one neuron demonstrate

that it occupies just 0.29 % of the resources available in

the target device, thus making it a very efficient solution

for implementing the whole system (the complete CAM

array will occupy just 29 % of the device). This provides

margin for extending the synaptic connectivity of the

neurons beyond 300 inputs of for implementing in a single

FPGA the AER encoder and CAM unit of two Ubichips,

thus simplifying the implementation of the whole AER

network.

194

Authorized licensed use limited to: New York University. Downloaded on June 18,2010 at 14:33:01 UTC from IEEE Xplore. Restrictions apply.

This generic description can be customized

automatically for a given SNN model connectivity pattern

using the tools presented in [5]. These tools permit to

adjust the network parameters using a graphical user

interface, and they also provide as an output not only the

program to be executed by the processors contained in the

Ubichips, but also the configuration parameters for the

CAM array of every Ubichip. This facilitates considerably

the prototyping and implementation tasks.

8. Prototyping results

A system prototype constituted by an array of 4 x 4

Ubicells (i.e., 2 x 2 MacroCells or neural processors) has

been implemented and physically mapped onto a Xilinx

XC3S5000fg900-4 device. The prototype contains also

the AER decoder and CAM array. The system occupies

33 % of the resources available, and the behavior of the

different subsystems has been successfully tested. The

FPGA device is part of a specific board developed within

the framework of the PERPLEXUS project whose core is

a Marvell PXA270 microprocessor that is used as an

overall system controller and debugger.

9. Conclusions and future work

In this paper a synchronous implementation of the

AER communication protocol has been presented. It has

been implemented within the framework of the

PERPLEXUS project as a basic mechanism for supporting

the efficient emulation of large-scale biologically inspired

SNN models.

The proposed implementation of the protocol includes

some commands that alleviate the arbitration and access

mechanisms that are required in the original AER

proposal. This facilitates the construction of large SNN

networks that are emulated by clusters of processors

(included in an Ubichip in the case of the PERPLEXUS

project) that may work locally independent system clocks

and can synchronize its operation by means of the

commands sent through the AER bus.

The proposed implementation is scalable, since it is not

very sensitive to the number of processor clusters neither

to the number of processors included in them.

In the physical implementation of the proposal special

attention has been paid to the realization of the CAM

blocks on which the AER decoding subsystem is based.

By optimizing the behavioral description of an elementary

CAM block it has been possible to include a complete 100

CAM array into a single commercial FPGA device

occupying just 29 % of the available resources.

A system prototype has been physically implemented

and successfully tested in a Xilinx XC3S5000fg900-4

device.

Our current work is concentrated in the final stages of

the physical implementation of the Ubichip in the form of

an ASIC. It will be fabricated using a commercial 180 nm

6-metal CMOS process, and it will contain an array of 10

x 10 Macrocells (20 x 20 Ubicells).

10. Acknowledgements

The work presented in this paper has been funded by

the European Union (PERPLEXUS project, Contract no.

34632) and by the Spanish Ministry of Science and

Innovation (Project reference TEC2006-28116-E).

11. References

[1] E. Sanchez, A. Perez-Uribe, A. Upegui, Y. Thoma,

J.M. Moreno, A. Villa, H. Volken, A. Napieralski, G.

Sassatelli, E. Lawarec, “PERPLEXUS: Pervasive

Computing Framework for Modeling Complex Virtually-

Unbounded Systems”, Proceedings of the 2007

NASA/ESA Conference on Adaptive Hardware and

Systems, pp. 587-591, Edinburgh, UK, August 5-8, 2007.

[2] A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe,

J.M. Moreno, J. Madrenas, “The Perplexus bio-inspired

reconfigurable circuit”, Proceedings of the 2007

NASA/ESA Conference on Adaptive Hardware and

Systems, pp. 600-605, Edinburgh, UK, August 5-8, 2007.

[3] A. Upegui, Y. Thoma, A. Perez-Uribe and E. Sanchez,

“Dynamic Routing on the Ubichip: Toward

Synaptogenetic Neural Networks”, Proceedings of the

2008 NASA/ESA Conference on Adaptive Hardware and

Systems, pp. 228-235, Noordwijk, The Netherlands, June

22-25, 2008.

[4] Y. Thoma, A. Upegui, A. Perez-Uribe, E. Sanchez,

“Self-replication mechanism by means of self-

reconfiguration”, 20th International Conference on

Architecture of Computing Systems (ARCS '07), pp. 105-

112, VDE Verlag, 2007.

[5] M. Hauptvogel, J. Madrenas, J.M. Moreno,

“SpiNDeK: An Integrated Design Tool for the

Multiprocessor Emulation of Complex Bioinspired

Spiking Neural Networks”, to be published in the

Proceedings of the 2009 IEEE Congress on Evolutionary

Computation, Trondheim, Norway, May 18-21, 2009.

195

Authorized licensed use limited to: New York University. Downloaded on June 18,2010 at 14:33:01 UTC from IEEE Xplore. Restrictions apply.

[6] M.A. Mahowald, “VLSI Analogs of Neuronal Visual

Processing: A Synthesis of Form and Function”, Ph.D.

dissertation, California Institute of Technology, Pasadena,

1992.

[7] M. Sivilotti, “Wiring Considerations in Analog VLSI

Systems With Applications to Field Programmable

Networks”, Ph.D. dissertation, California Institute of

Technology, Pasadena, 1991.

[8] K.A. Boahen, “Point to Point Connetivity Between

Neuromorphic Chips Using Address Events”, IEEE Trans.

on Circuits and Systems II, Vol. 47, No. 5, pp. 416-434,

May 2000.

[9] E. Culurciello, A.G. Andreou, “A Comparative Study

of Access Topologies for Chip-Level Address-Event

Communication Channels”, IEEE Trans. on Neural

Networks, Vol. 14, No. 5, pp. 1266-1277, September

2003.

[10] K.A. Boahen, “A Burst-Mode Word-Serial Address-

Event Link-I: Transmitter Design”, IEEE Trans. on

Circuits and Systems I, Vol. 51, No. 7, pp. 1269-1280,

July 2004.

[11] K.A. Boahen, “A Burst-Mode Word-Serial Address-

Event Link-II: Receiver Design”, IEEE Trans. on Circuits

and Systems I, Vol. 51, No. 7, pp. 1281-1291, July 2004.

[12] E. Culurciello, R. Etienne-Cummings, K. Boahen,

“High Dynamic-Range, Arbitrated Address Event

Representation Digital Imager”, Proceedings of the 2001

IEEE International Symposium on Circuits and Systems,

Vol. 3, pp. 505-508, Sydney, Australia, May 6-9, 2001.

[13] L.A. Plana, S.B. Furber, S. Temple, M. Khan, Y. Shi,

J. Wu, S. Yang, “A GALS Infrastructure for a Massively

Parallel Multiprocessor”, IEEE Design and Test of

Computers, Vol. 24, No. 5, pp. 454-463, Sept.-Oct. 2007.

[14] L.A. Plana, J. Bainbridge, S. Furber, S. Salisbury, Y.

Shi, J. Wu, “An On-Chip and Inter-Chip Communications

Network for the SpiNNaker Massively-Parallel Neural

Net Simulator”, Proceedings of the second ACM/IEEE

International Symposium on Networks-on-Chip, pp. 215-

216, Newcastle upon Tyne, United Kingdom, April 7-11,

2008.

[15] J. Iglesias, J. Eriksson, F. Grize, M. Tomassini,

A.E.P. Villa, “Dynamics of pruning in simulated large-

scale spiking neural networks”. Biosystems, Vol. 79, pp.

11-20, January-March 2005.

[16] J. Iglesias, J. Eriksson, B. Pardo, M. Tomassini,

A.E.P. Villa, “Emergence of Oriented Cell Assemblies

with Spike-Timing-Dependent Plasticity”, Artificial

Neural Networks: Biological Inspirations. W. Duch, J.

Kacprzyk, E. Oja, S. Zadrozny (eds.). Lecture Notes in

Computer Science, Vol. 3693, pp. 11-20, Springer-

Verlag, 2005.

[17] J.M. Moreno, J. Madrenas, “A Reconfigurable

Architecture for Emulating Large-Scale Bio-inspired

Systems”, to be published in the Proceedings of the 2009

IEEE Congress on Evolutionary Computation,

Trondheim, Norway, May 18-21, 2009.

[18] J.M. Montgomery, D.V. Madison, “Discrete synaptic

states define a major mechanism of synapse plasticity”,

Trends in Neurosciences, Vol. 27, No. 12, pp. 744-750,

December 2004.

196

Authorized licensed use limited to: New York University. Downloaded on June 18,2010 at 14:33:01 UTC from IEEE Xplore. Restrictions apply.

