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Course Outline 

Florida Institute of Technology

Department of Electrical and Computer Engineering

CP 4277 - Introduction to Large Computer Design

Course Outline

Course Content

1.  Introduction. Purpose of the Course. Tests. Grades. Reading. 
2.  Computer Architecture. Elements. Characteristics. Implementations. The microcomputer. The bit-

slice concept. 
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GOALS: 

To give the students an introduction to the design of large computer systems and special purpose 
controllers. To give the students the theory behind concepts like bit-slice, microcode, pipelines, etc. To 
develop a certain expertice in the design of systems using bit-slice and microcode. 

Textbook: 

Bipolar Microprocessor Logic and Interface Data Book, Advanced Micro Devices, lastest edition. 

Reference: 

Bit Slice Microprocessor Design, Mick and Brick, Mc Graw Hill Book Co. 1980. 
TTL Manual. 
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1.- Computer design using microprocessors. 
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Estimated ABET Category: 
Engineering Theory: 1 credit 
Engineering Design: 2 credits. 
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Introduction 

THE DESIGN OF COMPUTERS USING 
BIT-SLICE TECHNOLOGY

Michael E. Valdez, Ph.D., P.E.

Slices: 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9

INTRODUCTION

This course is devoted to the design of large computers and advanced controllers, mainly using bit-slice 
technology. The course starts with an analysis of preliminary subjects and continues developing the 
details of the design, through the solution of examples, that are carried through the course. An important 
by-product of this course, for graduate students, is to give them ideas for research. 

The classes are developed as a sequence of examples. During the solution of these examples, and 
motivated by the need to use them, the different large scale integration devices available for bit-slice 
design are studied and their characteristics analyzed. This permits the students to determine if their use in 
the design on hand is justified or not, and to choose between them. 

The same procedure is used for the description of advanced techniques for computer design. Methods to 
speed up the operation, pipelining, cache memory, etc. are topics that are discussed as possible 
alternatives for the design of the computer and the controller and, in this context, are easier to understand 
and to use, rather than in a cold recitation of qualities and problems. 

In the topic of advanced computers and architecture, an analysis is made of the design of a stack 
computer and high level instructions. As the course develops, many advanced topics are analyzed, 
discussed, and their range of application is evaluated. 

It is important to note that the emphasis of any course in computer design must not be on the details of 
design or the use of particular devices but on the theory of design, on general purpose procedures that 
can be used with the current devices or with any other device that might be developed later, to study 
alternatives of design so, when the student graduates and go out into the world, he/she is prepared for the 
future, not for the present. 

At this moment all the students know how to design the memory circuits and the input and output 
circuits; the connection of the processing unit is trivial, similar to the connection of a port. The only point 
the students have not yet seen is the design of the control unit. The main emphasis of this course is then, 
in the design of the control unit, whether for a controller or for a computer. 
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This text is divided in slices (naturally) each covering a topic. Because of this, some slices are longer 
than others and the slice is not a class period. It is expected that the students will obtain as a minimum a 
copy of the AMD Bipolar Microprocesor Logic and Interfaces data book, as a reference for the solution 
of the projects. This text makes extensive reference to the values in the data book. A normal TTL data 
book is also required. 

The Appendix was written by Jerald W. English who, during the Spring of 1985 designed and built the 
Bit Slice Trainer he describes, as part of a Special Project in Computer Engineering. The trainer is 
available for students use in the Computer Research Laboratory. 
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Slice 1 - Computer Architecture 

THE DESIGN OF COMPUTERS USING 
BIT-SLICE TECHNOLOGY

Michael E. Valdez, Ph.D., P.E.

SLICE #1

Slices: 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9

COMPUTER ARCHITECTURE

1.1.- Computer Generations 
1.2.- Computer Classification 
1.3.- Computer Elements 
1.4.- The Procedure for Design 
1.5.- Computer Design 

This Slice constitutes an introduction to the topics covered in this course. Since this course is devoted to 
the design of computers using bit-slice technology, the definition, classification and elements of a 
computer are studied in this Slice, to develop common terminology. This Slice finishes with an analysis 
of the procedures we use to design computers. 

1.1.- Computer Generations. 

The purpose of this course is to design computers, large computers, so might as well we start by looking 
at what is a computer. The computer originated during the second world war, developed as a calculating 
machine. Today, more than 40 years after the first computer was developed, most of the computers are 
used as calculating machines. Throughout these 40 years of the life of computers we have had several 
changes in technology and characteristics of the computers but, in spite of these changes in technology, 
the advances in programming sciences, etc. all computers built in this country have the same architecture. 
There is only one architecture of computers up to this time. This architecture, first studied by von 
Newmann, has the program stored in memory and it works sequentially, one instruction at a time. 

We can classify the computers in very different ways and we might be interested to do it before we face 
the design. The first generation of computers is considered to be the one built with vacuum tubes, very 
simple, very hot, very large. The capabilities of these large first computers was very limited. There is a 
story, popularized by Radio Shack, that the SSEC computer (Selective Sequential Electronic Calculator) 
was used by astronomer Walter J. Eckert to compute the ephemeris for the planet Jupiter and the external 
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planets, taking 120 hours to do the job. A man will need in the order of 80 years to do the same job. A 
TRS-80 model I will do the same job in 11 hours and more modern personal computers will do it in 
under one hour. 

The first breakthrough in technology were the transistors. The transistor reduced the size and the heat 
dissipation of the computers. The only difference between the first and second generation of computers 
was that the switching device was the transistor instead of the vacuum tube. 

The third generation was brought by the integrated circuits. The transistor are solid state devices and it 
was discovered that they can be made smaller and smaller and can be put in packages to perform 
complex functions. This is the way the minicomputers appear. Computers that were smaller than the 
predecessors. There was no other difference between the first, second and third generation of computers. 

As the integrated circuit technology advanced, the capabilities of the computers increased. In the time of 
the transistors, a computer with 16 K of memory was a big computer. Memory was all magnetic cores. 
With the advent of integrated circuits, solid state memory was practical, using flip flops as storage 
device, and computers with large memory space started to appear. 

The fourth generation of computers was brought by the use of very large scale integration. Most of the 
devices that perform the functions of the computer are integrated into one or a few integrated circuits. 
Again, there is no substantial difference between computers from the first, second, third and fourth 
generation, other than size, heat, power consumption, etc. There is no change in architecture. 

The Japanese came a few years ago with the term "fifth generation" computers to represent advanced 
computers with more capabilities and speed than the current computers. This does not represent a 
technological breakthrough like the others that have been used to mark the different generations of 
computers. This does not represent either a change in the architecture. More than anything, the Japanese 
advocates a computer devoted to non-numeric computations, with advances specially in software. This 
computer will be called by us an intelligent computer but it does not represent a departure from the 
current type of computer. A real fifth generation computer would be a change in technology, like using 
optical switching devices instead of transistors. 

1.2.- Computer Classification. 

There is another way we can look at computers. Recall that all computers have the same architecture, the 
same structure. At the beginning all the computers were the same, big, hot, limited capabilities, so there 
was no problem. There was different names given to the different machines, but they all were computers. 
Now we have quite a variety of computers from the portable personal computer you can carry in your 
pocket to the large computers used by the military, that fill several racks. There are different names given 
to these computers creating large confusion. A manufacturer might call one of his products at the same 
time a microcomputer when he wants to emphasize its size or the fact that it is a single integrated circuit, 
or a super-minicomputer when he wants to emphasize its capabilities. We use these names with perfectly 
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defined meanings as follows: 

We call microcomputers those computers that are very simple, have very few resources and signals, used 
for single user, single task; the units are so cheap that it does not make sense to multiplex them; the speed 
is low and we measure it as the number of floating point additions per second; a microcomputer can 
perform in the order of 1000 flops. The instruction set is special, each instruction is specific for the 
particular resource. The input and output is done by ports; that is, we have a unit that is part of the 
computer that permits us to connect any peripheral we want to connect to the computer. Examples are the 
6502, the 6811, and similar units. 

We use the name of minicomputer to represent a more complex computer, with more resources, more 
signals, with limited capabilities for multitasking, the speed is about ten times higher, the instructions 
become primitive because the computer has more resources and we cannot devise one instruction for 
each operation with each resource; the input and output is also with ports. Examples are the 68000, the 
Z80, even the 8086. 

The main frame has more complexity because it has more resources, more signals; the purpose of the 
main frame is to do multitasking for many users. This does not mean that we cannot have a main frame 
performing a single task. Typical example is the IBM 370. The speed is about ten times higher, in the 
order of 100 KF, the instruction set is primitive, the input and output devices are connected directly to the 
bus. The reason is that this device is not mass produced and, in general, it is not possible to connect any 
peripheral to the computer. The manufacturer normally connects the peripherals. The VAX is some place 
in between the minicomputer and the main frame; it is called a super-minicomputer. 

Then, we have the super computer with many more resources and signals. A super computer is a special 
purpose computer, it is designed for a certain task; the speed is at least 10 MF, the instructions are again 
special since there is no general purpose super computer. The input and output is connected to the bus. 
An example of super computer is the CRAY. 

Finally, the non-numeric computer: the resources and signals are very complex, this computer can also 
be called intelligent computer. The use is special because the few ones that exist have been developed for 
a special project. In this country they are called LISP computers, in other countries they receive other 
names. The speed of these computers cannot be compared with the others because, although they can 
perform numerical operations, their main function is to perform non-numerical functions. The instruction 
set naturally is special and the input and output is connected to the bus. 

Now, it is interesting to see where we are, and what we will be doing in this course. We will be talking 
about the design of a computer where we will design everything, including the instruction set, normally 
starting from the functions to be performed. We will be then talking about minicomputers as a minimum, 
but more logically about main frames. 

An interesting comparison of several computers is done in the following table where the cost and speed 
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of widely different computers is tabulated with the resulting cost per megaflop in the last column. 

Comparison between Computers 

Computer Cost K$ Speed Mflop M$/Mflop 

Atari 1040 ST 1 .01 .01 

IBM PC, no math coprocessor 4 .00037 10.8 

IBM PC, with coprocessor 5 .0073 .68 

VAX 11/750 80 .057 1.4 

DEC KL-10 480 .18 2.7 

CDC 7600 4500 4.6 .98 

Cray 1S 11000 18.0 .61 

Cray XMP 15000 53.0 .28 

1.3.- Computer Elements 

The easiest way to look at the computer elements is to look at a block diagram of a very simplified 
computer. In this block diagram, like Fig 1.1, we find five basic elements of the computer: We have 
memory where the program and the data are stored, we have an element that permits us to enter 
information into the computer, we have an element that permits the computer to send information to the 
outside world, we have an element that permits the computer to manipulate and transform the 
information, and finally, an element that controls the operation of all the other elements. There can be 
more than one of each unit, with the exception of the control unit, that is unique. 

 

These elements have well defined names that we will use throughout the text. The first element, where 
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we store the program and the data, is called the memory; the second element, that permit us to input data 
into the computer, is called the input unit; the third element, that permits the computer to send data to the 
outside, is called the output unit; the element that permits manipulation and/or modification of the data is 
called the processing unit; and, finally the element that controls the operation of the computer is called 
the control unit. 

1.4.- The Procedure for Design. 

Designing a computer, or a specialized controller is not a trivial operation. It requires experience, 
intelligence and good engineering judgement. The design naturally starts with the definition of the 
function or functions to be performed by the unit, its requirements and limitations, its constraints, etc. 
From this information, the unit is catalogued as a controller, a computer controller, or a computer. This 
classification might have to be changed later when the design has advanced. This textbook will be 
concerned with the design of computers and computer controllers. 

Whether a computer or a computer controller, the functions and characteristics are transformed into 
instructions. In the case of a computer, this leads to an instruction set. In the case of a controller, the idea 
of instruction is not always clear. The elementary functions that the controller executes can be considered 
instructions. When the controller works with a computer, it receives instructions, commands and requests 
from the computer; these can be analyzed as the instructions in a computer. 

The design of the unit can be done in several ways and no organized method for design has yet evolved 
in industry. Most of the design is done intuitively today. It is time for this to change. This textbook 
presents a step by step procedure that, not only results in the proper design of the unit, but that has as a 
by-product that the microcode is produced without effort. The procedure presented in this textbook is 
based on the analysis of the instructions one by one, first from the point of view of the steps required for 
their execution, defining simultaneously the hardware and the microcode. Later, a timing analysis is done 
following the same procedure of instruction by instruction, which produces not only the minimum clock 
period, but identifies the bottlenecks, the places where improvement is possible, the places where the unit 
can be speed up by overlapping steps, etc. 

1.5.- Computer Design 

When talking about computer design it is necessary to distinguish between three expression that are very 
close together, so close that many people confuses them. These three expressions for the idea of 
computer design are: 

●     Designing with a computer as a tool; 
●     Designing with a computer as a part; 
●     Designing the computer itself. 

It should be clear that the term computer design is used for these three different ideas, and this is bad. 
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Designing with a computer as a tool is called computer design, but it really is computer aided design, and 
this is the proper term to use. This course does not cover computer aided design, which is the subject of 
other courses. 

When the term computer design is used to mean designing with a computer as a part, what we will be 
doing is designing a circuit or a system, of whatever complexity, but where one or several of the 
integrated circuits we will use, will be computers or controllers. In this case, we will need to follow the 
specifications of the manufacturer of the computer. By this we mean, we will need to learn the 
instruction set of the computer, the signals the computer puts out and requires from the system, the 
protocols for the different operations like memory accesses, interrupt handling, etc. We will also have to 
understand the timing constraints of the computer and design our system in such a way that these 
constraints are satisfied. 

Finally, designing the computer means that the designer will design every element of the unit; he does 
not have any rules or specifications to follow. The instruction set, the signals, the protocols, etc. have to 
be determined by the designer and he can do this without any restriction or constraint, except for his own 
design. The designer must select between many alternatives, many of them conflicting, based only on his 
own analyses and using his own criteria. 

The purpose of this course is to give the students an understanding of the principles of computer design, 
the problems the designer faces, the tools he has to obtain results, the extent of his freedom, the extent of 
his responsibilities, and how he should go about to get the desired results. 

The designer starts with an idea. The final result is a circuit diagram with devise selection, an instruction 
set, a timing analysis, a protocol of operation. 

The designer starts with an idea of what he wants to achieve, normally without knowing how that can be 
achieved. This idea can be in the form of performance, characteristics, main field of use, etc. 

Probably the first decision the designer makes is the bus size. Address space, data bus size, fields 
(program and data memory, system and user memories, single or multiuser, computation intensive, I/O 
intensive, etc.) 

The next decision will be the technology: VLSI, bit-slice, discrete logic, custom chips, will be selected 
normally based on previous experience and the decisions already made.or its execution are developed. 
These steps will indicate if additional hardware is needed and the microcode signals required. 

At this moment, several important decisions are made: if the additional hardware needed for the 
execution of an instruction seems excessive and that it will not be used for other instructions, the 
instruction could be deleted from the set, it might be modified, it might be replaced by similar 
instructions, or it might be accepted as it is. 
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The modification of one instruction might indicate the need to modify other instructions, whether 
because the added hardware permits to simplify their operation, or because the new instruction replaces 
the old one. Whether the procedure starts with simple instructions towards the complex ones, or from the 
complex to the simple, this possibility is always present. 

The analysis of the instructions, breaking down them into steps, analyzing the additional hardware 
needed and the signals from the microcode, produce the full circuit diagram, the full microcode, and a 
workable instruction set. 

The next step is the timing analysis of the instructions and their optimization. 

Each line of the microcode is analyzed for the time it requires, considering all the parallel paths through 
which signals must travel. The final time for each line is not necessarily the longest of all parallel paths. 
Optimization can be applied here by combining several separate short steps into one, by producing the 
proper signals at the proper time; or breaking a long step into several, to permit the other steps to run 
faster. 

Another possibility is the variation of the clock cycle in a line by line basis. It should be noted however, 
that there is a 6 to 11 nanoseconds penalty paid in the internal delay in the clock chip, for each change in 
clock frequency. Excessive use of this facility could then produce results that reduce the speed of the 
computer. 

The timing analysis is not the last step of the design but another step that will suggest changes in 
hardware, changes in the instruction set, or even changes in the basic ideas of what the computer is 
supposed to do. 

The purpose of this curse is then to introduce you to this problem and, by the way of examples, give you 
an idea of the methods for the solution. There is a very large number of details that will not be 
mentioned, because they belong to more advanced courses. 
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THE DESIGN OF COMPUTERS USING 
BIT-SLICE TECHNOLOGY

Michael E. Valdez, Ph.D., P.E.

SLICE # 2

Slices: 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9

THE CONTROL UNIT

2.1.- Control Unit Elements 
2.2.- Control Unit Operation 
2.3.- Sequential and Parallel Operation 
2.4.- Hardwired Logic 
2.5.- Microcoded Logic 
2.6.- Synchronous and Asynchronous Operation 
2.7.- The Bit-Slice Concept 

You are computer engineers, or you are trying to be computer engineers and, by now, you should know 
what is a computer engineer. A computer engineer designs computers so, we should study what is 
designing a computer. In other courses you have studied how to add memory to a computer, how to 
design interfaces, etc. but this is not designing a computer. In all the cases, an integrated circuit has been 
used as the control unit, the so called Central Processing Unit or CPU. Designing a computer is designing 
the control unit. Designing the control unit means defining the characteristics of the computer, its 
architecture, its instruction set, its capabilities, etc. 

Designing a computer is really the fun part of being a computer engineer; probably there are very few 
jobs a computer engineer can have that compare to the satisfaction produced by designing a computer. 

2.1.- Control Unit Elements. 

In order to design the control unit of a computer we have to know what is the control unit, what it does. 
First, let us start by analyzing what parts the control unit has to perform its functions. Any way we 
analyze it we get to the same elements. The control unit has to have memory to remember the instruction 
because the fundamental thing that the control unit does is to interpret the instruction. The control unit 
has to have some way of getting data from memory and sending data to memory; consequently it needs 
some way to generate the address of the memory location it must access. It needs to generate the signals 
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that will indicate to memory if it is a read or write operation. The control unit has to have the capability 
of performing all the functions that our computer performs. 

Now, what do we need?; we need first a program counter. Recall that we are talking only about 
sequential computers. When we design the control unit we will depart from this and then you will have a 
very good insight of what is a sequential computer. Normally we design the control unit as a non-
sequential computer, or as a semi-sequential computer. 

So, we need a program counter to keep track of where in memory is the program we are executing. We 
need some way to update and change the program counter, meaning that we need a way to increment the 
program counter; depending on the architecture we develop we increment by one, increment by two, or 
whatever number we need; but this is not enough, the program counter cannot be a counter that we send a 
clock when we want to increment it; we need ways for changing the program counter, ways to initialize 
the program counter, ways for getting the program counter and adding something like a part of the 
instruction for the relative branches, and put it back into the program counter; we need capabilities for 
doing arithmetic operations with the program counter. 

We need a register in which we store the instructions. Normally we call this register the instruction 
register. The instruction register is one of the interesting parts in which we depart from the sequential 
operation of the machine. Depending on how we develop our control unit, it is possible we need the 
opcode of the instruction only for a moment; consequently, we can gain speed in the operation of our 
machine by getting the next instruction opcode into the instruction register before the end of the previous 
instruction, in what is called pre-fetching. In this way, when the instruction is executed, the next 
instruction is ready to start execution as soon as possible. This general procedure is used very much in 
computer design and speeds up very much the operation of a computer. 

If our unit is synchronous, we need some way to synchronize all the parts, a clock. As we mentioned 
before, this clock is not necessarily constant frequency, because we can change the frequency, we can 
change the period every period. At the beginning of the period the control unit can tell the clock 
generator how long the period should last. This is one of the most interesting ways for speeding up a 
computer. Each clock lasts only as much as needed. 

Finally, we need logic to develop all the signals not only for outside the control unit but for the inside 
elements of the control unit. So, there we go again, as we mention briefly before, this logic is another 
computer. This is similar to one of those drawings where there are two mirrors and you see one them 
reflected in the other, to infinity. It is evident that we cannot go to infinity. We cannot develop the logic 
as another computer because this logic comes out exactly the same way we got to the control unit. So we 
have computer inside computer, inside computer, to infinity. There are two very important reasons why 
we cannot continue developing this way: the first is the fact that infinity is not an engineering term; the 
other is that such a solution will be too complex; so normally we stop here and we either develop the 
control unit as a computer or we develop the control unit as hardwired logic. 
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Normally, we do not divide the control unit this way but in another from the point of view of the parts we 
will use, the chips we will use. In this way of thought we have the clock. It is easier to put the clock 
generator in a chip, a device or system that will generate the clock as we need it. Then, the program 
controller, that will do everything we need with the program counter. This program controller has the 
ability to maintain the program counter, increment it, adding something to the program counter, 
initializing it by loading it from the outside, it will also have something we have not mentioned before, 
that is some way to save the program counter for the case we want to go temporarily to another location, 
in what is called a subroutine. The program controller needs then a stack and a stack pointer, to store the 
current value of the program counter. 

The control unit normally includes all the data processing units that the computer will have, as well as 
their control signals, which make another block. The control unit also has means for controlling memory, 
the memory address register, the read/write signal, the data input, etc. that, in general, can be considered 
to form another block. Another block is finally needed to control the operation of all the other blocks 
and, in this way, we are back into the problem mentioned above of the two parallel mirrors. 

Data paths connect the different elements inside and outside the control unit. We have to specify the data 
paths as elements because every data path needs some form of control; very few data paths are point to 
point that do not require control; in most cases data paths join the output of several registers to the inputs 
of several other registers, forming a complete bus. We need control on which unit drives the bus and 
which one receives the data. So, every data path needs control and that is why we should specify them. 

The control unit, in summary, fetches the opcode for the next instruction. It decodes and executes the 
instruction. It generates signals for the program controller, it generates signals for the data processor, the 
arithmetic logic unit or whatever other data processor we have; finally, it develops signals to control all 
the data paths, as well as signals for all the external units. 

2.2.- Control Unit Operation. 

The problem that we are considering now is how to design the control unit. Everything in the computer is 
sequential. The computer executes one instruction at a time. In order to perform a given instruction we 
divide the instruction into a series of steps. Normally the clock is divided into phases, one for each step 
of the instruction to be executed. Let us analyze the steps required to perform some simple operation. 
The first step is to put the program counter onto the address bus; for this purpose we connect the output 
of the program counter to the input of the address register and give a pulse: the content of the program 
counter will be latched onto the memory address register and that address appears in the address bus at 
the end of the clock; we need a signal that tells the memory that the operation is a read. Then, we need to 
do something to wait for memory. The previous steps are very short, we have some logic that selects the 
path and opens the path, there is a delay but it is only a few nanoseconds, 10 to 20 nanoseconds. The 
delay from the time the address is active until the memory has valid data in the data bus is a much longer 
delay; typical static memory takes in the order of 200 ns.; dynamic memory takes probably 120 ns. The 
memory delay is much longer than the delay in the logic. The way we wait for memory is one of the 
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design decision we must make. The delay to wait for the memory cycle can be developed for example 
counting five clock periods idle time every time the control unit accesses memory. At the end of this time 
the data bus is connected to the instruction register and a pulse is given to latch it. Then we increment the 
program counter probably with a pulse if it is a counter. If the program counter is not implemented as a 
counter we need to route it through the arithmetic logic unit to increment it. We need some way, 
depending of our decision, in which we decode the opcode. Decoding the opcode means either logic like 
in a PLA, or a computer that makes the decoding. In a PLA, the opcode mixed with the phases of the 
clock produce as output the different signals required through out the computer. 

At this moment we analyze the different steps of the instruction. Consider loading a register with the 
content of memory. We need to put the new value of the program counter into the memory address 
register, again say read, again count several clock cycles to give time for the memory to develop the data. 
We want the data to go to the bank of registers, the data goes to the input of the registers, we need to take 
the address of the register that is normally part of the instruction, and connected to the address input of 
the register bank, and we should tell the registers to write. We need to increment again the program 
counter, whatever way it is done, and finally we have to signal the end of the instruction and the fetch of 
the next one. 

So this is the execution of the instruction that in assembler language could be MOVE #N,R1. 

As a list, the steps for the FETCH of the next instruction are: 

●     Connect program counter output to memory address register input; 
●     Latch memory address register; 
●     Send memory read signal; 
●     Wait for memory ready; 
●     Connect memory data output to instruction register input; 
●     Latch instruction register; 
●     Increment program counter. 

The steps for the analysis of the instruction and execution phase, considering the instruction MOVE 
#N,R1, are in list form: 

●     Connect program counter output to memory address register input; 
●     Latch memory address register; 
●     Send memory read signal; 
●     Wait for memory ready; 
●     Connect memory data output to register bank data input; 
●     Connect instruction register output to register bank address input; 
●     Send register bank write signal; 
●     Increment program counter; 
●     Signal end of instruction. 
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2.3.- Sequential and Parallel Operation. 

Now we can start looking and how we perform the functions we need to perform. First, it is clear that 
there is nothing sacred about the order in which the different steps have been ordered. For example, the 
relative ordering of the read write signal becoming active with respect to the other signals is not that 
important, it can be changed. Probably more interesting is the fact that it is not necessary that each one of 
these operations is performed independently of each other. Nothing prevents us to connect the path from 
the program counter to the memory address register, and at the same time, connect the same signal to the 
clock input of the memory address register, and at the same time produce the read signal for memory, all 
in the same step. So, here we have a very simple example of the possibility of abandoning the sequential 
computer. You remember there are two main characteristics of what we call the von Newmann computer: 
one is that it has the program stored in memory and the other is that it executes instructions sequentially. 
All computers today are of this type. Now we are looking at the possibility of a computer that could 
perform functions in parallel. Many operations can be performed as the same time. It will be wasteful to 
use one clock period for each one of the operations we have described before. We should try to find all 
the operations that can be performed in parallel. So, this control unit is showing us one way of improving 
the computers of today, a mixture of sequential and parallel. It cannot be totally parallel because we 
cannot do everything at the same time; for example, we cannot perform two accesses to memory at the 
same time; we have to wait for the end of the first one and then do the second. So, we have to be careful 
about the selection of the steps, so we can have the maximum possible number of them in parallel. We 
will see how we end up with a very large parallelism. 

Another example of parallelism is putting the address to the register bank; the only condition is that 
before the data comes the address should be ready. Even from the beginning we can connect the address 
to the registers, any moment we want. It can even be directly hardwire if we do not need it for anything 
else. 

2.4.- Hardwired Logic. 

The original way to develop the control unit was to hardwire the logic. The idea is to develop a circuit. 
Let us look at this method so you have an idea. Imagine we have the instruction with 5 bits in the opcode. 
These five bits can go to a decoder that gives 32 outputs one for each opcode. We develop a table of 
steps and determine the maximum number of steps of any instruction. The clock then drives a counter 
and the outputs of the counter are connected to a decoder that gives a pulse for each one of the steps. 
Then, we analyze the required signals. When the clock is zero we need a certain path enabled. In this way 
we AND the clock and the opcode decoder signals and get a single signal. If we have several conditions 
where we need to enable the same path, we OR all the signals together to get the signal we apply to the 
path. In this way we develop all the signals that we need for every one of the instructions, for every 
clock, and then combine them together to form the output signals. You can imagine there are going to be 
quite a few of these signals. We can put them in a PLA. 

We engineers have the habit of testing our work after we finish it. But the problem is that when we check 
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our work we find ways to improve it and so, imagine we find we can shorten an instruction. How can we 
do it in this type of design? The problem of this method is that you have to re-design the whole thing. 
You have to change practically the whole PLA to make a little improvement. 

Engineers normally also do something else, we make mistakes. To correct a mistake in this type of 
design we have to re-design practically all the system, the whole PLA. At the beginning this was the only 
way to design the control unit. Now we have something else. Before we leave, it is good to ask us if there 
is any advantage in this type of design for the control unit. The advantage is that this is the fastest 
possible computer we can make. You have to realize that in this design there is no overhead, no wasted 
time. Every instruction executes as fast as possible. So, when we need to design the fastest possible 
control unit we have to use this design. 

2.5.- Microcoded Logic. 

Most of the time we do not want to pay the high price of the development of the control unit; so, what is 
the other alternative? The other alternative is to put a very simple and very fast computer to organize the 
operations of the control unit. This computer has an input from the outside world with the instruction 
register that goes through a ROM that gives the computer the address in its own memory where the 
execution of the instruction starts. The computer puts out this address and the special memory gives out 
the program for the computer. The computer executes the instructions one at a time, and every time it 
executes one instruction, the memory where the instructions are, has another part that is naturally 
selected at the same time than the program memory. This part produces all the signals we need all over 
the computer. We have in that memory one bit for every signal we need for the computer. For example, 
one bit can be the read/write signal to memory; this bit will be one when we need a one and a zero when 
we need a zero. Another bit can indicate the program counter to increment, and the same with all the 
other signals. This is what is called the microcode. This is a very bad name because it gives the idea that 
it is a program. This microcode is not a program, it is harware, as hardware as a PLA. The microcode 
cannot be considered a PLA although for each bit we develop a function of what we want out at every 
instant of time. It is more like a program memory and a PLA connected together, sharing inputs, so that 
what is address for the program memory are input values for the PLA. We talked about two very 
interesting things, mistakes and improvements. If we have to make a change the only thing we have to do 
is to change the bits in the ROM the way we need them. The ROM's are not that expensive. 

There is something that is important to understand and is that the microcode is not a program. This 
comes from the fact that the position of the bits does not mean anything. Is the same as with the gates. 
Imagine that when we design a system we determine to use gate 1, 2, 3 in our circuit. Imagine further 
that the moment we wire the unit we change our minds and we use gate 4, 5, 6 instead. This change will 
not change anything in our circuit. The same thing happens with the microcode. Which bit we use for a 
particular function does not matter as to the operation of the unit. The only thing that matters is what is 
stored in the ROM for that bit, whichever it is. It is to be noted that the microcode has two parts, one is a 
program, the program for the sequencer; the other part is the control part, that is not a program. The 
computer advances the addresses one by one in order, so the computer is normally called the sequencer, 
or the microcode sequencer. 
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2.6.- Synchronous and Asynchronous Operation. 

So, we have two possibilities for designing the control unit. For both of them we have a nasty problem 
that is probably the less appealing part of the design of a computer. This is the problem of finding out the 
time delay in the different paths. This permits us to select a clock frequency. We can also think of 
eliminating the clock completely and each signal is fed back to the counter, producing an increment after 
the proper delay to permit the propagation of the signals. That will be a very fast computer. This is what 
is called an asynchronous computer. For example, a timer is started any time the unit accesses memory, 
after the proper delay a signal is produced and sent back to the counter. Naturally, if we have several 
types of memory, we will need several timers to produce the delays. So this is a possibility. It is possible 
to work totally asynchronous. 

The advantages of this kind of work is that this is the fastest computer we can develop with a given 
architecture and physical devices. Note that this computer will work almost as fast as one with wired 
logic. There is nothing that is overhead, everything has been eliminated. The disadvantage is again, that 
this is very difficult to change, update, or correct. At the other end of the scale we have a computer where 
every step of the microcode takes the same length of time, in what is called the synchronous computer. 
We solve the problem the way it is solved in the microcomputers where the length of time is long enough 
so that every signal can propagate through its path. If you remember the 6502, all clocks are the same, 
one microsecond, so you can work with memory with access time up to 450 ns. If the memory takes 
longer than that, it simply cannot work, if the memory take less than that, the computer must wait idle. 
This is the other extreme. 

There are many different ways to work in between these two extremes. For example, we can have a clock 
period such that all internal operations are performed in this clock period but the clock period is not long 
enough for the external operations. The external operations are performed asynchronous by waiting for 
an acknowledge. This is the way the MC68000 works. The way to implement this is as follows: The 
sequencer has an input for the increment of the address counter. This signal can be the OR of a bit of the 
microcode and the acknowledge; when both signals are low the sequencer does not increment the 
program counter and waits in the same instruction. When the acknowledge comes the signal goes up and 
the sequencer advances. When it is not necessary to wait, the microcode bit is a one and the sequencer 
advances continuously. This will be a semi-synchronous computer. This speeds up the operation 
substantially but this is not the only thing we can do. Imagine that the microcode produces the data and it 
is latched in the pipeline register; after the data has been developed it has to go through the sequencer to 
develop the next instruction to be executed. This delay is not that long. On the other hand we have for 
example, a signal must go through memory, the delay will be much longer. So we have some paths 
where the delay is short and some paths where the delay is long. A way to work is to go through all the 
paths in our control unit and calculate the delay for each one of them. If we have a single clock period, it 
has to be equal to or longer than the longest delay in any path in the unit. Now, when we analyze the 
different steps, for each one we have to allot a time at least as long as the delay through the longest path 
in the step, not in the unit. It is possible, that we have several steps that take about the same time, others 
that group around another time, and so on. In this case, we could have a clock generator that produces 
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different periods, we can speed up the computer by developing some code from the microcode, some bits 
that are fed into the clock generator to determine the length of the clock for that particular microcycle. 

So we see that from the totally synchronous device to the totally asynchronous device we can have many 
intermediate possibilities. In general we will use a clock and we will develop some form of semi-
synchronous arrangement for our unit to get it to perform as fast as possible.ngest delay. So the only 
thing we have to do additionally to get some more speed from the computer is to group them and give the 
commands to the clock generator. Actually, the device we use for clock generator produces variable 
clock periods so the increase in speed is almost for free. The time analysis is one of the important parts of 
the design of a computer. Time analysis is a way you can speed up your computer but, more than 
anything, this is the way you can assure your computer will work. This problem is independent of the 
way you develop your hardware; depends only on the type of computer you are developing. Naturally, 
the difference in computations is large between a hardwired or a microcoded computer. 

There is a final point to mention and it is that if you have to develop a hardwired unit, you have at this 
time the necessary knowledge to do it. There is absolutely nothing there that you do not know. This is not 
true with the sequencer. This is another reason we will concentrate on the sequencer. 

The important point about the sequencer is that it is so simple that it is already designed and even in the 
case you do not use an integrated circuit as sequencer, the hardware of the sequencer is simple and it can 
be designed and built simply. 

2.7.- The Bit-slice Concept. 

There is one term we need to clarify, it is the term bit-slice. Bit-slice is not an architecture of computers, 
bit-slice is only a technology. Imagine we have the memory address register with 32 bits. We find that 
there is no register with 32 bits in the market, but only with 8 bits. We take four of these registers and use 
them for the memory address register. This is the concept of bit-slice. We do this everywhere in the 
computer. The arithmetic logic unit is developed as slices of four bits and we can put as many as we want 
to develop the word length we need. The same with the program controller and with all the difference 
devices. 

The advantage of the concept is that we have a very large family of devices developed for this purpose. 
These devices have inside ECL logic that is very fast, this logic is surrounded by TTL logic and when we 
use these devices, we see only the TTL logic. So from the outside is TTL, the driving power, etc. The 
inside has the speed of the ECL. The interesting part is that there is all kind of devices to build 
computers. Naturally, the power consumption is quite large, as in any TTL or ECL device. 
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THE DESIGN OF COMPUTERS USING 
BIT-SLICE TECHNOLOGY

Michael E. Valdez, Ph.D., P.E.

SLICE #3

Slices: 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9

THE MICROPROGRAM SEQUENCER

3.1.- The Am2910 Sequencer 
3.2.- The Instruction Set 
3.3.- Pipelining 
3.4.- Time Analysis 

The material we study in this Slice, is really the most important part of this course. We will be looking 
into the microsequencer unit and how to use it. We mentioned before, that the most important part of the 
design of a computer and the one that will take practically all our time, is the design of the control unit. 
We will concentrate on the design of the control unit using microcode, then we need to study the element 
that is called the sequencer. We already mentioned that the sequencer is really a computer by another 
name. There are several sequencers in the market today, we will study one of them, that is typical; we 
study the Am2910 microprogram sequencer. 

3.1. The Am2910 Sequencer. 

The sequencer is a computer. Please see Fig. 3.1 for a block diagram of the Am2910. Fig. 3.2 shows a 
normal connection of the Am2910 with all the devices that are normally required, the instruction register, 
the MAP ROM, the Vector register, the microcode ROM and the pipeline register. These elements are 
marked on the figure and will be studied later in this slice. 
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Fig 3-1

Fig 3-2

This computer has a register, a stack, a stack pointer, a zero detector to find out when the register 
becomes zero, in the center of the diagram we have a multiplexer that permits us to select the next 
program counter from four sources: the current program counter, the top of the stack, the content of the 
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register, or the outside. At the bottom of the block diagram we have the output tri-state devices that are 
not too useful in this chip because this output is normally connected to the ROM; this control is useful 
when we have another way to produce the address of the microprogram ROM; for example, if we want to 
develop a single cycle interrupt. To the left hand side of the diagram, we have the instruction PLA, the 
input pins to the PLA, the enable of the condition codes, CCEN, and the condition code input, CC. 

The program counter that is sent out, goes back through the incrementer, that adds to the program 
counter the content of pin CI; by putting zero in pin CI we can hold the sequencer executing the same 
instruction. This is useful for asynchronous devices when we hold the sequencer until a signal comes 
indicating the external device is ready. There are four sources for the next program counter: 

●     the previous program counter as stored in the microPC; 
●     the value sitting on the top of the stack; 
●     the value stored in the register/counter; and 
●     the value at the D input pins. 

The stack in this device operates in a different way that the memory stack in most computers. The most 
important characteristic is that the top of the stack is not destroyed when it is used; in this way, the top of 
the stack can be used for return to the begining of a loop, repeatedly until the loop is finished. This is 
very convenient for loops but creates the need to destroy explicitly the top of the stack when it is no 
longer needed. 

There is something else in that chip, that is three outputs one bit wide, that are called PL, MAP, and 
VECT; these bits are intented to enable one out of three devices feeding data into the Am2910 input D. 
This input is used to give the next program counter when the multiplexer is in D, or to the register, when 
we give a pulse to register load, RLD. The way this works is by using tri-state devices for the pipeline 
register (the output of the microprogram ROM), the output of the MAP ROM, and the register that 
contains or receives the vector for the interrupt. These devices are connected in parallel to the D input of 
the Am2910. As the microinstructions are executed the Am2910 produces signals to enable one of these 
three sources to produce the next program counter. This is the significance of the last column of the list 
of instructions. The signal PL, that enables the pipeline register can be considered as the normal state of 
the system. Naturally, it is possible to use these signals for other purposes. 

Pertinent to the discussion above, we should remember that the microcode has two parts: the 
microprogram and the microcontrol. The microprogram has two parts: the instruction and the address. 
The microcontrol has many bits depending on the signals that are needed in the rest of the computer. 

The conditions codes are quite interesting. The condition fails when CCEN=0 AND CC=1; the condition 
passes otherwise. So, we can make the condition pass by setting CCEN=1 or by making CC=0. To assure 
a fail we need to have CCEN=0 and at the same time, CC=1. So, it is easier to produce a pass than to 
produce a fail. 
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The input that is applied to the pin CC in general comes from a multiplexer whose select lines are 
connected to the pipeline register or to the instruction register. The CCEN could be from the pipeline 
register to force a pass or fail as required. It is clear that the multiplexer for the selection of the condition 
could have as many inputs as required. The condition codes comming from the arithmetic logic unit 
normally produce directly eight conditions when we consider only the set or reset of all the values; i.e., 
carry set, carry clear, zero, non-zero, etc. If we want to have more complex conditions, and when we 
want to have the possibility of forcing a zero or a one into the pin CC, then we need many more 
possibilities in the multiplexer. We also need the logic for developing the conditional equation we want 
to use. This is the case when we need relations like larger than, etc. 

Something that is always very good and nobody ever gets too much practice on it, is reading the 
specifications. There are three chips in the specifications: the Am2910, the Am2910-1, and the new 
Am2910A. Either one supports 100 ns per microinstruction. This means that it is possible to perform 10 
instructions per microsecond; this is pretty fast! It is very difficult to achieve this; normally you get from 
130 to 150 ns per instruction. What we are saying is that in a fast system, the chip can go at the rate of 
100 ns per microinstruction. 

The DC characteristics show that the device works with TTL levels. The big difference between the 
Am2910 and the Am2910A is that the later is built with the new IMOX technology that puts ECL inside 
the chip and TTL in the peripheral. On the other hand, the Am2910 and Am2910-1 are all TTL. 
Something interesting that you should consider is the last line, Icc, the power supply current, that is 
around 300 mA per chip. This can be compared with the NMOS microprocessors that take in the order of 
.5 mA. Of course, this devices can drive 10 TTL loads, while NMOS devices can only drive one. 

3.2.- The Instruction Set. 

The instruction set of the Am2910 is summarized in the following table. Note that the first column 
marked Reg refers to the conditions of the register that affect the outcome of the instruction; the second 
column marked Reg refers at the action taken with the content of the register. The condition fails when 
CCEN is low AND CC is high; the condition passes when CCEN is high OR CC is low. When the 
condition fails or passes, the sequencer puts in the outputs Y the value indicated under its column and the 
stack takes the action indicated under its column. The instructions are: 

Instr Name Description Reg Y Stack Fail Y Stack Pass Reg Enabl 

0 JMPZ Jump Zero x 0 clear 0 clear hold PL 

1 CJSB Cond JSB PL x PC hold D push hold PL 

2 JMAP Jump MAP x D hold D hold hold MAP 

3 CJPL Cond Jump PL x PC hold D hold hold PL 

4 PUSH Push/Cond Ld R x PC push PC push Note PL 
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5 CJSR Cond JSB R/PL x R push D push hold PL 

6 VECT Cond Jump Vect x PC hold D hold hold VECT 

7 JRPL Cond Jump R/PL x R hold D hold hold PL 

8 RLOP Repeat Loop <>0 F hold F hold dec PL 

. . R<>0 0 PC pop PC pop hold PL 

9 RLPL Repeat PL <>0 D hold D hold dec PL 

. . R<>0 0 PC hold PC hold hold PL 

10 CRET Cond Return x PC hold F pop hold PL 

11 CPOP Cond PL & Pop x PC hold D pop hold PL 

12 LOAD Load Counter x PC hold PC hold load PL 

13 TEOL Test End Loop x F hold PC pop hold PL 

14 CONT Continue x PC hold PC hold hold PL 

15 TWBR Three-way <>0 F hold PC pop dec PL 

. . Branch 0 D pop PC pop hold PL 

Note.- During the execution of instruction 4, PUSH, if the condition passes the register is held; if the 
condition fails the register is loaded from the D-inputs. 

Let us analyze the instruction set. We have 16 instructions and we need 4 bits. Most instructions are 
conditional. JMPZ, which jumps to zero (the next instruction is taken from microcode memory location 
0), and clears the stack, is not. This instruction is normally used for the end of the macroinstruction; the 
fetch procedure is put in location zero of the microcode and we end all macroinstructions by giving the 
microinstruction JMPZ. The advantage is that this is the only instruction that permits to jump without 
giving an address; all the other jump instructions require the address of where to jump. An address is 
twelve bits of microcode; we need these twelve bits the whole depth of the microcode ROM. twelve bits 
of microcode ROM is something to consider. Now, the instruction JMPZ has a side effect that should be 
considered and that is that the stack is cleared; that is, nothing can be passed through the stack. Since this 
is not too often done, there is not too much to worry. On the other hand, the register is held when this 
instruction is executed. 

Most of the instructions are conditional, the instruction 0, JMPZ, is not conditional, or better say, it has 
the same outcome whatever the condition. The instruction JMAP, number 2, has also the same outcome 
independently of the condition; this is the instruction that is used to load the address of the 
macroinstruction that should be executed, after the opcode has been mapped by the MAP ROM into the 
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address of the microcode ROM where the execution should start. So, the normal procedure is to produce 
the fetch of the instruction and to give the instruction JMAP. This instruction is very interesting because 
in many instructions we can find one step where the memory is not being used and we can fetch the next 
instruction; thus, when the computer finishes execution of the current instruction, the next one is ready in 
the instruction register, saving the time of the fetch. 

Going back to the instructions that are not conditional, we see that we have four where the condition does 
not change the operation but it changes if the register is loaded or not. In any case, the program counter 
that contains the address of the next microinstruction is pushed into the stack; if the condition passes, the 
register is loaded from the D input which is normally fed from the MAP ROM or the pipeline register. 

The final instruction that is not conditional is 14, CONT, that is an instruction to do nothing and execute 
the next microinstruction. This instruction does not change the stack or the register. The purpose of this 
instruction is to produce control signals we need for a microcycle. This is the most commonly used 
instruction when developing microcode for computers. 

There is another level of conditional instructions that depend on the value of the register. For example 8, 
RLOP, repeat loop as long as the register is not equal to zero. So you load the register with the number of 
times you want to do the loop and push into the stack the return address; like with instruction 4, PUSH. 
Using instruction 8, RLOP, if the value of the register is not zero, it decrements it and goes to the 
location indicated by the top of the stack. If the register is zero the sequencer executes the next 
instruction, and pops the stack, destroying the previous value. Instruction 9, RLPL, is similar but the next 
instruction at the end of the loop is taken from the input D rather than the stack. These two instructions 
provide us with the means to produce loops for executing a given process a fixed number of times. 

Note that the instruction that reads the stack does not change the stack pointer. The top of the stack is 
always available to the multiplexer in what is called F. This is a different way of operation of the stack 
than in a microprocessor, where a pop instruction takes the top of the stack and puts it some place; in a 
microprocessor there is not way to copy the top of the stack without modifying the stack pointer. Note 
that the way it is done in the Am2910 is very efficient, since we do not need to make any operation to 
read the top of the stack. 

The three-way branch is a instruction where we have three possibilities. If the register is not zero, it 
decrements the register; what happens after that depends on the condition code where it will go to the 
stack, F, if the condition fails and to the program counter if it passes. If the register is zero, the choises 
are different: it goes to the value presented in D if the condition fails or to the program counter if it 
passes. Something else to consider is that the stack is poped in all cases except when the register was not 
zero and the condition fails. So, this instruction provides us with the possibility of executing a loop for 
not more than N times, or until a certain condition is met. 

Now, with respect to the other instructions, we have the normal jump to subroutine with many 
possibilities. All of them are conditional. Instruction 1, conditional jump to subroutine to PL, gets the 
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address from the pipeline register and the jump happens if the condition test passes and the next 
instruction is executed if the condition fails. Instruction 5, CJSL, is a conditional jump to subroutine that 
is always executed; that it, the jump is taken any way, and the condition determines if the address comes 
from the pipeline register or from the register. 

We have the conditional return meaning that the computer takes the next address from the stack and pops 
it if the condition passes or from the program counter and leaves the stack alone. It does not return from 
the subroutine if the condition fails. 

We have several jumps, with the instruction 0, JMPZ, jump to location zero that was studied before, the 
instruction 2, JMAP, that was also studied before, the instruction 3, CJPL, that is a conditional jump PL, 
meaning that if the condition passes the next address comes from D, if not it is the current program 
counter. Instruction 6, VECT, is a conditional jump to vector, which jumps to the content of D and the 
signal VECT is active only if the condition passes; if the condition does not pass, then the instrucion is 
like a continue or no operation. This is the basic instruction to serve interrupts. The interrupt should 
make the condition pass and it is served by this instruction. The typical way to use the interrupt between 
macroinstructions is to test the interrupt as part of the fetch of the next instruction. Then, the fetch 
instruction is started with the instruction 6, VECT, conditional jump vector; so, if there is an interrupt, 
the interrupt is served; if there is no interrupt the fetch proceeds as normal. This is the interrupt at the 
macro level; later we will see how an interrupt could be produced at the microintruction level. Naturally, 
we pay for this capability by adding one micro instruction to every instruction. We have a jump R or PL, 
where the computer jumps one way or another, depending on the condition and finally, a conditional 
jump PL and pop, that, if the condition passes, the unit takes the next instruction from D and at the same 
time, pops the stack; that is, destroys the top of the stack and gets up the next value. This last instruction 
permits us to develop loops that run until an external condition is met. 

We have other instructions that are neither end of loops, jumps, or jumps to subroutines. Instruction 4, 
PUSH, pushes the stack and depending on the condition code it loads the counter or not. Instruction 12, 
LOAD, only loads the counter unconditionally and continues. Instruction 13, TEOL, tests the end of the 
loop, for the loops that do not depend on the counter; with this instruction the Am2910 tests the condition 
code, if the condition passes it ends the loop by poping (destroying) the stack and continuing execution; 
if the condition fails the Am2910 takes the address for the next instruction from the top of the stack. 
Finally, we saw that instruction 14, CONT, is a do nothing instruction that is useful when the important 
part of the microcode is the control part instead of the microprogram. 

3.3.- Pipelining. 

This is a very important concept that we need to analyze. Imagine we have a hardware loop formed by 
combinatorial logic. The only restriction is that there is no storage device. Imagine that some how, 
turning the circuit ON for example, we put a pulse in this loop. Even in the case of lose of energy, the 
gates restore energy into the circuit and the pulse propagates through the loop forever. How long it takes 
to perform a cycle in the loop will depend on the total delay on all the combinatorial logic. 
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This is not too useful but introduces us to the subject. Imagine we open the loop and put a register. This 
register has a clock input and when we give a pulse to the clock, it latches the data from the inputs to the 
outputs. There is a small delay from the clock to the outputs stable. Since the external logic is 
combinatorial, the output data starts propagating immediatelly through the loop until finally gets back to 
the input of the register. The basic question is how often we can give the clock? It is clear that we cannot 
give the second clock until we have given enough time for the signal to propagate through the whole loop 
from the outputs to the inputs of the flip-flop. If that is the clock of the computer, this clock determines 
how fast the computer can work. 

The fundamental way to speed up the computer is what is called pipeline. What we do is to break the 
loop we have by installing another register, ideally at the point where the propagation time is half of the 
total. If we have a second register, the signal that is latched in the first register has to propagate only to 
the inputs of the second register; the data that is latched in the second register will propagate at the same 
time to the input of the first register. What we are doing is speeding up the computer by performing two 
operations at the same time. These two operations could be two steps of the same instruction or two 
separate instructions. In this way the clock can go almost at twice the previous frequency. It is important 
to note that now it takes longer to go around the loop, because of the delays introduced by the registers, 
but this does not have any effect on the operation of the unit. 

This process could be continued as far as practical. If there are other positions where it is practical to 
break the loop, we can pipeline more and in that way, we can have more parts of an instruction executing 
simultaneously, in parallel. It is interesting to note that this is not the way the normal macrocomputer 
works; we have mention before the normal computer is a sequential machine that performs one step at a 
time. 

There is a limit to this pipelining process and the limit is that it must be possible to partition the 
instruction into steps that can be performed at the same time. There are very natural situations where we 
can break the loop in parts and is when the loops are simple; there are others situations where the 
resources mix into different loops and then we must be careful before cutting the loops for pipelining. 

There is another case where pipelining has trouble, and it is the problem of the conditions; that is, the 
function the next instruction will perform depends on the outcome of the previous instruction, and that 
outcome is not known until very late in the execution of the instruction. In this case, it might be 
necessary to destroy the data in the pipeline and start over from the beginning. 

On the other hand, if a sequence of instruction is independent of each other, we could pipeline them very 
much to the extent that the net time for the execution of each instruction becomes only one period of the 
clock driving the microsequencer. 

This shows us that the advantages of pipelining have a limit, as normal. Register to register instructions 
can be overlapped very much, when the next instruction is the proper instruction. Imagine a sequence of 
ADD register to register instruction, they can be packed very much as long as the registers used are 
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different or in the right order. But now imagine that we add the content of several register to the same 
register; in this case it is not possible to perform the second ADD until the first one has ended. 

Imagine also that the second instruction is a branch on condition, as in the case of a multiple precision 
ADD, then this instruction cannot be executed until the end of the ADD. The problem is that the 
computer has to go and test the next instruction in relation with the current instruction, to see if it is 
possible to pipeline it or not. This test takes time and, in general, slows down the normal operations of 
the instructions. If what we gain by pipelining is less that what we have to pay for the tests, then it is not 
logical to do it. 

What is easy and in many cases there is no problem, is overlapping the steps of the instructions. The 
difference is very important. When we design a computer we define and set forever the steps of the 
microinstructions. On the other hand, the user of the unit has the freedom of inserting instruction in any 
order he wants, that in general we cannot foresee. Then, the overlapping of microsteps requires only that 
we see if the next microstep can be overlapped or not. 

One very typical example is the execution of the fetch for the next instruction. We can go, instruction by 
instruction, and find a moment when the address and data buses are not used to access memory and load 
the next instruction into the instruction register. In this way, the moment the instruction under execution 
ends, we can start with the next. Since the fetch takes at least two microinstructions or steps, the savings 
can be substantial, in the long run. 

In the circuit of the sequencer there are typical places for establishing pipelining and are at the output of 
the microcode ROM, so the next address can be propagating while we execute the current step; the 
instruction register mentioned above; and sometimes the output of the MAP ROM. 

In the memory circuit there are several places where we can establish pipelining and is in the address 
lines using what is called the memory address register, in the data lines, whether for storage into the 
memory or for reading memory. These last registers require analysis of the special conditions of the 
design. 

The other side of the coin is when we are forced for some reason to use a device that is slow; for 
example, using a slow ROM for the microcode. In this case, it is easy to realize that the slow ROM will 
control the frequency of the clock and then it does not pay to spend a lot of time trying to develop 
pipeline in other parts of the circuit since, at the end, the circuit will be waiting for the clock. Remember 
that pipelining is not done for free; there is some analysis to make before developing pipelining and this 
analysis should be made where there are reasonably expectations that we will succeed. 

A final note about pipelining is to recall your attention to the fact that there are two possible ways to 
implement the control unit of a computer: one is hardwired and the other is microcoded. There is a big 
difference between the two in the possibilities for pipelining. In the hardwired version it is very difficult 
to develop meaningful pipelining inside the control unit. Pipelining can only be develop outside, in the 
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memory circuit for example, but in the control unit is difficult. This creates an idea that although the 
hardwired unit is intrinsically faster than the microcoded unit, by using all the possibilities of pipelining 
in the microcoded unit, we could make it work faster than the hardwired one. The advantages of design 
and maintenance of the microcoded unit will then be a dominant factor for chosing this design. 

Normally, it is considered that there are three standard places for pipelining, the instruction register, the 
memory address register, and the memory data register, and there are classifications of the architectures 
with respect to this point. From the point of view of the internal loop of the control unit, these three 
places are with respect to the microcode ROM. These two loops are not independent of each other, so the 
definitions get blured and are not that useful. 

3.4.- Time Analysis. 

When we design a control unit, a moment comes when we have to define the clock period. At this 
moment we perform two very important functions, one is the definition of the period of the clock, 
whether synchronous or asynchronous, and at the same time, we perform a very complete checking of 
our design. The reason is that in order to compute the period of the clock we have to look through all the 
possible data paths in the circuit and compute the time delay in each one of them. At this moment, you 
have enough experience in designing (probably more than you realize), and given a set of specifications 
you can put blocks together to perform the functions that are required. Once you get that on paper, the 
problem comes of how to know if the unit works and how it works. When designing microcontrolled 
units we have a basic tool that is the time analysis, or the delay analysis. 

What we do is to go through our design and mark all the possible paths for the propagation of the data; 
especially those that belong to the pipelines. We should look at all the places where data or control 
signals are latched, to analyze where they have to go before we can use them. The analysis of these paths 
will provide us with the period of the clock, among other things. The mechanics of doing it is to get 
many copies of the diagram (the block diagram is enough) and mark on them the different paths, one on 
each copy. 

Let us look at the simple block diagram of the sequencer, as shown on Fig. 3.3, and see what loops we 
have. We have the instruction for the sequencer comming from the pipeline register, to the Am2910, 
passes through it to the Y output, then through the microcode ROM, and the pipeline register where it 
latches. This is then a closed loop. 

file:///F|/Write/My%20Page/BitSlice/Slice 3.html (10 of 12) [5/24/2003 10:53:35 AM]



Slice 3 - The Microprogram Sequencer 

Fig 3-3

Another loop is from the pipeline register through the condition code multiplexer, through the Am2910, 
through the Y output, to the microcode ROM and ending in the pipeline register. None of these loops 
have any pipelining. They affect directly the clock. 

Another loop is for the address of the next instruction. The loop starts in the pipeline register, goes to the 
Am2910 through the D input to the Y output, to the microcode ROM and the pipeline register, again 
without any pipelining. 

We have to analyze paths like the vector in which we have to assume that the condition code for the 
interrupt passes and the Am2910 goes to read the vector. After recognizing the instruction and testing the 
condition code, the Am2910 produces the signal VECT; the vector address comes from the register to the 
D input, to the Y output of the Am2910, to the microcode ROM and to the pipeline register. 

The instruction MAP is similar. The Am2910 receives the instruction from the pipeline register, produces 
the signal MAP, the content of the Instruction register is driving the MAP ROM so we have to consider 
only the delay in the ROM from the moment the output is enabled until the value goes to the D input of 
the Am2910, to the Y output, to the microcode ROM and ending at the inputs of the pipeline register. 

There is another loop that is of interest, this is the loop that involves memory. Consider the following 
path: from the pipeline register a signal goes to the memory address register, ordering it to latch; the 
value at its inputs is stored there and propagates into the memory devices as an address for the 
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instruction, the data output from the memory propagates to the input of the instruction register, where it 
is latched. The content of this register propagates as an address into the Map ROM and then, with the 
instruction MAP, the data output from this ROM propagates into the 2910, entering through the D-inputs 
and going out through the Y-outputs; this output is used by the microcode ROM as an address and the 
data outputs from the microcode ROM go to the input of the pipeline register, where it is latched, closing 
the loop. 

In order to make this analysis we use the data the manufacturer gives us as switching characteristics. The 
Am2910 has tables where the composite delay from input to output has been combined into a single 
value. This is done for commercial and military units, for each one of the devices. 

The same can be obtained for all the different devices we use in our system, using the data sheets of the 
manufacturers of the devices. By adding the time delay around the loops we get the total delay on each 
path. The value we obtain gives us a measure of the quality of our design, the advisability of trying 
improvements, etc. We will get into details later. 
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THE DESIGN OF COMPUTERS USING 
BIT-SLICE TECHNOLOGY

Michael E. Valdez, Ph.D., P.E.

Slice # 4

Slices: 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9

USING THE SEQUENCER

4.1.- Straight Code and Overlapping 
4.2.- Subroutines and Nesting 
4.3.- The Use of Loops 
4.4.- Nesting Conditional Loops 
4.5.- Nesting Counting Loops 
4.6.- Alternatives 
4.7.- Other Devices 

This slice is devoted to the analysis of the use of the sequencer to perform functions, how the operations 
are analyzed and the micro code produced, how the additional hardware is identified. We will mainly be 
concerned with the use of the Am2910 but some alternatives will be studied in the final paragraphs of the 
slice. More of these alternatives will be studied while solving later examples that refer to a computer and 
when we analyze other devices that are available in the market. 

4.1- Straight Code and Overlapping. 

The simplest case to study is when the code we need is only straight, without loops, subroutines or any 
possibility of overlapping. We will study the case of the typical fetch of an instruction in a computer. We 
saw in another slice that the fetch requires the following steps: 

●     Transfer the content of the program counter to the Memory Address Register; 
●     Signal memory read; 
●     Wait for memory; 
●     Transfer the data out from memory into the Instruction Register; 
●     Increment the program counter. 

At this moment we assume we have the hardware described in previous slice, figure 3.2. That circuit 
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does not show any program counter, memory address register, or any memory; it does show the 
instruction register. With the addition of these elements, the circuit becomes Fig 4.1, where we have 
already added data paths required for the transfers mentioned above. The circuit also shows as black dots 
the points where special signals are required, signals that is our responsibility to generate. Let us face this 
problem. 

Fig 3-2
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Fig 4-1

The transfer of the content of the program counter to the memory address register requires to enable the 
output of the program counter and to signal the memory address register to latch the data on the bus. In 
the simple circuit of Fig 4.1 we do not need to do anything with the bus, since there is a single bus. It is 
possible in other cases, that it will be necessary to enable a path through a complex bus. The signal to 
indicate to memory that the operation is a read has already been mentioned. Since the speed of memory 
is much slower than the speed of the registers, we need some way to wait for memory to be ready. 
Finally we need to enable the output of memory into the bus and signal the instruction register to latch 
what is present at its inputs. One point that is important is that when we mention signals, we assume that 
all the signals we do not mention as active, are inactive. For example, the signal that enables the output 
of the program counter is active only while it is needed; in the next step we do not say anything about it, 
so it is inactive. This is a general rule we will use in all our descriptions. 

So we see that although our problem is simple, when we analyze it, it becomes more complex; the steps 
really needed for the fetch of an instruction are then, considering what we have just said: 

●     Enable the output of the program counter; 
●     Signal the memory address register to latch; 
●     Signal memory for read; 
●     Wait for memory; 
●     Enable memory output; 
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●     Signal instruction register to latch; 
●     Signal the program counter to increment. 

Let us look at how we can generate these signals to produce the effect we want. Imagine that, following 
normal practice, we put the fetch at location zero of the micro code read only memory. We should recall 
that the micro code read only memory has two parts, the micro code program and the signals. In the part 
of the signals we need bits for the enable of the output of the program counter, to latch the memory 
address register, to signal the memory it is a read, to enable the output of memory, to latch in the 
instruction register, to increment the program counter. So we make a table with a heading as follows: 

# Am2910 Signals 

. Inst Adr Program Counter Mem Add Reg Memory Ins Reg 

. . . Output Increm Latch R/w Output Latch 

. . . . . . . . . 

We will be filling this table as we develop the micro code. We will also add more columns as we find the 
need for more signals. At this moment, filling this table is straight forward. We will assume for the 
moment, that a 1 makes the signal active and a blank makes it inactive. Let us start with the signals and 
we end up with: 

# Am2910 Signals 

. Inst Adr Program Counter Mem Add Reg Memory Ins Reg 

. . . Output Increm Latch R/w Output Latch 

0 . . 1 . . . . . 

1 . . 1 . 1 . . . 

2 . . . . . R . . 

3 . . . . . R . . 

4 . . . . . R 1 . 

5 . . . . . R 1 1 

6 . . . 1 . . . . 

It should be obvious by now, that this list of instructions has many superfluous steps that are really not 
needed. The idea is to emphasize this point. For example, step #0 is not needed, at the same time the 
output is enabled we tell the memory address register to latch. The reason is simple, the output of the 
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program counter is enabled for the full cycle because it is activated by a level; then there is time for the 
data to come out to the pins, propagate through the wires to the input of the memory address register and 
into the memory address register ready to be latched. The latch operation on the other hand is activated 
by a transition; that is, we use a register that is edge triggered and that will latch in the negative transition 
of the signal, or at the end of the cycle. This will be true for all the latch operation that we will consider. 

Steps 2, 3, and 4 are required to give time to the memory the develop the data but step 5 is not really 
required, data could be latched at the end of step 4 with an edge triggered register in the instruction 
register, as explained above. 

Step 6 requires a separate paragraph because it is a totally different problem. Here we have the need to 
increment the program counter and we did it at the end of our instruction. The program counter is not 
needed after step 1, consequently, we could increment it at any moment we want. When we increment 
the program counter, we do not need any of the resources that are being used for the other operations. So, 
the logical thing to do, is to use the time while the memory is developing its data to increment the 
program counter. Notice that this operation is also edge triggered, and consequently can be put with step 
1. More on this later. 

After we make the modifications indicated above and renumbering the steps, our micro code ends up 
being: 

# Am2910 Signals 

. Inst Adr Program Counter Mem Add Reg Memory Ins Reg 

. . . Output Increm Latch R/w Output Latch 

0 CONT . 1 1 1 . . . 

1 CONT . . . . R . . 

2 CONT . . . . R . . 

3 CONT . . . . R 1 1 

4 MAP . . . . . . . 

So, this simple example has permitted us to see how we develop the micro code, practically without any 
effort, how we optimize the code by paralleling operation and by overlapping independent operations. 

One final point to indicate, and that produces a lot of problems, is that during part of step 1 the program 
counter is incrementing, and it cannot be used for a while; for the same reasons, the memory address 
register latches at the end of step 0 and during the beginning of step 1 the output of the register changes 
from the old value to the new one. Since this new value is the address of memory, memory does not 
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receive the new address until the outputs of the memory address register have settled to the new value. 
We will see this point in more detail when we talk about timing but you have to keep this idea in mind.ry 
and uses it as an address for the micro code read only memory. These instructions have been added to the 
table above. The reason for the empty line in step 4 is similar to what was said before about the memory 
address register, the instruction register only latches the data from memory at the end of step 3 because it 
is an edge triggered device, consequently, if we put MAP in step 3, the Am2910 will be using the output 
of the MAP read only memory produced by the old content of the instruction register; that is, the unit 
will be executing the previous instruction. We will talk about this later. Notice that this micro code 
assumes we have a MAP read only memory that is very fast, much faster than the period of the clock. If 
this is not the case, we will need a wait step, as for memory. 

Something else to note is the location of the instructions for the Am2910. The instruction MAP for 
example in step 3 will not indicate that the operations indicated by that line are performed with the new 
address. What we put in the column of the instruction for the Am2910 affects the NEXT instruction that 
will be performed. Notice that when the signal to latch is sent to the output register of the micro code, the 
instruction MAP goes to the instruction input of the Am2910; this instruction is being executed and, at 
the end, the Am2910 will send to the micro code read only memory the address received from the MAP 
read only memory. The next step in the micro code will not be then from the next sequential address but 
from the new address. 

4.2.- Subroutines and Nesting. 

The students are familiar with the basic idea of the subroutines. The Am2910 also permits to perform 
subroutines at the micro code level. We have only one instruction for the jump to subroutine. 

Instruction # 5, CJSB, is a conditional jump to subroutine; what is selected by the condition is the source 
of the address in the micro code read only memory where the sequencer will jump, if the condition fails 
next address comes from the internal register R; if the condition passes the next address comes from the 
input D, which is normally connected to the output of the micro code read only memory. One variation of 
this instruction could be to use the output of the MAP read only memory if the condition passes, with the 
system executing the next instruction if the condition passes, or the subroutine pointed to by R if it fails. 
Naturally, pass and fail are relative terms. 

The return from subroutine is also performed by only one instruction which is also conditional. In this 
case the condition determines if the return is taken or not; if the condition passes the return is taken and if 
the condition fails the program continues in the next sequential address. This is instruction # 10. Return, 
in this case, means that next address is taken from the top of the stack and this value is destroyed by 
changing the stack pointer. 

One common problem with subroutines, and its basic advantage, is nesting. It is possible to call a 
subroutine from inside another. The Am2910 permits nesting to a level of 17, which is quite deep for 
normal operations. If you consider that the stack is also used for loops, this depth means 17 nested calls 
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to subroutines and loops in total. The real truth of the matter is that subroutines are not used too much in 
micro programming and seldom the level of nesting will be a problem. Nesting of loops creates another 
problem that will be discussed later. 

One of the considerations in the use of subroutines is that most of the time the address where to jump 
comes from the micro code read only memory. This requires 12 bits of micro code read only memory, for 
the whole depth of the read only memory. In a complex operation, that is when subroutines become 
valuable, this represents a large increase in the size of the micro code read only memory. 

4.3.- The Use of Loops. 

The loop is probably the most powerful construct for micro code. We call a loop when certain code is 
repeated until a condition is met. The Am2910 has a powerful set of instructions for performing loops. 
There are several types of loops; the most important are counting loops and conditional loops. That is, 
the loop is performed a fixed number of times, like when you put seven buckets of water into a tank. The 
other type of loop, the conditional loop, is until a certain condition is met; for example, when you put 
water into a tank until it is full. There is a third type of loop where the operations are performed a certain 
number of times unless a certain condition is met; for example, you put seven buckets of water into a 
tank, unless the tank gets full. 

The basic instruction to start counting loops is instruction # 4, PUSH, push and conditional load R. 
During the execution of this instruction the value of the current program counter is pushed into the stack; 
that is, becomes the top of the stack. If the condition passes the value in the auxiliary register is held; if 
the condition fails the auxiliary register is loaded from the D input to the Am2910. As we mention 
before, this input normally comes from the output of the micro code read only memory and thus, it is part 
of the micro code. 

We have another instruction to load the auxiliary register, instruction # 12, LOAD, that loads the register 
unconditionally. Note that this instruction does not pushes the program counter into the stack. 

The Am2910 has several instructions for the end of the loop. Instruction # 8, RLOP, is the basic 
instruction for the counting loop, it is repeat if R is not zero. The Am2910 tests the register with the 
included logic and if the value in the register is not zero, it decrements the register and takes the next 
address from the top of the stack. As we said before, this operation does not destroy the top of the stack. 
If the register has zero, it pops the stack destroying its top value, and takes the next address from the 
program counter. The conditional input does not affect the outcome of this instruction. This is then useful 
when the loop must be completed a fixed number of times. 

Instruction # 9, RLPC, works very similarly. The only difference is that if the register is not zero, it take 
the next address from the D input, i.e., the output of the micro code read only memory instead of the 
stack. Recall the instruction that permits you to initiate a loop without pushing the current address in the 
stack. 
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Instruction # 13, TEOL, test end of loop, is included to permit us to develop loops that end with a 
condition. If the condition fails the loop is repeated getting the next address from the top of the stack; if 
the condition passes, the stack is popped and the next instruction is taken from the program counter. 

Finally, instruction # 15, TWBR, is provided to permit us the perform loops of the unless type. It 
provides us with a three ways branch. If the register is not zero, it is decremented, if the condition fails 
the loop is executed from the top of the stack; if the condition passes the loop is stopped, the stack 
popped, and the next instruction is taken from the program counter. If the register contains zero, the stack 
is popped any way and, if the condition fails the next instruction is taken from the D input, if the 
condition passes, the next address is taken from the program counter. 

4.4.- Nesting Conditional Loops. 

The problem of nesting conditional loops is not as easy as the nesting of subroutines. The general criteria 
for nesting loops, as with subroutines, is that the inner loop must finish first before the outer one can 
proceed. There are few problems in the case of conditional loops. Imagine for example, that we are 
receiving data from a keyboard at the micro code level. The outer loop receives a value and some 
hardware logic tests if the received value is a carriage return (hexa D), for example. This condition is 
introduced into the condition code. During the execution of this loop, we need another conditional loop, 
that will wait for the keyboard active. In this loop, the test for the keyboard will be repeated until the 
active signal from the keyboard makes the condition pass. During the execution of this internal loop, the 
status signal from the keyboard is connected to the condition code. Let us analyze in more detail this 
problem. 

The hardware we need involves the basic circuit for the sequencer plus the circuit to connect the 
keyboard, the circuit to detect the carriage return and the multiplexer for the condition code. We also 
need memory and a memory address register that can be incremented and loaded. All these elements and 
their connections are shown on Fig 4.2. 
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Fig 4-2

The micro code we need for this part of the work will come out as we analyze the functions that will be 
performed. We start by latching in the memory address register the initial address where we want to store 
the data coming from the keyboard. The second instruction then pushes the program counter into the 
stack with the instruction 4, PUSH. Note that although we do not need to load the register, we do not 
have an instruction to push the program counter without storing the register. If we want to be sure that 
the register is not destroyed, we need to control the condition code enable bit to force the instruction into 
not loading the register. We could use one of the jumps to subroutine but we will need to fake the 
address, which is even worst. 

Our next operation is to perform the loop that waits for the keyboard. This, again, requires to push the 
program counter into the stack with instruction 4, PUSH. The next instruction is the end of this loop with 
instruction 13, TEOL. Note that during the execution of this instruction we need to move the condition 
code multiplexer to the side of the status from the keyboard. 

When we end the inner loop, we read the keyboard that we do by enabling the keyboard output. Note the 
active signals to store the data and to increment the memory address register at the end of the cycle. Then 
we are ready to test the end of loop with instruction 13, TEOL, but our code requires that we switch the 
multiplexer to the side of the logic that detects a carriage return. The micro code is then as follows: 
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# Am2910 Keybrd CC Memory Add Memory 

. Inst Adr Out Mux Load Inc Write 

11 CONT . . . 1 . . 

12 Push . . P . . . 

13 Push . . P . . . 

14 EOL . . K . . . 

15 CONT . 1 . . 1 1 

16 EOL . . C . . . 

There is another way in which the same functions can be performed, that is using a subroutine for the 
waiting for the keyboard but this really does not change the procedure presented above, only the form is 
different. 

It is clear then that in general, nesting conditional loops will require control of the multiplexer,both when 
we store the program counter into the stack to start the loop, and when we test the condition at the end of 
the loop. 

4.5.- Nesting Counting Loops. 

Counting loops cannot be nested with another counting loop, simply because the Am2910 has only one 
auxiliary register to perform the count. Naturally, one counting loop could be nested with several 
conditional loops in any order, without any problem. The limitation is that we can have only one loop 
using the register. Another possibility is to convert all of the counting loops minus one into conditional 
loops. This can be done externally in counters that can be loaded and decremented under the control of 
the micro code. The overflow of the counters are sent to the condition code multiplexer and the micro 
code selects the appropriate one at every step. This might be necessary for the design of controllers. 

One type of loop that can be solved as a counting loop but that there are other types of solutions, is the 
timing loop. Many times, specially in controllers, it is necessary for the unit to wait for a certain time. 
This can be done with a timing loop, if the waiting time is within the range of the 12 bits of the register. 

Another solution that does not require the use of the register, is to have a loadable counter under the 
control of the micro code. The counter can be loaded from the pipeline register and will decrement every 
clock. The overflow of the counter is connected to the CI input of the Am2910. In this way, once the 
counter has been loaded, the Am2910 remains executing the same instruction while the counter 
decrements (or increments). When the counter overflows, the Am2910 increments its program counter 
and the loop ends. Other arrangements of this type could be produced. 
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The three way loop is only a counting loop that ends in a three way branch and has three possible 
outcomes depending on the condition and on the counting. You should note that the end of the count 
ends the loop but that the outcome depends on the condition. 

4.6.- Alternatives. 

The problem we will face now is a typical engineering problem. We have studied the Am2910 and it 
seems to be a very nice device for a sequencer. It has many capabilities and variations and permits us a 
great flexibility in the design. The question is: Do we really need it? 

To try to get an answer to this question we must consider all the angles. The Am2910 gives quite a lot of 
flexibility for the generation of loops, subroutines, etc. If we need this flexibility, then it is natural to use 
it. Compare this condition with the analysis of the fetch in a computer controller. In this case, the 
sequencer only produces the next address until it is known that the fetch has ended, when it loads the 
next address from the MAP read only memory into the program counter. 

It is clear that these functions could be performed by a counter, say a 74LS193 to mention one, that has a 
clear input, an increment function and a load function. So, in a normal computer environment, especially 
of the reduced instruction set computer variety, the sequencer needs three instructions from the repertoire 
of the Am2910: JMPZ, CONT, JMAP. JMPZ means that the next value of the micro program counter is 
zero and it is executed by activating, with a bit from the micro code, the clear of the counter. Another bit 
of the micro code can be used to activate the count up of the counter, thus incrementing it and produce 
the next address in sequence, executing the instruction CONT. Finally, by using another bit of the micro 
code to activate the load function of the counter it is possible to execute the function JMAP, where the 
output of the MAP read only memory is loaded into the micro program counter. 

So, in the case of a normal computer we could replace the Am2910 with a counter. In a computer we will 
need to implement the conditional operations. This requires external logic to develop the condition and, 
in the case of the counter, the external logic can include bits from the micro code to activate or deactivate 
the condition. In this way, when executing a conditional instruction, if the condition is satisfied the signal 
becomes a load and if the condition is not satisfied the signal becomes and increment. 

What we need to study now is if there is any advantage of doing this in a practical design. First, we 
should consider the cost. The cost of the Am2910 is not that large and probably it will be little advantage, 
if any, in replacing it with a counter, the conditional logic, and probably a register to hold the return 
address. From this consideration alone, a complex set of conditions will tilt the balance in favor of the 
Am2910 and away from discrete logic. 

Cost is not the only consideration of an engineering design. When designing computers, speed is a very 
important consideration. The delay in a Am2910 is something to be considered. A device cannot perform 
such complex function without some logical complexity. Although the Am2910 is built with very fast 
ECL logic inside (and a shell of TTL logic), the delay in the chip is on the order of 40 ns. with a 
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minimum clock period of 50 ns. Equivalent values for military devices are 46 and 51 ns. Considering the 
use of fast devices around the Am2910 we end up with a period for the clock in the order of 100 ns., 
minimum. This says that any system we build using the Am2910 has a maximum clock period of 10 
Mhz, regardless of how fast the other devices can go. 

The speed developed above will be computed in more detail later when we develop methods for time 
analysis but it matches the analysis made in the Advanced Micro Devices book, page 5-178. The final 
meaning of this number is that we cannot develop a system that runs faster than 10 micro instructions per 
micro second. Since a normal macro instruction in a computer takes from 6 to 10 micro instructions, 
including the fetch, this means we cannot develop a computer that runs faster than say, a million 
instructions per second. 

At this moment we need to go back to the thoughts we had when we first started. We said "with so many 
good integrated computers in the market, why design another one?". The speed we got above is slower 
than the 68000 and much slower than the 68020. So, our device could be better implemented using a 
68000 or 68020 as the case may be. 

That is the reason why we mention the discrete logic solution. If this is our problem, we have of the shelf 
counters that work at 100 Mhz, with the addition of faster read only memory's that are coming to the 
market, faster logical devices, we could develop a system where the sequencer runs at 50 ns. 

Note that everything we have been saying is the basic speed of the computer. Later we will apply 
pipelining, overlapping, factoring, and all the tricks in the book, and our 50 ns. could be lowered by a 
substantial factor that can be as large as 5. Incidentally, the problem solved in the Advanced Micro 
Devices book, page 5-178 is one that permits many of these tricks or speed up procedures to be used. 
Then, a computer that executes micro instructions at a rate of 10 or 20 Mhz is not illogical. 

4.7.- Other Devices. 

Advanced Micro Devices offers other sequencers with various characteristics: the Am2909 and Am2911 
are four-bit cascadable sequencers; the Am29331 is a 16-bit sequencer; the Am 29540 is a special 
sequencer to produce the addresses for the FFT computation. 
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THE ARITHMETIC LOGIC UNIT

5.1.- The Arithmetic Logic Unit 
5.2.- The Two-Port Memory 
5.3.- Shifts and Rolls 
5.4.- The Instruction Set 
5.5.- Applications of the Arithmetic Logic Unit 
5.6.- The Ripple Carry and Carry Look Ahead 
5.7.- The Am2902, Carry Look Ahead Generator 
5.8.- The Am2904, Multifunction Device 
5.9.- A Controller Example with the Am2901 
5.10.- A Computer Example with the Am2901 
5.11.- Other Devices 

Every computer needs some device or devices to perform operations on or with the data. The most 
common of these devices is what has become to be known as the arithmetic logic unit, that performs 
arithmetic operations (add, subtract), as well as logical operations (AND, OR, EXOR, shift, rotate). Other 
devices provide either the capabilities for performing multiply and divide in micro code, or provide these 
operations in hardware. 

Naturally, the operations that can be performed with the data are not limited to mathematical 
manipulations and non-mathematical operations are becoming more common, like operations on strings of 
characters, filtering, etc. 

5.1.- The Arithmetic Logic Unit. 

The core of any computer is always the arithmetic logic unit, to the extent that Advanced Micro Devices 
calls microcomputers to all the bit-slices for arithmetic logic units. Let us start with the Am2901, which is 
the initial device. This device has gone through a series of modifications that have produced a better, faster 
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and cheaper device; the perfect modification. In this way we have the Am2901, Am2901A, Am2901B, and 
now the Am2901C. 

The Am2901 is a complex device, it can be used for many applications. It is a 4-bit slice that can be 
cascaded to any length. The arithmetic logic unit in the Am2901 is an eight function unit. The function is 
selected through the instruction pins of the device. 

Fig. 5-1 shows a block diagram of the Am2901 with its most important elements and pins. Please refer to 
this figure in the descriptions that follow. 

Fig 5-1

5.2.- The Two-Port Memory. 

There is a block of 16 registers that is a two-port memory. This means that every memory location can be 
accessed through two ports. The block of registers has two memory address inputs and two data outputs. 
The content of the memory location addresses through address A comes out to data output port A, and the 
same with B. These ports are latched, so it is not necessary to hold the address but for one clock. The 
address inputs are 4-bit wide and all the devices are paralleled; the data is 4-bit wide and they are cascaded 
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from device to device. The two addresses can be equal or different without any restrictions. This is very 
useful to speed up the register to register operations that become a one cycle operations. The input to the 
memory is only through the B port. That is, the B port is always the destination register.e Q and/or in 
memory. 

5.3.- Shifts and Rolls. 

The Am2901 has shifters in the input of the memory. The shifter is only a three position multiplexer that 
in one position connects the bits in their proper location; in another position it connects each bit to the next 
lower bit location; and in the third position it connects each bit to the next higher location. So, by selecting 
the position of the multiplexer we can shift up or down one bit. The higher bit of each device goes to a pin 
to be connected to the next higher device and the same with the lower bit. This permit us to shift longer 
words. The Q register has also a shifter in the input. When we shift Q, we shift both Q and memory, but 
memory can be shifted alone. 

More complex shifts require multiplexers outside the device. Imagine we want to roll; we need some way 
of connecting the higher bit out of the most significative device into the lower bit of the the least 
significative device. All the other higher bits are connected permanently to the lower bits of the next 
higher device. If we only need to roll in both directions, a permanent connection is enough because the 
pins are bidirectional. The problem is when we want to roll sometimes and sometimes to shift; when we 
shift we might want to put a zero or a one into the bit that is vacated. We may also want to put the content 
of the carry into this bit. Another possibility is to copy the sign bit, for arithmetic shifts. We need a 
multiplexer into the low input of the lower device and in the high input of the upper device. This change 
does not solve all the problems because we cannot shift or roll in the direction opposite of the multiplexer; 
so we need another multiplexer at each end. These two multiplexers provide for the different possibilities 
of rolls and shifts, arithmetic and logical shift, as well as different types of signed numbers. We need 
similar multiplexers for memory and the Q register. 

The Am2901 gives all the necessary status bits that are connected to the Am2904 or a status register, for 
storage. The Am2904 provides for the possibility to preserve the status of the machine at the micro code 
level, saving the status at each micro code instruction, and the machine status at each instruction. The 
Am2904 permits us to load one or the other when we need it. 

5.4.- The Instruction Set. 

The easiest way to understand the instruction set of the Am2901 is to divide the instruction into three 
fields: The source of the operands, the operations, and the destination. Each one of these fields has three 
bits so there are eight choices for each one of them. 

0 A and Q 

1 A and B 
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2 0 and Q 

3 0 and B 

4 0 and A 

5 D and A 

6 D and Q 

7 D and 0 

where A and B are the outputs from ports A and B of the register block, Q is the auxiliary register, D is the 
input from the data bus, and 0 is the value zero applied to the input. The left value is connected to the input 
R and the right value to the input S of the arithmetic logic unit. 

The operations provided in this device are selected by the second field, and are: 

0 R Plus S 

1 S Minus R 

2 R Minus S 

3 R OR S 

4 R AND S 

5 R* AND S 

6 R EXOR S 

7 R EXNOR S 

where the * is used to indicate complement. Note that the source of operand does not permit all the 
choices; for example we only have connections from A to R and B to S. Other connections will be 
necessary only in the case of subtraction but, for subtraction we have R-S and S-R. So we are covered. 

The eight choices for the destination can be divided into shifted and unshifted instructions. The 
instructions are: 

0 F connected to register Q and Y 

1 F is not stored and F connected to Y 

2 F connected to register B and A to Y 
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3 F connected to register B and Y 

4 F shifted down connected to B and Q, and F to Y 

5 F shifted down connected to B, and F to Y 

6 F shifted up connected to B and Q, and F to Y 

7 F shifted up connected to B, and F to Y 

where B is the register addressed by port B, Q is the auxiliary register, Y is the output to the data bus and F 
is the output of the arithmetic logic unit, the result of whatever operation was performed. 

There is a pin for a signal that enables the output of the arithmetic logic unit and connects it to the data 
bus; this is important because the arithmetic logic unit is only one of the units that will be connected to the 
data bus. 

5.5.- Applications of the Arithmetic Logic Unit. 

In order to use any of the arithmetic logic unit it is necessary to have a number of control bits and/or 
multiplexers to route the signals that we need. 

First, we need to produce the addresses for the registers that will be used in the operation, if any. This 
depends on the operation and on the application. In certain circumstances this addresses come both, or one, 
from the micro code, like in the case of internal operations required by the computer; in other 
circumstances they come from the instruction itself, like in the case of register to register instructions; in 
other circumstances we may have fixed values that are used very much and that are hard wired. In most 
cases we need multiplexers at the input of the addresses to the memory bank to select the proper source for 
the address, if not the address itself. Note that it is possible to have operations where no register is 
involved, like when we read a value first into Q and then we add this value to another coming from the 
data bus, like in a memory to memory operation. 

The second point is the selection of the source. Most of the time this value comes from the micro code, but 
it is not necessary that this is always so. We could device a unit where this value is responsibility of the 
programmer and it comes from the instruction. This is done very seldom because it complicates the work 
of the programmer, who needs to understand the operation of the unit. In this case, we will need a 
multiplexer at the input of these bits, to be able to control the arithmetic logic unit from the instruction and 
from the micro code. 

Then it comes the selection of the operation to be performed. It is more common here to leave it at the 
discretion of the programmer, to save micro code. There are two distinct possibilities: one is that all the 
arithmetic logic unit instructions have a special piece of micro code and then, the operation, and the whole 
arithmetic logic unit, is always controlled by the micro code. This calls for a long micro code because we 
need at least the eight operations to be independently coded. The other solution is to devote three bits of 
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the instruction to indicate the operation and have a multiplexer to route these three bits into the operation 
selection pins of the arithmetic logic unit. Naturally, the sources must also be controlled some how, which 
complicates the matter. Notice that the operation to be performed depends on the selection of inputs. 
Leaving whole flexibility to the programmer will make the computer very complex to use, as mentioned 
above. If we leave full flexibility to the programmer, he will probably curtail this flexibility when writing 
the operating system by using only a few of the options. The design can be simplified if the superfluous 
options are not presented to the programmer. 

This problem naturally does not exist in the case of controllers where there is no programmer in the sense 
of user. The micro code contains all the necessary information and the user has only very limited 
selections. 

The selection of the destination is also complex and in most cases will be done by the micro code. The 
comments presented above also apply to this input. Naturally, we could develop a computer where all 
inputs to the arithmetic logic unit come from the instruction. This will give full use of the hardware to the 
user but, as mentioned above, we force the user to learn how the hardware works and how to use it. Very 
seldom this is justified. 

The arithmetic logic unit will also need a signal to control the output when we want to drive the bus. Note 
that in the description above, certain instruction put values in Y, when we say 'connected to Y'; this means 
only that the value is available at output Y, not that is connected to the bus. We need to explicitly enable 
the output of the device to connect Y to the bus. 

All the other connections to the arithmetic logic unit are normally hard wired, like the interconnections to 
cascade the devices to a larger word, or through multiplexers, like when we wish to have roll and shifts. 

In order to cascade several devices we need to connect every RAM0 pin to the RAM3 pin of the device 
below, every Q0 pin to the Q3 pin of the device below, we need to connect in parallel all the addresses to 
the memory bank, the instruction pins, the output enable. 

The arithmetic logic unit also provides status bits that indicate the status after each operation. The sign bit 
is taken only from the pin F3 of the most significative device; the zero bit is taken by connecting together 
all the F=0 pins of all the devices, with a pull up resistor (these outputs are open collector). The carry and 
overflow outputs come from the most significative device. The carry output of each device is hard wired to 
the carry input to the next higher device. More about this in next paragraph. 

5.6.- The Ripple Carry and Carry Look Ahead. 

One of the problems of cascading arithmetic logic unit devices is that the output of the system depends of 
the total operation of all the devices, when arithmetic operations are performed. The reason is that during 
arithmetic operations the output of each bit depends not only of the inputs (the operands) but on the results 
of the operation with all the less significative bits. Imagine a 32 bit adder formed by cascading eight 
arithmetic logic unit devices. In order to get the result we need to wait for the least significative device to 
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produce its results, the carry of this device is applied to the next higher order, then we wait for this device 
to produce its output, and in this way until all the devices have produced valid output. This is what is 
called ripple carry, because the carry ripples through the devices until it get to the most significative one. 
Only then the result is valid. If we consider that the delay from memory address to carry output is 59 ns 
and that from carry input to carry output is 20 ns, the whole operation takes 59 + 7 * 20 = 199 ns. 

When using large words, the time it takes to perform arithmetic operations with ripple carry is too long 
and the solution simple enough that should be used. The idea is to use the procedure of carry look ahead. It 
is possible to compute what the carry of a four bit operation is going to be, without waiting for the end of 
the operation. In a larger word, we divide the word in nibbles and compute the P (carry propagate bit) and 
the G (carry generate bit) and, by combining them we can generate the final carry, and all the intermediate 
ones, with very low delay, and while the other devices are computing the sum or difference. This is the 
function of the Am2902 we will study next. 

5.7.- The Am2902, Carry Look Ahead. 

The Am2902 is a small device that provides high speed carry look ahead for the Am2901 and similar 
devices. Fig. 5-2 shows the circuit diagram of this device. The Am2902 can handle up to four arithmetic 
logic units, or 16 bit data words with Am2901's. 
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Fig 5-2

The principle behind the carry look ahead is that given the bits of an addition and the carry input to the 
least significative bit, it is possible to compute all the carries with two-level logic. Normally this is done in 
another way, to permit cascading of the slices. 

Two signals are generated in each slice, the carry generate and the carry propagate. Consider the case of 
one-bit addition. If any of the bits of the addition is a one, and the other is a zero, then the carry input to 
the addition will propagate to the output. If both bits are a one, a carry will be generated at that stage, 
regardless of the value of the carry in. The equations to develop the carry generate and carry propagate 
signals for a four-bit stage can be derived similarly. 

The Am2902 combines the P and G bits from all the 4-bit devices that are cascaded and it generates the 
intermediate carry input for all the devices, as well as the final carry for the operation. As mentioned 
before, the difference is time. The maximum delay in the Am2902 is on the order of 14 ns; the maximum 
delay in the Am2901 is on the order of 40 ns for the generation of the G and P signals, and we have to add 
22 ns for the final stage. This gives us 76 ns for the whole operation with 16 bits. 

In the case of 32-bit operations, we need to have one Am2902 for each half of the word (each 16 bits), and 
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another one to propagate the carry between the two, which gives us an additional 14 ns of delay, to a total 
of 90 ns, instead of 199 we had before. Naturally, the carry propagation between the two halves could be 
done by simple ripple, at a delay penalty. 

This device does not need any control and, once connected into the circuit provides the carries without 
further consideration. As we saw above, the only consideration needed is during the design, to provide for 
sufficient delay for the operation. 

5.8.- The Am2904 Multi Function Device. 

The Am2904 is one of the many auxiliary device offered by Advanced Micro Devices. This one is an 
auxiliary device for the arithmetic logic unit. It can be used with any arithmetic logic unit device that does 
not have the functions provided by this device. It can also be used independently as a status register and 
condition code generation. A glance at the block diagram gives an idea of the many functions this device 
performs. The main functions can be classified as status preservation, condition code generation, carry 
generation, and shift/roll multiplexer. 

This device provides two status registers that are intended to be used as micro status register and machine 
status register. In this use, the micro status register represents the status of the unit at each micro cycle, 
while the machine status register will represent the status of the unit at each machine instruction. 
Naturally, for these registers to represent anything, they must be loaded at the proper times. 

Since this device has so many functions, controlling it is not that simple. Further more, a given 
combination of bits produces several different effects on the different parts of the device that all or some 
could be made active by a set of enable bits. The designer has to deal with a large number of bits, 17 in all, 
that he has to provide for the device to work properly. These bits can be divided into several groups. We 
will start with the instructions bits. 

The instruction has thirteen bits that we can separate into three fields, bits 0 to 5 for the status registers, 
among other functions, bits 6 to 10 for the shift multiplexer, and bits 11 and 12 for the carry multiplexer. 
We start with bits 0 to 5, that can be written as two octal numbers. The meanings are as follows, breaking 
them in groups: 

Micro Status Register 

10 Clear the zero bit; 
11 Set the zero bit; 
12 Clear the carry bit; 
13 Set the carry bit; 
14 Clear the sign bit; 
15 Set the sign bit; 
16 Clear the overflow bit; 
17 Set the overflow bit. 
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For the whole register 

00 Move Machine to micro status register; 
01 Set all bits of micro status register; 
10 Swap the two status registers; 
11 Clear all bit of micro status register. 

Load the micro status register 

06, or 07, Load register from the inputs I (that are normally connected to the status outputs from the 
arithmetic logic unit), ORing the old overflow with the new one to preserve the overflow bit; 
30, 31, 50, 51, 70, or 71, Load the micro status register from the inputs I, but with the carry 
inverted; 
04, 05, 20 to 27, 32 to 47, 52 to 67, 72 to 77, Load the micro status register from the inputs I, as 
they are. 

Now, the machine status register: 

00 Load machine status register from Y, which is a bidirectional set of pins that is normally 
connected to the data bus; 
01 Set the machine status register; 
02 Register swap as mentioned above; 
03 Clear the machine status register; 
05 Invert all bits of the machine status register. 

Note that these operations are performed at the same time of the previous ones; for example, an instruction 
zero transfers the machine status register to the micro status register and loads the machine status register 
from the bus (Y). The same with all others. Naturally, we should be very careful when using this device in 
order to get the results we want. 

Load operations with the machine status register: 

04 Load for shift through overflow operation; that is, the zero and negative bits are loaded from the 
I input (which is normally connected to the arithmetic logic unit) and the overflow and carry bits 
are swapped; 
10, 11, 30, 31, 50, 51, 70, or 71 produce a load with carry inverted; that is, all the bits are loaded 
from the I input except that the carry is inverted; 
06, 07, 12 to 27, 32 to 47, 52 to 67, 72 to 77, load the machine status register from the I inputs. 

Again, these operations are cumulative to those mentioned previously for the micro status register. Note 
also that the result of one of the instructions depend also of the enable bits and this is the way we control 
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the loading into one of the registers without affecting the other. 

The operation of the Y output is controlled by one bit that is the output enable and by bits 5 and 4 of the 
instruction. If the output enable is high the output is high impedance independently of the value of the 
instruction bits; if bits 0 to 5 of the instruction are all low, then Y is an input regardless of the output 
enable bit; if only I5 is low, the micro status register is sent to Y; if I5 is high, there are two possibilities 
controlled by I4; if I4 is low the machine status register is sent to the output Y; if I4 is high, the input I is 
connected to the output Y. 

The condition code output bit is controlled by all six bits of the instruction as described by Table 5.1 
copied from the Advanced Micro Devices book. The different conditions for the shift multiplexer are 
displayed on Table 5.2 from the same source. Notice that I6 to I10 are devoted to this multiplexer. 

Finally, the carry in multiplexer, whose output is connected to the carry in of the least significative device 
of the arithmetic logic unit is controlled as follows: 

If I12 is zero, bit 11 is copied into the carry output independently of any other bit of the instruction. 
If I12 is a one we have the following possibilities: 

If I11 is a zero, the carry input is transferred to the carry output; 
If I11 is a 1: 

If I5 is a zero, the carry from the micro status register is sent out, except when I3=1, 
I2=0 and I1=0 when the carry inverted is sent out; 
If I5 is a one, the carry from the machine status register is sent out except when I3=1, 
I2=0 and I1=0 when the carry inverted is sent out. 

The Am2904 has the following enable pins, that must be supplied from the micro code, or hard wired as 
desired. Individual enable pins for each one of the four bits of the machine status register and one pin that 
enables all four bits. The operation is these pins is as follows: if the pin CEM is low, then the other bits 
control the loading of the corresponding status bits; if pin CEM is high, the machine status register cannot 
be changed, regardless of the value of the other pins. There is only one pin to enable or disable the micro 
status register. There is one pin SE to enable (when low) the shift multiplexer. There is one pin, OEY to 
enable when low, the input/output pins Y. There is one pin CEct that enables when low the output of the 
condition codes. 

5.9.- A Controller Example with the Am2901. 

In this section we will develop an example for the use of the Am2901 in a computer controller. We will 
assume that the system is as configured in Fig. 5-3, with an Am2910 as sequencer, an Am2901 as 
arithmetic logic unit. We will study the development of the micro code for this system to perform a 
definite function. 
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Fig 5-3

The problem we will consider will be that the device is receiving six-bit data values, from a analog to 
digital converter, for example. These values must be stored in successive memory locations and, at the 
same time, it is necessary to count the number of samples in the block, to terminate the operation, and to 
add the values so an average can be computed after the operation is completed. 

One good way to start this type of work, is by developing the headings for the micro code. In the part of 
the circuit including the Am2910 we need the following: We need four bits for the instruction for the 
Am2910, twelve bits for the next address, if any, one bit to load the address in the memory address 
register, (we assume that the initial address for the memory address register is hardwired at the inputs of 
the register, recall this is a controller), one bit to increment this register, we need two bits for the 
read/write signal and the output enable to memory, one bit to enable the output of the digital to analog 
converter that also initiates the next conversion. So, this part of the micro code will look like: 

# Am2910 Memory Addr Mem D/A 

 Inst Adr Load Incr R/W Ena 

        

For the part of the circuit that includes the Am2901 we assume that the register address has a multiplexer 
that, in one position puts the same hardwired address in both inputs and that is controlled by one bit of the 
micro code. We need nine bits of micro code to control the instruction to the Am2901 and one more bit for 
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controlling the output. This part of the micro code will look like this: 

# Reg Am2901 Instruction 2901 

 Mux Sour Oper Dest Out 

       

Now, we follow the same procedure as before, analyzing the operations that are required and, as we do it, 
the micro code and any modification to the hardware will become evident. 

Our operation starts by producing a dummy enable to the D/A converter, so it starts working; then, we 
need to load the initial address into the memory address register; finally, we need to initialize the register 
of the Am2910 to count the number of values to be received. Since our word is 16 bits long and the data is 
6 bits long, we could receive up to 4000 values without concern for overflow. Since this value could be 
accommodated in the Am2910 register, we will use a counting loop as studied before. In cases of a larger 
number of samples and/or with more bits, we will need to provide for multiple precision addition and 
counting. We leave these variations as an exercise for the students. Note that in this case, it will be 
necessary to put the address of the registers from the micro code. 

Going back to the development of the micro code, we note that all three operations can be produced 
simultaneously by the following line: 

# Am2910 Mem Addr Mem D/A Reg 2901 Instruct 2901 

 Inst Adrs Load Incr R/W Ena Mux Sour Oper Dest Out 

 CONT CONT  LOAD   E      

The next operation is to prepare for the loop by loading the Am2910 register counter. We will assume we 
have a register hardwired with the value to load. There is no reason why loading the register cannot be 
done at the same time as the previous operations, so we change the CONT for the Am2910 into a PUSH, 
push the program counter and load the register. Recall the conditional characteristic of this instruction. If 
no conditional instruction is required for the Am2910, this input could be hard wired; if not, it should be 
controlled from the micro code. 

The loop is not too difficult. Enabling the digital to analog converter puts the data on the bus. Memory is 
commanded to write and, at the end of the cycle, the memory address register is incremented. At the same 
time, the value on the data bus is added to the register whose address is hardwired in the multiplexers and 
the result stored back into the same register. 

At this moment it becomes clear that we need one more operation of initialization, that is to clear the 
register. Let us do this first. Clearing the register of the arithmetic logic unit can be done at the same time 
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as the rest of the initialization. In order to do this, we select the register multiplexer to H for hardwired, we 
select the source A,0, the operation is an AND and the destination is B. So, now the first line of our code 
looks like this: 

# Am2910 Mem Addr Mem D/A Reg 2901 Instruct 2901 

 Inst Adr Load Incr R/W Ena Mux Sour Oper Dest Out 

 PUSH  LOAD   E H A,0 AND B   

Note that we do not need to say anything about the memory R/W because the default state is read but 
output disabled; the memory address register does not need to increment and the output of the Am2901 
should be disabled. Note also that we are performing four different operations in parallel, at the same time. 
This is one of the important advantages of designing a controller as a micro coded device, instead of a 
computer. Recall what was said in the previous slice with respect to speed. Although the speed of this 
controller might be similar to a computer, since we can perform many operations simultaneously, the 
performance is much larger. In a computer controlling this operation we will need to perform each 
initialization part as a separate string of instructions, that will be performed sequentially. Let us think 
about this, considering the 68000 mentioned before. The enable of the D/A converter requires a read 
operation; the loading of the pointer to the location when we want to store the data requires another 
instruction; the preparation for the loop requires another instruction to load into a data register the count 
we want to perform; clearing one of the data registers as accumulator requires another instruction; 
consequently, executing the initialization with a 68000 will require a minimum of four instructions. 

After the initialization, we have the loop as explained above. This can be done with the second line of the 
code as shown below. The final line of the code is the end of the loop, that waits for the register to become 
zero. The micro code for this operation is then: 

# Am2910 Mem Addr Mem D/A Reg 2901 Instruct 2901 

 Inst Adr Load Incr R/W Ena Mux Sour Oper Dest Out 

 PUSH  LOAD   E H A,0 AND B   

 CONT   INCR W E H D,A ADD B   

 RFCT            

One interesting question that is left for the students to answer is if the last two instructions can be 
combined into one; that is, if the RFCT can be sent to the Am2910 at the same time the other operations 
are performed. 

An additional point to consider is that the enable for the digital to analog converter is in general a pulse 
and, if we use the bit from the micro code, this will no be a pulse, especially if the change indicated above 
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is made. Then, it is necessary to AND (or OR) the bit of the micro code with a signal derived from the 
clock, to convert it into a pulse. 

5.10.- A Computer Example with the Am2901. 

We will study now developing the micro code for an example of a computer, some kind of a minimal 
computer using the Am2910 as micro program sequencer and the Am2901 as arithmetic logic unit, register 
bank, program counter, stack pointer, etc. 

Fig. 5-4 shows the circuit diagram for this unit. Notice that we always need to analyze the specifications in 
order to develop a block diagram of the unit, which is the starting point of our development. Recall that we 
mention in the Introduction that one of the purposes of this text book is to develop an organized procedure 
for the design of computers. 

Fig 5-4

The second step of our design is to analyze the requirements and the block diagram, to come up with a set 
of instructions. A very common mistake at this point is to try to develop the whole set of instructions as 
one operation. This normally leads to a series of mistakes and, what is worst, that since the decision has 
been made of developing this set of instructions, the mistakes are cast in concrete and cannot be corrected. 
The best way to proceed to the design of a computer is, as mentioned above, to develop a block diagram 
and study the instructions one by one, adding them as it becomes evident that they are required. 
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The first logical step is to develop the micro code for the fetch and to be sure that the hardware can 
perform this operation. This will be the limit of this example and we will leave as an exercise for the 
students, the development of the other instructions they feel are necessary. 

We have already developed micro code for other examples and the procedure we followed has given us 
good results; this procedure was to break the instruction into elementary steps, develop the heading for the 
micro code we consider we will need, develop the signals required for the execution of the steps without 
regard to optimization, and only then, go back and look at the whole thing and see where we can parallel 
operations, where we can overlap, pipeline, etc. As you gain experience in this enterprise, you will see the 
paralleling and overlapping as you develop the signals and merge these two steps to a certain extend. It is 
always wise to go back and analyze the whole code for fine tuning. This should be done as a minimum 
twice, once at the end of each instruction and second after all instructions have been developed. 

We have looked at the fetch several times already, but this time we have different steps because of the 
hardware is different. The steps of the fetch are now: 

1.  Select the program counter address for both the address input A and B of the Am2901; 
2.  Select a 1 for the carry input of the Am2901; 
3.  Instruct the Am2901 to use A and 0 as source; 
4.  Instruct the Am2901 to perform an ADD; 
5.  Instruct the Am2901 to send input A to Y and store F in B; 
6.  Enable the output of the Am2901 into the data bus; 
7.  Instruct the memory address register to latch the data on the data bus; 
8.  Instruct memory to read; 
9.  Wait for memory to develop the data; 

10.  Enable the output from memory into the data bus; 
11.  Instruct the instruction register to latch. 

Note that steps 1 to 6 not only take the program counter out of the Am2901 but also increment it and put it 
back in place. The rest of the steps are similar to what we have done before. 

Now we need to think in the hardware. We need a multiplexer in the address input of the register bank so 
we can put the address of the program counter, and in other opportunities other values. Another possibility 
is to leave these address as always given from the micro code. Since we have already worked with 
multiplexers, this time we will use the micro code as the only source for addresses. The memory address 
register input must come from the data bus and all the other elements are as shown. 

In the micro code we need the bits for the program for the Am2910, one bit to command the instruction 
register to latch, eight bits for the address of the registers of the Am2901, nine bits for the instruction, one 
for the output enable, and several for the carry input multiplexer. We need one bit to command the 
memory address register to latch, one more for memory read/write, and one for memory output enable. 
Then, our micro code have the following headings: 

file:///F|/Write/My%20Page/BitSlice/Slice 5.html (16 of 18) [5/24/2003 10:53:39 AM]



Slice 5 - The Arithmetic Logic Unit 

# Am2910 IR Am2901 Memory 

 Inst Adr Ld RegA RegB Sour Oper Dest OE C MAR R/W OE 

               

As an exercise we will fill the micro code directly from the list of steps and later we do the optimization. 
We will assume the program counter is address 15 of the register bank; any one can be. So, our steps 
convert directly into micro code as follows: 

# Am2910 IR Am2901 Memory 

 Inst Adr Ld RegA RegB Sour Oper Dest OE C MAR R/W OE 

1    15 15          

2          1     

3      A,0         

4       ADD        

5        ANOP       

6         E      

7           L    

8            R   

At this moment we can analyze what we have. It should be clear that, in order to follow this simple 
minded approach the values that we have entered should remain enabled for all subsequent steps; for 
example, the 15 we put for register A address should be there for all eight steps. This points very clearly to 
the fact that all eight steps can be made concurrent, in a single step. With this idea in mind, we continue as 
follows: 

# Am2910 IR Am2901 Memory 

 Inst Adr Ld RegA RegB Sour Oper Dest OE C MAR R/W OE 

1 CONT   15 15 A,0 ADD ANOP E 1 L R   

2 CONT           R   

3 CONT  lD         R E

So, this is the micro code for the fetch in this type of architecture. During the development of the next 
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Slice we will have more to say about this architecture, where we will use it as an alternative. 

5.11.- Other Devices. 

There are many devices that can be used for arithmetic logic unit. Among them we have the Am2903 that 
has provisions for multiply and divide in micro code; the Am29116 that is a 16-bit arithmetic logic unit 
specially designed for controllers, the AM29332, a 32-bit arithmetic logic unit, and many others. 
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THE DESIGN OF COMPUTERS USING 
BIT-SLICE TECHNOLOGY

Michael E. Valdez, Ph.D., P.E.

SLICE #6

Slices: 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9

THE PROGRAM CONTROLLER

6.1.- The Program Controller 
6.2.- A Program Controller with Discrete Logic 
6.2.1.- One Solution 
6.2.2.- An Improved Solution 
6.2.3.- The Next Improvement 
6.2.4.- A Final Improvement 
6.3.- The Integrated Circuit Solution 
6.4.- An Arithmetic Logic Unit as Program Controller 
6.5.- Another Possibility 
6.6.- Analysis 
6.7.- Using the Program Controller 

When we studied the architecture of a computer, we mention we consider a computer a device formed by 
five parts: memory, input, output, processing unit, and control unit. This is the basic architecture of all 
computers in use today, that is called the von Newmann architecture, since he was the first to study it and 
describe it in the terms we use today. He did not developed this architecture since the same architecture 
has been used since the beginning of computers. This architecture has two other characteristics: it has a 
program stored in memory and it executes instructions sequentially, one instruction at a time. 

6.1.- The Program Controller. 

This Slice is devoted to the study of the part of the control unit that handles the program counter, the 
program controller. The program controller is that part of the control unit that takes care of the basic 
operations with the program counter, the routine incrementing, the change of the program counter when a 
jump is executed, saving it when a temporary change in the flow is effected, etc. In the program 
controller we need then, a program counter, a stack to save the program counter for subroutines or 
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interrupts, a stack pointer, means for incrementing the program counter, means of updating the program 
counter for jumps, means to add a displacement for relative branches, etc. The program controller might 
or might not include the memory address register, which is that register that drives the address bus for 
memory. 

We have several possibilities for developing the program controller. It is possible to develop the program 
controller with separate logic, as an integrated circuit, as part of the arithmetic unit, and several variations 
of these possibilities. We will see that the difference between these solutions is more than detail. The 
decision on where to put the program counter affects very much the way the unit works, the instruction 
set, and the use of the computer. 

6.2.- A Program Controller with Discrete Logic. 

Let us study first, the development of the program controller as discrete logic, with the same memory and 
adder as the whole unit. Please refer to Fig. 6.1. Let us follow the functions that are necessary to perform 
and develop the hardware for the unit. 

Fig 6-1

6.2.1.- One Solution. 

The program counter can simply be a counter that must have the possibility of being loaded and of being 
incremented. We might also want the possibility of clearing the program counter for the reset of the unit. 
This could be done with a 74LS193, for example. 
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We need to load the program counter from the data bus, so the inputs are connected to the data bus. Note 
that this operation can be more that a simple load command. This happens when the address bus is wider 
than the data bus to have large memory spaces, a very common architecture today for medium size 
computers. In this case, it is necessary to load part of the program counter in one operation and then route 
the data bus to the other part of the program counter and load, in another operation. This requires that the 
inputs of upper and lower parts of the program counter will all be connected to the same bus, in parallel, 
and that two independent signals be used to load each one independently. This fact must be considered 
when studying the loading on the data bus. This fact also permits the use of pages, where the 
performance is increased when the old and new addresses are in the same page. 

The program counter needs a path from its output into the memory address register so a fetch can be 
performed. It also needs a path to the data bus so it can be stored in the stack, and to the arithmetic logic 
unit so the program counter can be added to another value. Recall again the problem of the width of the 
buses. 

The memory address register needs to drive the address bus. If there are other elements that can drive the 
address bus, like when we have direct memory access, we might need tri-state devices in the output of the 
memory address register. Note, though, that the memory address register could also be a counter and part 
of a direct memory access controller. More about this later. 

The inputs of the memory address register should be connected to the data bus, with the corresponding 
problem of data width. Naturally, a separate bus could also be formed for the movement of the addresses. 
This still leaves the problem of the width of the adder. 

The possibility of having only one path into the memory address register from the data bus, creates the 
problem that the data bus is used for every operation when an address is moved, requiring one or more 
additional cycles for all memory accesses. Since the memory access is always the slowest cycle in the 
computer, it is better to have an independent bus into the memory address register. This independent bus 
needs connections to the data bus. Please see Fig. 6.1 for a possible arrangement of this kind. 

The other element that we need is some place where we save the program counter. We will assume first 
that the stack is in main memory. We need then a stack pointer, that is also a counter but this one needs 
not only a load and an increment but it requires a decrement function. This can also be done with a 
74LS193. The output of the stack pointer must go to the memory address register and to the data bus so 
we can save the content of the stack pointer. The input of the stack pointer is only connected to the data 
bus. In order to use the stack pointer we need a path from the output of the program counter into the data 
bus. 

It is possible to change the arrangement of the paths from tri-state buffers into multiplexers. This reduces 
the number of bits required for controlling the data paths, but it is slower because of the decoder included 
in the multiplexer. 
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6.2.2.- An Improved Solution. 

There is another possibility that speeds up the computer by one or several cycles in every memory access. 
Please see Fig. 6.2. This possibility is to have the stack pointer, the program counter, the memory address 
register, and possibly the direct memory access controller, all driving the address bus. The advantage is 
that it is not necessary to move the content of the program counter or the stack pointer into the memory 
address register in order to initiate a memory access; it is only needed to enable the proper tri-state 
buffers or make the proper selection of the multiplexer. Recall that every register transfer operation 
requires one micro cycle. 

Fig 6-2

This arrangement does not prevent to increment or decrement the stack pointer or the program counter in 
the same cycle, because these devices decrement or increment at the end of the cycle. If we use this 
arrangement, these registers must always point to the desired address. For example, the stack pointer 
must point to the top of the stack, the program counter must point to the next address. 

6.2.3.- The Next Improvement. 

The next level of complexity in the design of the program controller is to put the memory for the stack as 
a separate unit, independent from the main memory of the computer. Please see Fig. 6.3. This 
arrangement has the advantage that we can perform a stack operation in parallel with memory operations. 
Since these two types of accesses are slow, paralleling them when possible, represents a substantial 
saving in time. 
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Fig 6-3

In this case, the stack pointer always drives the stack memory, there is no need or meaning for a path 
from the stack pointer to the memory address register. We need a control signal for the R/W line for the 
stack memory. All the control signals naturally come from the micro code. To use all the possibilities of 
the separate memory for the stack, we need to separate the internal bus from the external buses. 

Notice that the parallel operations we are talking about have a very interesting characteristic. When we 
overlap the steps of the instructions we do it in a one by one basis and, in this way, we prevent the 
problem of pipelining that is the need to flush the pipe under certain circumstances. Notice that the flush 
of the pipe requires logic to make the decision to flush and wait for the execution of a certain instruction. 
In the case of overlapping, when we design the micro code we overlap steps without any possible 
problem during execution, and we gain maximum speed. 

So the reason we bring the memory for the stack into a separate unit is that we want to execute steps in 
parallel without pipelining. So we need another bus that permits us to move the program counter to and 
from the stack. We need the output of the stack memory into the memory address register and into the 
data bus so we could move data around. We need paths into the stack memory from the program counter, 
from the data bus, possibly the stack pointer into the stack memory. Again, this arrangement could be 
done with multiplexers controlled from the control part of the micro code. 

6.2.4.- A Final Improvement. 
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One problem of all these arrangements is that when it is necessary to perform arithmetic with the 
program counter, as when relative branches are needed, it is necessary to use the main arithmetic logic 
unit of the computer. This produces the next level of complexity in the program controller, that is to 
include a dedicated full adder for the program controller with the full width of the address. This, 
naturally, will permit more parallelism of the steps of any instruction. This full adder will need 
multiplexers in the inputs so we can route different pieces of data into the adder. Possible, the relative 
branches have the displacement as part of the instruction, in long word computers, or as a separate word, 
in short word computers, so we need paths to route part of the instruction (sign extended) to the full 
adder. The data bus should also be routed into the full adder. We will need paths from the program 
counter and, possible from the stack. 

6.3.- The Integrated Circuit Solution. 

What we have in the last solution is more or less a standard program controller with all the desired 
features. Naturally, there is an integrated circuit, the Am2930, which is a program controller with all 
these characteristics. This integrated circuit is a 4-bit slice with full adder, and multiplexers wherever we 
could need them. The Am2930 is cascadable to any size of address bus we might need, it has a very nice 
set of instructions, the stack is 17 words deep. There is a signal that indicates the stack is full and another 
that indicates the stack is empty, that can be routed to the status bits of the computer, so the programmer 
can test them. 

The Am2930 has an incrementer for the program counter that is interesting when we need to prevent the 
unit from incrementing the program counter, as we did with the Am2910. It has an auxiliary register, in a 
sense similar to the Am2910, but that cannot be used as a counter. This register could be added to the 
program counter in various combinations. This register is basically used to store displacements. 

The Am2930 is quite fast and has a large number of instructions, half of them conditional. It is interesting 
that the device is fast because the program counter is in the longest path of the computer. The instructions 
for the Am2930 are not the instructions of the computer but come from the micro code and these 
instructions are capabilities for the designer. Notice that the use of the Am2930 as program controller 
increases the size of what we call the micro program. 

Something interesting about this device is the pin called instruction enable. The idea is that the same bits 
of the micro code that are used for the Am2930 might also be used for other purposes in the computer. 
The Am2930 works practically only at the beginning of the instruction, during the fetch and, at the most 
during the fetching of the addresses of the operands. All the rest of the instruction the device is idle. We 
can assure that it is idle by disabling it and, if we need, the control bits could be used in another part of 
the unit. Another possibility is to have different program controllers to switch the use of the computer 
between independent tasks. This will reduce the number of bits of the micro code. 

Another interesting ability of the Am2930 is the instruction RESET, to initialize the device to a known 
state. This was not needed or possible for the Am2910 because we were there at the designer's level. Now 
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we are at the programmer's level and we can tell him what happens during the reset and where he must 
put his initializing routine. The instruction is zero. Naturally, this instruction is either zero or all ones that 
are the easiest functions to produce. 

There is another unit, the Am2932, that is very similar to the Am2930 as a program controller. Any of 
these units can be used to control the program counter. 

6.4.- An Arithmetic Logic Unit as Program Controller. 

The other possibility we have is using an arithmetic logic unit as a program controller. When we have the 
stack in memory, the Am2901 can be used as a program controller, the 16 register could be used for 
storage of the program counter. Notice that this arithmetic logic unit should have the width of the address 
bus. One reason for using the Am2901 as program controller could be price. This dedicated Am2901 will 
be driving continuously the address bus. 

Another possible use of the Am2901 as program controller will be in a limited multitasking environment, 
where the different program counters, stack pointers and/or status registers are kept in the different 
registers of the Am2901. Changing tasks requires only changing the meaning of the different registers, 
that could be done with a register at the input of the register address. 

More interesting is the use of one of the registers from the arithmetic logic unit of the computer as the 
program counter and all the other 15 registers as general purpose register or stack pointers for different 
uses. This naturally requires that the address and data bus are the same width. Imagine the program 
counter is register 15, we use address 15 for both addresses A and B. Recall that there is an instruction 
that sends the content of the register pointed by A to the output from the device; at the same time, the 
content of A is sent to the arithmetic logic unit and it can be incremented and stored back in B, that has 
the same address as A. In this way we can send the program counter out to the memory address register 
and increment the program counter to have it ready for the next instruction, all in one micro cycle. Even 
in the case the output of the arithmetic logic unit drives directly the address bus, using the Am2901 as 
dedicated program controller, we could send the content of the program counter out, hold it in the output 
and at the same time increment it and store it back. 

We have made our discussion with the Am2901 but any of the other arithmetic logic units in the market 
could be used as program controllers, some will be better suited than others and a careful analysis should 
be made to determine which to use. 

6.5.- Another Possibility. 

Another possibility we could study is using a sequencer as program controller. A sequencer normally has 
a register that can be used as a counter and, in this way, simplify the operation of certain instructions. A 
sequencer also has a stack that operates concurrently with the rest of the device. The Am2910 will only 
be good for small devices where a 12-bit address bus will be sufficient. Recall that there are other 
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cascadable sequencers with 4, 8 and 16 bits. In general, this does not seem as a very good idea, except in 
special cases. It is mentioned only because it might occur to the students. 

6.6.- Analysis. 

We will study now what consequences have the selection of each one of the solutions that have been 
proposed above. 

The development of the program counter and all its accessories with discrete logic is the one that gives 
most flexibility to the designer but, it requires specific instructions for jump, branch with displacement, 
call to subroutine, indexing, etc. 

Whether in the arithmetic logic unit or any other place in the computer, the control unit needs a block or 
registers. It is always possible to use one of these registers as program counter and another as a stack 
pointer, as was indicated above for the case where the registers are in the arithmetic logic unit. 

The advantage of either of these uses is that we eliminate not only hardware but instructions because the 
normal jump instruction becomes only moving a value into one of the registers; that is, a MOVE 
immediate, that we need any way to load a registers with a value, produces a JUMP when the destination 
register is the program counter. We could even avoid the jump to subroutine and leave to the programmer 
to save the program counter where he wants. This permits simplifying the jump to subroutine in certain 
cases. 

The main disadvantages are that a separate memory address register is needed and that nothing else can 
be done while manipulating the program counter. This is a consequence of using the data bus to move the 
program counter from the arithmetic logic unit to its destination. 

The position of the program counter in the hardware determines then, not only the paths that are needed 
but also part of the instruction set. It is to be noted that the use of the arithmetic logic unit when the data 
and address buses are not the same width, does not seem to be advisable because of the two cycles 
required to move an address. Since the movement of the address is part of the memory access and, at the 
same time it blocks the data bus, this fact will reduce the performance of the computer. A balance 
between the advantage and disadvantages will determine which one is the path to take. 

6.7.- Using the Program Controller. 

At this moment, it should be obvious for the students how to use the program controller that is developed 
from discrete logic devices. We need to develop signals from the micro code for each one of the control 
signals that are required. For example, in Fig. 6.2 it is necessary to develop signals to load the program 
counter, to increment it, to enable its output into the address bus; the memory address register also 
requires signals to load it from the data bus, to enable its output into the address bus; the stack pointer 
needs signals to load it, to increment it, to decrement it, to enable its output into the address bus; finally, 
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the direct memory access controller will need signals to load the initial address from the data bus, to 
increment its value, to enable its output into the address bus. Recall that if the width of the two busses is 
not the same, it is necessary to have two signals for loading any of the registers from the data bus, the 
signals load low and load high. This fact also permits the use of pages, where the performance is 
increased when the old and new addresses are in the same page. This, naturally, must be included in the 
instruction repertoire to be used by the programmer. 

The use of an arithmetic logic unit like the Am2901 for program controller should not pose any problem 
to the students, since it is similar to the other examples that have been developed for its use as an 
arithmetic logic unit. 

The use of the Am2930 is also straight forward and will require only to become familiar with the 
instruction set and its capabilities. The use of an Am2930 in the multitasking environment described 
before can also be analyzed as two independent units, and the coding solved this way, one by one. 
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THE DESIGN OF COMPUTERS USING 
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OTHER DEVICES

7.1.- Other Devices 
7.1.1.- The Interrupt Handling Devices 
7.1.2.- The Clock Generator 
7.1.3.- Direct Memory Access 
7.2.- The Am29100 Family 
7.3.- The Am29300 Family 
7.4.- The Am29500 Family 
7.5.- The Am2960 Family 
7.6.- The Am29800 Family 
7.7.- The Motorola Family 
7.8.- Some Comments 

This Slice is devoted to the analysis of other devices available from Advanced Micro Devices, as well as 
from other manufacturers. 

7.1.- Other Devices. 

Let us look now at what else is available. The Advanced Micro Devices manual provides information on 
other devices, like the Am2913, priority interrupt expander, the Am2914, vectored priority interrupt 
controller, the Am2925, clock generator, the Am2940, direct memory access address generator, the 
Am2942, programmable timer, counter, direct memory address controller. We will study now these 
devices. 

7.1.1.- The Interrupt Handling Devices. 

The Am2914 is a vectored interrupt controller that relieves totally the micro sequencer from the duties of 

file:///F|/Write/My%20Page/BitSlice/Slice 7.html (1 of 6) [5/24/2003 10:53:41 AM]



Slice 7 - Other Devices 

handling the interrupts. This controller receives the interrupt signals, analyzes the priority and disregard 
all calls that have lower priority than the one set by the sequencer. The only signals that must be accepted 
by the sequencer are those with a priority higher than the level of the mask. The Am2913 is an extender 
that converts each level of priority into a daisy chain. The Am2913 assigns a higher priority to the 
interrupting devices at the head on the chain. 

The Am2914 receives interrupts from eight lines, but it can be stacked for large interrupt systems. It has 
an interrupt register, a mask register, a status register, and a vector hold register. The device is micro 
controllable and there are instructions to load and read the mask register, to clear and set the mask 
register, to clear and set bits of the mask register, to load and read the status register, to enable and 
disable interrupt request, to read the vector, four ways to clear the interrupts, and a master clear. 

The Am2913 encodes eight lines into one of the lines of the Am2914. In this way, with the addition of 
eight Am2913's, the Am2914 can handle up to 64 interrupt lines. The process can be continued for larger 
systems. 

7.1.2.- The Clock Generator. 

One very important device in the Am2900 family is the clock generator. The Am2925 not only has the 
logic for generating the clock, but permits us to control the frequency, the duty cycle, etc. 

The Am2925 produces stable operation from 1 to 31 Mhz. It permits to select with the micro code, cycle 
length from 3 to 10 periods of the basic oscillator frequency. There are also debounce circuits for a 
Run/Halt switch. 

The Am2925 provides four different outputs for the clock, with different duty cycle and different 
position of the high with respect of the cycle. Output C1 is high for the first part of the clock period 
selected by the micro code, and low for the last fundamental frequency cycle; C2 is high at the beginning 
of the clock and it is low for the last two cycles of the fundamental frequency; C3 is also high at the 
beginning half of the clock and low for the lower half of the clock; C4 is low for the first period of the 
fundamental frequency and high for the rest of the clock. By combining these different wave forms, we 
can generate any wave form we want, especially, we can generate any transition we want. Note that when 
the period of the clock is changed, since these wave forms are constrained to integer periods of the 
fundamental frequency, some of these relationships are distorted. 

7.1.3.- Direct Memory Address. 

One of the most important ways of speeding up a computer is by performing certain operation by direct 
memory access. Input and output operations can be performed directly much faster than when the 
computer is in the loop. The reason is simple. In order to perform a block input, for example, the 
computer must read the input value into one of its registers and, in another cycle, move the value into 
memory. Direct memory access bypasses the cycle that moves the data into the computer. It is possible to 
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let the computer control the transfer, or have an independent unit to control the transfer. When the 
computer has control of the transfer, the computer has the duty to generate the addresses, signal the 
external unit, etc. In general, it is more convenient to have an external unit to control the transfer of data. 
The Am2940 and Am2942 are devices designed for this purpose. 

The Am2940 generates the addresses, has a word count register that counts at each transfer, and it 
generates a signal when the transfer has been completed. The basic unit has an 8-bit address and it can be 
cascaded to any address length. This device has the capability of repeating the operation any number of 
times since the initial values are saved. The device provides four types of data transfer. We can have 
word count decrement, word count increment and compare with the final value, address compare and 
word count carry out. For each one of these cases, we can have the address register either incrementing 
or decrementing. The Am2940 accepts eight instructions from the micro code. 

The Am2942 has a timer/counter and the direct memory address controller. It provides most of the 
functions of the Am2940 with the addition of two independent programmable counters. This device 
accepts 16 instructions, and it has an instruction enable pin that permits sharing the instruction field with 
other devices. 

7.2.- The Am29100 Family. 

The Am29100 family is a group of devices that have been developed by Advanced Micro Devices for the 
design of controllers; mostly intelligent controllers. It is assumed that the controller will have a 
sequencer, a micro code, and several other devices of the family to perform the required functions. The 
idea of an intelligent controller is that the controller performs by itself most of the functions that in 
regular systems are performed in software. By transforming complex software into hardware we gain 
first, speed in the operation of the computer and second, we free the computer to perform other tasks 
while the controller is working. This is one form of specialized parallelism. Notice that this type of 
parallelism does not have the programming problems of paralleling computers; then, it can be applied as 
much as desired. Typical applications are disk controller where the controller not only handles the disk, 
but it can handle scheduling several disks, ordering the accesses in the most efficient way, etc. 

This family has, at this moment, the following members: 

The Am29112 is a high performance sequencer with an 8-bit address that can be cascaded for 
larger micro code read only memories. This sequencer has the advantage that is micro 
interruptable; that is, the sequencer accepts interrupts at the micro code level, totally transparent 
to the micro code. Recall that the Am2910 needs micro code to test and accept interrupts. 
The Am29114 is a real time interrupt controller that accepts eight interrupt lines and gives a 
priority vectored output, masking out those that are not needed. 
The Am29116 is a 16 bit three-port arithmetic logic unit with barrel shifter and a complex set of 
instructions. 
The Am29117 is a similar devices. 
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The Am29118 is an 8-bit input output support for the Am29116, something like a port. 
The Am29141 is a fuse programmable controller, with 64 words of 32 bits of micro program 
memory. 

7.3.- The Am29300 Family. 

Now we enter into the new era. This family permit us to build very advanced computers without having 
to cascade many chips. These devices are 32-bits wide. The Am29323, a 32-bit multiplier which is very 
fast because you can multiply in one micro cycle. The Am29325, 32-bit floating point processor; the 
Am29331 16-bit sequencer, the Am29332 32-bit arithmetic logic unit, you can build a 32-bit computer 
with only one arithmetic logic unit chip, everything is inside. One chip replaces 8 Am2901 or Am2903 
arithmetic logic unit's plus the carry look ahead chips, and all the auxiliary chips. We will save a lot of 
area on the board, time and labor for building. 

This seems to be a good time to ask a question: How important labor is in a computer of this type? 
Converting eight chips into one reduces the labor cost, how important this is? We have to consider that 
we will not mass produce a computer of this type. It is not illogical to consider that a computer of this 
type can be a one of a kind, wire wrapped, or with a hand-made printed circuit board. So, the cost of 
labor affects the final cost of the computer more or less in the same way as the design cost. The design 
cost can be divided into a few units, and labor affects each unit. 

The 32-bit arithmetic logic unit does not have registers so we have the Am29334 which is a dual port 
register file. Note that one of the limitations of the Am29116 is that it has a single port register file and it 
is necessary to manipulate the register address while the instruction is being executed. Another device is 
the dynamic memory controller, the Am29368. 

7.4.- The Am29500 Family. 

The Am29501 is a beginning of another series, the 500 series, which is devoted to digital signal 
processing. With this family we can develop co-processors that perform multiple functions; the 
Am29501 is an arithmetic logic unit unit with a multi port register file; the Am29509 is a 12x12 
multiplier, the Am29510, Am29516, Am29517 are 16x16 multipliers, that give the 32-bit answer through 
a 16-bit output port. 

Something interesting that you should keep in mind as solution to certain problems: Advanced Micro 
Devices calls these chips sine-cosine generators. We can mention specifically the Am29526, 27, 28, 29. 
What they have is simply very fast read only memories with look up tables that are good for the 
computers with very large memory spaces. 

The look up tables can be used in computers with limited memory space by putting a register in the input 
of the read only memory where the computer writes the argument of the function; the computer then 
reads the same location to obtain the value of the function. This uses only one memory location. The 
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memory space required depends on the resolution that is required for the argument of the function. The 
reason why they have four devices is that the most significant part and the least significant part of the 
values of the sine or cosine are in different read only memories. If you need more precision that the one 
provided by one read only memory, you add the least significant part for more digits. 

That is something you can even generate yourself. If you have a function that is too complex to be 
computed in real time, you can generate a look up table if you can do it with sufficient precision in the 
argument. Note that the precision in the value of the function requires more words, not more space. The 
memory space of the look up table is determined by the precision that is required in the argument of the 
function. A typical case is the computation of the Fast Fourier Transform where we need sines and 
cosines, but the resolution of the argument is not that great, you need the values for only a few 
arguments, so it is easy to make a table. If the memory space is prohibitive, it is always possible to use 
the single memory address solution presented above. The difference is time, the multiple memory 
address with the argument as memory, requires a single operation to read a value; the single memory 
address requires two operations. If we consider that in general, the argument must be loaded to a register 
prior to the access, the difference is not that large. 

Going back to the available bit slice chips, we see that the series 500 is devoted more or less to digital 
signal processing; we have the Am29540, which is a Fast Fourier Transform address generator; this chip 
generates the successive addresses for the Fast Fourier Transform and it is not limited to the normal radix 
2, but it handles other radices. Recall that the radix 2 requires that the number of data points is a power of 
2. When you have several radices at your disposition, the number of data points needs only be divisible 
by any two of the radices that you have. 

The Am29520 and 21 are multi level pipe line registers, required for this kind of work. 

7.5.- The Am2960 Family. 

Another family that is developing is the dynamic memory controller Am2960, a series of chips for 
memory management. They not only take care of the refresh of dynamic memory but the family includes 
the chips that are required for assuring data integrity. The problem is that as the memory becomes more 
and more compact the probability of an error because of the cosmic rays is increasing. When a cosmic 
ray or a secondary collides with the memory, it destroys the data. When using 16 K memory chips, the 
probability of data damage because of cosmic radiation is one failure every million hours of operation, 
which is not too large; using 64 K memory chips the probability of error becomes five failures per 
million hours and, as the memory becomes more and more compact, this probability increases very 
much. Notice that one error every hour represents a failure every 3-4 billion memory cycles. At 256 K 
per chip, the probability becomes sufficiently large that we need some way to maintain the integrity of 
the data. Since there are other errors that can also affect the memory, there is a whole family of chips that 
not only detects such errors but it corrects the first error, corrects most of the second errors, and detects 
any number of errors in the same word. 
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7.6.- The Am29800 Family. 

This family has several members, like the Am29803, Am29806, Am29809, Am29818, Am29821 to 28, 
Am29833 and 34, Am29841 to 46, Am29853 and 54, Am29861to 64. 

The purpose of this family is to permit the design of self-testing devices; that is, devices that can 
determine if they are ready to work. Naturally, this requires special devices, mainly for the registers that 
must be double, with the shadow register being a shift register. 

7.7.- The Motorola Family. 

Motorola has started to introduce to the market a series of bit slice devices built with emitter coupled 
logic technology, thus very fast. They also have translators from ECL to TTL levels. 

Some of the devices offered by Motorola are the MC10900, an arithmetic logic unit slice, MC10901 an 
8x8 multiplier, the MC10902 which is another arithmetic logic unit slice, the MC10904 a sequencer, the 
MC 10905 error detect and correct device, the MC10800 a 4-bit arithmetic logic unit, the MC10801 
micro program controller, the MC10802 timing function generator, the MC10803 memory interface, the 
MC10806 dual access memory stack, the MC10808 16-bit shifter. 

7.8.- Some Comments. 

You see what is happening is that the advancement in integrated circuit technology not only increases the 
speed of the devices but it shrinks them, making it possible to put more functions in the same chip. Every 
advancement reduces the size of the lines which permits to put more elements per chip. So the question 
that comes to mind is if it is wise to put separate chips per function or put more functions in a chip; the 
other approach that is being taken is to go to the byte-slice or 8 bits in a chip, or even more. We have 
seen what seems like the extreme today, with slices that are 32 bits wide. 
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8.1.- The Importance of Timing 
8.2.- The Ideas of Timing and Loop 
8.3.- Timing Analysis of the Paths 
8.4.- Timing Analysis of the Instructions 
8.5.- Analysis of Pipelining and Cache 

It was stated before, in the Introduction, that this textbook has two main tasks, beside the obvious one of 
teaching bit slice technology. The first of these two tasks is to develop an organized procedure for 
designing computers and computer controlled devices, which we consider has been achieved. The second 
task is to develop an organized procedure for the computation of the clock cycle time, and its 
optimization. This Slice is devoted to this task. 

8.1.- The Importance of Timing. 

It is very difficult to say too much about the importance of timing in computer design. Timing in the basic 
tool we have to determine the clock cycle of our computer or computer controlled device. If the clock 
period is longer than needed, our system will be slower than what it can be; if our clock is shorter than the 
minimum needed, there will be instructions or steps that will not execute properly, at least under special 
circumstances and it will be very difficult to determine what is happening, those mysterious faults that 
nobody can find. 

The other side of the coin is to consider that the computation of the clock period, unless it is done by 
"intuition", is a tedious and long process. Since we have to spend that time doing those computations, we 
might as well do them right and get the right results. 

It is important to realize that the clock period has to be longer than the maximum delay in any parallel path 
used during the performance of the operation under study, and under the worst possible circumstances. It 
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is important to consider that certain devices have different delay when the inputs change from a zero to a 
one, than when the change is in the opposite direction. Under certain circumstances, we know the 
direction of the change and we can use the proper value. If we do not know the direction of the change, as 
when we are switching data, we must take the longest delay. A delay shorter than this will produce those 
mysterious faults we were talking about before. 

The next consideration is with respect to which specifications to use. The manufacturer some times gives 
minimum, typical and maximum values. In other cases the manufacturer gives only one value and 
"derating" figures. In other cases the manufacturer give firm values that they are willing to guarantee. 

In the last case mentioned above, there is no problem with the use of the values, especially if the 
manufacturer of the devices you will use is a reputed manufacturer. If you are not sure of the quality of the 
manufacturer or when you do not know whose devices will be used, the best approach is to consider the 
typical values and, at the end, include a safety factor that will depend on the number of devices you are 
averaging and your judgement of the possible quality you will obtain. 

8.2.- The Ideas of Timing and Loop. 

We will call a loop any path, not necessarily closed, that starts in a register and that ends in a register. Let 
us analyze one such loop. We will consider the loop that starts in the memory address register, goes 
through memory, and ends up in the instruction register. The typical breakdown of this path is: -Delay 
from the output enable until the output pins of the memory address register are stable; -Delay from the 
memory address until the data is stable at the output pins of the memory chip; -Delay that it is necessary 
from the moment the input pins of the instruction register are stable, until we can clock the data. 

Although this breakdown is correct, we need to consider other paths that might influence the outcome: 

●     Delay in the address decoders, if any; 
●     Delay from the chip select pin until data is stable in the output pins; 
●     Delay from the read/write pin until data is stable in the output pins; 
●     Delay from the output enable until the data is stable in the output pins; 
●     Delay in any logic that feeds the signals to the output enable of the memory address register, the 

read/write signal, the output enable of the memory chips, and any other signal used in the decoding 
equation of memory; 

●     Delay from the clock edge until the signals are stable in the pipe line register of the micro code; 
●     Any other delay affecting the signals. 

As can be seen in the previous analysis, we should not limit ourselves to the obvious path of the signals, 
we have to consider all the signals that play any part in the operation to be performed. In the case we are 
studying, the path really does not start in the memory address register but it start in the pipe line register of 
the micro code, at the moment this register receives the command to latch the next line of micro code from 
the read only memory. This example shows that there are no-obvious parts of the path that have influence 
on how long the period of the clock must be. 
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Another aspect we need to consider is that our main path has many no-obvious paths that, in general, 
parallel the main path or one another. In this case we need to develop a diagram with all these path, 
analyzing the delays and how they affect the final results. 

Let us follow in more detail the example mentioned above. Please see Fig. 8.1 for a complete circuit of 
this path and all its auxiliary paths. Fig. 8.2 shows an hypothetical timing analysis made for the circuit. We 
are assuming that the delay from address, read/write signal, chip select, and output select, to data output 
stable are different. We are assuming that the decoding equation for memory includes a signal from the 
micro code that goes through a multiplexer that has some delay, and that the pipe line register need some 
time. All these delays are shown qualitatively on the figure. 

Fig 8-1
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Fig 8-2

Notice that since the output enable signal is generated directly from the micro code through the pipe line 
register, it does not affect the operation because those delays are much shorter than all the others. The 
same is true, for this case, for the read/write signal. Note also that although the delay from the memory 
address register, through the memory, including the delay in the pipe line register, can be satisfied by a 
short clock period, a longer period is needed to satisfy the path through the chip select. This path starts in 
the pile line register, goes through the multiplexer of the extra signal, then through the decoder, at which 
time the other bits of the address are stable and do not affect the outcome; note that when the chip select is 
stable, the read/write line has been stable for some time, consequently it does not affect the operation. 
Then we need to consider the delay from the chip select to output stable, at which time the output enable is 
stable, and we continue from there through the previously mentioned path. 

Note then, that the real path goes from pipe line register, through multiplexer, decoder, memory, to end in 
the instruction register. 

8.3.- Timing Analysis of the Paths. 

The main subject of this Slice is the computation of time delays through the different paths of the 
computer in order to define the period of the clock. The fundamental problem is how we organize our 
clock. The period of the clock has to be long enough so data propagates through the longest path. This is 
one possibility, that we call a single clock. The problem is to find the longest path and this can only be 
done by going through all the paths one by one, until the longest path is determined. The other possibility 
is multiple clock periods. The idea is the period of the clock assigned to each step is only long enough for 
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the propagation of the signals used in the step. This needs clarification because signals propagate through 
all the paths at every step. The point is two fold: imagine a step where memory is not used, and we have 
determined this is the longest path; then, if our clock is shorter than what is needed by memory, this unit 
will not finish its operation when the clock changes but, since memory is not being used, we don't care 
what happens in that unit. 

The other side of this coin is when there has not been any change in the data feeding a path. Consider that 
the propagation of the data from the instruction register to all the different points where it goes is a very 
long path. This will affect the first cycle of all the instructions but, for the second cycle, this propagation 
delay does not affect our operation because data does not change in the instruction register until the end of 
the execution of the instruction. 

The problem with the multiple clock is that we end up with too many clocks; one way out is to look at the 
Am2925, which is a clock generator. This device produces eight different periods from 3 to 10 periods of 
the main crystal. The clock period for any step is selected by three pins of the chip, that can be connected 
to three pins of the microcode. In this way, each step selects its own period and we limit the number of 
different period to the eight that the chip produces. Another point is that the maximum frequency of 
operation of this chip is 42 Mhz which permits us to produce periods from 71 to 238 ns. The 71 ns is 
normally too low for a clock, as we will see in a moment, so we can use a lower frequency and have a 
larger choice, more flexibility. The Am2925 produces four different wave forms that can be used for 
triggering devices at different points in the operation of the cycle. Typical case is memory address register, 
where the delay from wherever the address comes is very low and that it can be latched in the memory 
address register say 1/4 into the cycle and leave the rest of the cycle for the propagation through memory. 
That is, this device permits to divide the cycle in different pieces, using the time delay as best as possible. 

Another possibility that we have given up in our design is to have an asynchronous system. This requires a 
response signal from each element to indicate when the unit has finished its duty. We use these responses 
to initiate the next cycle, clocking the Am2910, advancing a counter, or any other convenient way. 

Something else to consider is to lower the frequency of the clock so we can have a single cycle for 
memory access. Note that if we do this we run into problems when trying to advance the fetch of the next 
instruction. It seems to be better the way we planed it, having a single clock period and two cycles for the 
memory access and wherever we can, we insert them during the execution of an instruction. Note that this 
is not pipelining but overlapping the instructions. The distinction is clear when we consider a branch 
instruction. Pipelining is done automatically but we will never include overlapping until we have defined 
the instruction to be executed next. 

The important point at this moment is, that in order to have a solid base to make all these decisions, we 
need to perform the timing analysis of our circuit. 

Now, how do we perform the timing analysis. Since we have to perform the analysis of all the paths, we 
can start any place. Let us start by analyzing the instruction cycle of the Am2910. 
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This analysis is normally done by getting several copies of the diagram and marking on them the different 
paths. The first thing we have to identify is from where to where the path goes. By definition, a path 
always starts in the clock input of a register and ends in the clock input of a register; that is, the time delay 
we consider involves from the moment data is stored or latched in one register until it can be latched in the 
destination register. The path under consideration starts when the clock latches the data from the 
microcode ROM into the pipeline register; there is a setting time for the pipeline register to its output; then 
we have the propagation from the instruction input to the Y output of the Am2910; then it goes to the 
address input of the microcode ROM and propagates to the data outputs, and finally has to settle before 
the pipeline register can latch the next instruction. 

This requires: 

From CP to pipeline register outputs 
From I to Y in the Am2910 
ROM address to data 
Settling time for the pipeline register. 

From the data sheets of the different devices we obtain, for commercial operating range we get a 
combinatorial delay from the program counter to Y of 70 ns for all instructions that do not use the counter 
register. Note that this delay starts with the clock pulse and we do not need to consider the delay in the 
pipeline register. Note how reading the specifications of a device changes the interpretation of the 
problem. 

Looking at the data for the ROM's that AMD produces, we see devices from 25 to 75 nsec. We select one 
with 50 ns delay that seems to be the average value. The settling time for the pipeline register, assuming 
we use a 25LS07 register, is given as 5 ns. Note that the 25S07 has only 3 ns of setting time. So, the total 
delay for this path is 125 ns. 

The execution of the instruction jump to map might have a longer delay because we have to recognize the 
instruction and pass D to Y. Note that we can eliminate the MAP ROM to reduce the length of the delay in 
this path. 

Under certain circumstances it might be interesting to remove the MAP ROM and force the lower bits of 
the address to zeros; two zero bits leave four locations for the microcode for each instruction; three bits 
leave eight locations per instruction. There is a trade off here: on one side you have the fact that you save 
the MAP ROM but you loose in the microcode ROM in spaces that are not used for the short instructions. 
On the other hand, removing the MAP ROM reduces the time delay from the instruction register to the 
pipeline register. Since this is probably the longest path delay that will set the period of the clock, reducing 
this delay speeds up the computer by the delay of one ROM. 

Let us now analyze one of the memory paths, starting with the fetch. In this case we have the delay from 
the program counter, through the multiplexer, through memory, to the instruction register. The first point 
to analyze is if at the moment of the fetch the program counter has already finished its incrementing. Note 
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that the minimum time for any instruction, even those branches that fail, there is one cycle after the 
instruction register has been latched and the program counter is ordered to increment. We can assume that 
during this cycle the program counter has incremented and it is ready. Note that this is not true for the case 
in which we have a two word instruction where in the first cycle of the operation of the instruction we 
need to put the program counter out to get the content of the next memory location. In this case the 
program counter has not finished incrementing; actually, at the beginning of the cycle the program counter 
starts incrementing and we have to consider this time. 

In the case of the fetch we need the delay in the multiplexer, the delay in memory, and in latching the 
instruction register. For this last value we have 5 ns. For a multiplexer we can use the Am2932. The delay 
from the select to Y is 12 ns. Now, we can take 150 ns for the memory which is standard today for 
inexpensive memories. We have a total delay of 167 ns. So, our assumption of two cycles for the memory 
cycle was bad but, there is no way to know that unless we do these computations. At this moment, it 
seems that we can have a single cycle to cover the memory, since the delay of the Am2910 is in every 
cycle, it seems difficult to get shorter than 125 ns. Note that to shorten the memory path to 125 ns will 
require the use of 100 ns memory, which is not too expensive today and will be cheaper soon. We are 
considering static memory that does not require the additional delays in the refresh circuitry. Note also 
that we are not allowing for the delay in the decoder for the memory or any buffering that might be 
needed. 

Another point we have to consider is the use of the more modern Am2910A or the Am2910-1. We have 
been using the old Am2910. With the Am2910-1 the delay is 75 ns. instead of 100 nsec we have 
considered. The cycle with the new chips are 105 nsec for the Am2910-1 path and 167 for 150 ns 
memory. Note that there is another memory access that is longer that the one we have consider. 

Note that since our microcode does not have conditional micro instructions, like in multiply for example, 
we do not need to consider the propagation delay from the status register through the condition code 
multiplexer, to the Am2910. 

Let us consider a memory access that will be longer, because we might need to wait for the program 
counter to increment. In this case we have something interesting and it is that the multiplexer will be open 
when the program counter has settle so we need to consider only the delay from the data to the outputs, 
not from the select to the outputs. After this, we need to consider the delay in memory and the delay in the 
arithmetic logic unit to latch the data. Note that the arithmetic logic unit will process the data after the 
memory has produced the data. The cycle cannot end until we give time to the status register to latch the 
new status of the machine, as a consequence of the transfer. 

Another path that is very delicate is the conditional instruction. After the instruction register has been 
latched, we have a propagation through the select lines of the multiplexer, the CC input of the Am2910 to 
the output of the Am2910, or whatever execution it takes. This becomes very critical when we determine 
not to have a MAP ROM. 

8.4.- Timing Analysis of the Instructions. 
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There is another way in which we can achieve the same result: in this method we do not work with the 
circuit diagram alone but we work with the instructions and we analyze how long it takes to perform each 
of the steps. Although, this is done with the circuit diagram, we are not looking from the point of view of 
the circuit diagram but from the point of view of the microcode. Although, this approach has many 
advantages, it has one big disadvantage: it is very easy to make mistakes, it is very easy to forget one of 
the parallel paths of the step. 

In order to look at this procedure, let us analyze one instruction. We will start with a simple instruction 
like MOVE (R),R. That is, the content of the first register is used as an address and the content of that 
address in memory is loaded into the second register. 

In the execution of this instruction, after the FETCH we have the following steps: 

The arithmetic logic unit passes the content of register A with the arithmetic logic unit driving the data bus 
and the memory address register latching what is on the bus; the Am2910 has CONT as its instruction; 

The next step is driving the address bus with the memory address register, the data bus is driven by 
memory, the arithmetic logic unit has an instruction D OR zero and the result is latched in register B. We 
are assuming a single memory cycle; the Am2910 has a JMZ, jump to zero, to fetch the next instruction. 

The purpose is now to compute the time it takes each one of these steps and, after doing the same with all 
instructions, we select the clock. 

The first step requires for the address A in the instruction register to propagate and the content of A to pass 
to the memory address register. This takes the delay from A to Y in the Am2901 and the settling time in 
the memory address register. Looking at the table of combination propagation delays we find the time 
delays for A bypass to Y, instruction to Y, clock to Y, etc. 

Notice that in this instruction we have 40 ns for the time for passing A and it looks like we could use a 
short clock. We can see now that if the clock is 40 ns the Am2910 will not have time to do anything 
because we know that even the continue takes 98 ns. So, there is no time for the Am2910 to work and the 
time for the cycle should be 98 ns and not 40 ns as a superficial analysis will produce. This is a very 
important point to consider for each of the step in our instructions. 

The fundamental point is to find where the cycle starts. One point to start is in the instruction register for 
the address A. This point shows us that we have to be careful how do we do these things. The question 
here is if we have to start the moment the instruction is latched in the instruction register or if the 
instruction register latched in a previous clock and we do not need to consider the propagation delay inside 
the instruction register. 

Let us look further into this problem to develop a clear idea of what is happening in our computer. We 
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need then to look at the fetch. The fetch starts by the address bus driven by the program counter, the data 
bus driven by the memory, the instruction register latches at the end of the cycle and the program counter 
increments after the end of the cycle. 

So memory is being accessed and at the end of the clock the data is latched in the instruction register. 
Then what? What happens next? The Am2910 has a signal that opens the MAP ROM, the data in this 
ROM propagates through the Am2910, from there propagates through the microcode ROM and at the end 
of the clock the pipeline register latches this data. The important question we have at this moment is, what 
are we latching in the pipeline register? It is clear that the pipeline register has the first step of the 
instruction to be executed. The question that remains is which instruction is the one that will be executed? 
If you analyze carefully what is happening, you will find that the instruction that has been loaded in the 
pipeline register is not the one that was just fetched but the instruction the was sitting there from the 
previous fetch. 

This is a very important point. Note that simultaneously, in parallel the address in the program counter 
propagates through memory and the data in memory propagates and at the end is latched in the instruction 
register. At the same time, the instruction sitting in the instruction register has propagated through the 
MAP ROM and the content of this ROM propagates through the Am2910, the microcode ROM, and at the 
end of the clock the content of this ROM is latched in the pipeline register. 

The efficiency of the code depends on how good we are in making them work at the same time. Note then 
that we have a pipelining in the instruction register that we have not considered before and that we were 
very proud of not having. We have to consider it now, especially when we have a conditional instruction 
that fails, the common problem to all pipelining. Notice that this affects which registers are actually used 
in the execution of every instruction.e to add one step to the fetch and change the Am2910 instruction 
from MAP into CONT, and say MAP in the next step. Interesting things to consider are first, how easy it 
is to get tricked into considering that the computer is doing something that it is really not doing; the 
second problem is when you study how long the computer takes to execute an instruction, it is very easy to 
forget that several things are happening in parallel and consider as the time delay for a step only the time 
delay in one of the paths when some other delay might be longer. 

Now, we have another point. Recall that our computer is using part of the instruction register for the 
address of the register to be used and for other purposes. Since when we start execution of an instruction 
we latch the next instruction, it is necessary to have another register for the instruction being executed. 
Now we see that the double register is mandatory if we want to use this pipeline. 

One interesting point to make again is that these details do not appear in the design until you do the timing 
analysis of the computer in detail. There is no way for this instruction pipelining to appear before and it 
has been necessary to come to the timing analysis to find it. Note also that this problem was not apparent 
when we made the timing analysis in the circuit but it became apparent when we analyzed the timing of 
the instruction steps. This is the value of the timing analysis of the instructions step by step. 

Going back to the analysis of the instruction, there is something else that is interesting: consider that the 
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propagation from the A register to the memory address register takes only 40 ns and the cycle is 98 ns. 
The question that arises is, can we use the other 58 ns to start propagating the address of the memory and 
thus gain time in the memory access? Note that now we are talking about something else than having two 
things working in parallel, or pipelining; what we are studying now is the possibility of overlapping 
cycles. Since the first cycle has not ended, the question is if we could start the next cycle before the 
previous one has ended. This only requires that in the first cycle we select the memory address register as 
the device that drives the bus if we find a way of latching the memory address register as soon as it is 
possible, or we can use a transparent register. This requirement is quite easy to satisfy. Note also that if at 
the moment of the clock, the microcode has the same value for a given bit as in the previous clock, there is 
no glitch or transition at the moment of the clock. Simply, the pipeline register latches the same value it 
has in its outputs and noting changes. 

Note that this arrangement has something interesting. Recall that the next cycle is controlled by the delay 
in the memory, that is longer than the delay in the Am2910. Consequently, if we have a way to do this 
trick we will be able to use a shorter time for the second cycle, as long as it is not less than 98 ns. Note 
that by doing these tricks we can end up with this computer running at 100 or 110 ns. clock period. 

This is one advantage we have in the analysis of the timing on the bases of the instructions, that we can do 
tricks in the instruction by instruction basis, not on the basis of the circuit. Note that when working with 
the circuit there is no way to do these tricks. Something else, these tricks depend only on the designer and 
not on the user, so they are totally previsible during the development of the microcode. 

Going back to the instruction, in the second step the Am2910 requires 98 ns as for all steps. The memory 
we said takes 150 ns, the multiplexer takes 12 s, the arithmetic logic unit takes 38 ns; so the total time is 
35 + 5 + 12 + 150 + 38 = 240 ns for the two cycles. So, we could give 120 ns for each cycle if this proves 
to be true for all instructions. From the other point of view of analysis, we will need 98 ns for the first 
cycle and 200 ns for the second and this will force us to use a 200 ns clock. The proper way to work 
without forgetting anything, is to go through the microcode and work bit by bit, so we do not leave 
anything out. 

Now about the condition of having a clock at the right moment in the cycle to latch the memory address 
register at the proper time. Recall that the Am2925 produces different wave forms for the clock and we 
choose for the memory address register latch that one that has a transition at the moment we need it. 

Notice that while the second cycle is being executed, the JMZ is being executed and the next fetch 
instruction is coming down the microcode ROM to be latched in the pipeline register at the end of the 
clock. 

One important point is that the analysis of the microcode is one method for the analysis of timing in a 
computer. It is not the perfect method because in engineering there is no perfect method. What we have to 
consider is that we have two methods for this type of analysis and we can use one or the other depending 
on the circumstances. 
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Note that going through the loops we have a pragmatic approach. The clock is sized for the longest loop 
and the computer will work. With the analysis of the microinstructions we can get the last nanosecond out 
of the computer. We see that by the loop analysis we need 200 ns clock and by step analysis we could run 
at 120 ns clock with a little change in the circuit to clock the memory address register at the right time. 

One interesting point is the operation of the arithmetic logic unit. When we consider the delay in the 
arithmetic logic unit we have not considered the time it takes to perform its operation. Did we forget this 
delay? The instruction is OR and we have not considered its delay. Recall that we are charging 38 ns for 
the arithmetic logic unit because the table gives us this value for the propagation of the signals. These 38 
ns include performing the operation to produce the result, making it ready to storage at the clock. Note that 
we start counting these 38 ns form the moment we know the data is ready at the input pins of the 
arithmetic logic unit. So, we are considering the delay in the arithmetic logic unit to perform the operation 
because it is included in the values we studied. 

Now we will look into a more complex operation. Let us change the instruction in the arithmetic logic unit 
from OR to ADD. So, the first two steps are the same as the previous one but we put the data that comes 
from memory into the register Q and then we will add Q + B and store to B. Now, the question is how 
long it takes this step we are adding. In this case we will have to consider the propagation of the carry, 
eight times through the eight arithmetic logic unit chips we are using. Since each step is 40 ns, it is 
necessary to allow 8 x 40 or 320 ns. In the add instruction we have 8 chips that from the beginning are 
adding Q to B plus the carry. Q and B do not change but the carry might change; so, 40 ns later the carry 
changes and the second arithmetic logic unit starts adding again and propagating the new result. If the 
conditions are such that the carry changes at every 4 bits, it will take 320 ns before the result is the real 
result that we want. This is what is called ripple carry because the carry ripples from arithmetic logic unit 
to arithmetic logic unit. 

Now this will force us to use 320 ns for every time we execute any instruction where the carry could 
change. This does not seem right and there must be some solution to this problem. The solution exists and 
it is called the carry look ahead. The Am2902 is a very inexpensive chip that takes all the carry generate 
and carry propagates from all the chips and generates the carry in for all the chips. The only problem is 
that the 2902 handles 4 chips and we need 3 of them to develop a 32 bit word. The typical delay of the 
2902 is 14 ns which is the maximum delay we could have, so we have to allow for 37 ns for the first 
arithmetic logic unit to produce the G and P outputs, 14 ns for the 2904, 14 ns for the second one, and 40 
ns for the final add. By using the 2904 we need only 95 ns. So, it is important to use the carry look ahead. 
The larger the word the more important this is. 

Although this procedure is complicated, it is not impossible to learn it and do it. It is clear that those of 
you that have been participating in the class should be able to attack a design of this type and take it to 
completion. 

We have been talking about indirect addressing, direct addressing, the immediate instruction where the 
memory is driven by the program counter, which is ready. It should be clear that the memory access in this 
case takes 200 ns. Since the difference between 120 ns and 200 ns is too much, we can think in two paths, 
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having different clocks one at 120 ns and another at 200 ns or simply break the access in two pieces each 
of 120 ns. We talked about this when we studied the pre-fetch. Now, we have to think about the FETCH, 
we have considered it as one cycle but now it is necessary to look again to how long it will take. It is easy 
to get that the fetch requires also 200 ns. So the Am2910 puts a limit from below in 98 ns or 100 ns as the 
minimum; memory is putting a limit from above at 200 ns minimum. The fetch is another instruction that 
can be very easily broken into two cycles, or have two clocks selected by the microcode. 

Now, let us go to another extreme, the immediate short, and we have to be careful. In this instruction we 
drive the data bus with the low part of the instruction register and we latch in the arithmetic logic unit. So 
the delay in the arithmetic logic unit is 38 ns. we have 13 ns for the multiplexer or buffer, so we have 51 
ns for the arithmetic logic unit side of the instruction and since we have 98 ns in the Am2910 side of the 
instruction we need to use the 98 ns. So again we find the Am2910 limiting the time. 

Note that when considering the multiplexer there is the possibility that in a given cycle the select lines 
have been set before the start of the cycle and the data is the one that will be setting; consequently, the 
time we should consider is the one from the D input to the Y output, or from the select to the Y depending 
of which one is pertinent to the case. 

8.5.- Analysis of Pipelining, and Cache. 

There is one point from the analyses we have made that deserves mention. In the current literature you 
have read there is a large concern with the problem of what to do when a branch instruction appears, what 
they call the "bubble" of instructions that must be destroyed to process the branch instruction. It should be 
clear that all the authors of computer designs put a large emphasis in developing very complex schemes to 
reduce the impact of the "bubble" in their computers. 

The point to ponder is that in our design we have not considered this problem. The question is, why we 
don't have that problem in our design. How come other designers have to go through elaborate procedures 
to solve the problem that we have not even mentioned. Are we doing something wrong? are we 
overlooking a problem we should be considering? It is evident they are pipelining and we are not. We talk 
about pipelining exactly in the place of the problem which is fetching an instruction ahead of time, vs. 
overlapping the fetch. 

This is a philosophical point. When you do something one way and everybody else does it differently, it is 
logical to think that you are doing something wrong, that you are overlooking something and it is 
important to check. If you find the reason why everybody else does it differently and you are right, then 
you can proceed with confidence. 

At this moment we have our design complete, with the exception of the timing; in such a way that we can 
build it. The situation is that everybody else is still considering very complex architecture. We do not 
consider the use of cache memory simply because we don't need it. Where can we use cache memory? 
there is no place. Notice that in our computer, the way we are considering it today, the only advantage we 
can have by using cache memory is that the fetch will take one cycle instead of two. This is true only in 
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the fetch of the next instruction and in the very few cases where we have two word instructions. In these 
cases we will gain one cycle per memory access. We have considered the possibility of having two 
instruction registers. This will permit us to pre-fetch many of the instructions, eliminating this advantage. 

Cache memory is a name used for a block of very fast memory between the main memory of the computer 
and the computer itself. You understand there is a controller that is guessing what the computer will need 
and puts it in the cache. The big problem: the cache must be filled at the speed of the slow memory. The 
larger the cache, the longer it takes to move it. So, if at a given moment the computer finds that the cache 
memory does not contain the piece of data that is required, it is necessary to wait until the controller refills 
the cache memory. In more advanced controllers, it is possible to get the controller to find the right piece 
of data, or to let the computer bypass the controller and find it itself. All this requires arbitration, meaning 
time. 

The use of cache memory is then debatable when the advantage of using the cache memory decreases very 
much when the size of the cache increases or in the cases where the computer changes path very often. 
The other problem is that every time the computer goes for memory, there has to be hardware that 
compares the addresses of memory existing in the cache with the one required by the computer, and this 
extends the length of time of the memory cycle. Another problem is memory modification. Before 
destroying the contents of the cache, they have to be saved if there was any modification; consequently, 
the controller has to keep track of the modifications. The fine point is that as the overhead increases the 
advantages of the cache memory decrease. The other aspect is that the advances in technology are 
producing faster and faster memories. Today there are inexpensive static memories that have cycles on the 
order of 100 ns. When these memories are used for main memory, it is very difficult to justify the use of 
cache or any of these arrangements. 

A different story is what we talked about with the double instruction register. When we have an 
opportunity to pre-fetch the next instruction we do it. We need to recognize that this will happen only in 
very few cases because all our instructions are very short, because we are adopting the RISC criteria with 
very good results. In the case of a jump or branch instruction, we simply ignore the pre-fetched instruction 
and we include the fetch of the next instruction in the code of the jump or branch. The instructions that 
permit the pre-fetch transfer the content of the auxiliary register into the instruction register at the proper 
time, and they end up in jump map, instead of jump zero. The instructions that do not permit the pre-fetch 
end with the JUMP ZERO and perform the normal fetch. This is a more proficient arrangement that the 
use of cache memory. 

So, this is the reason that we don't have the problem of the "bubble". This is because we are considering 
we will be using a fast memory as it is the normal memory of today technology. This point is that an 
engineer needs to continue advancing, continuously learning to maintain on top of technology, to abandon 
criteria that were good when you were studying but that the advances of technology have made obsolete. 
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SOME ADVANCED IDEAS

9.1.- An Advanced Idea 
9.2.- The Stack Computer 
9.3.- Stack Computer Instructions 
9.4.- High Level Microcoded Instructions 
9.5.- Some Final Thoughts 
9.6.- The Internal Buses 
9.7.- A Summary 

This Slice is about certain limitations that are included in every computer simply because of the sheep 
philosophy that forces everybody to follow what everybody else is doing. We want to talk about a different 
approach to computers because you will be living in the future. You will not be living in the past or in the 
present, you will always be living in the future. So it is good for you to think a little bit in a different way. 

9.1.- An Advanced Idea. 

What we want to point out is certain limitations that are included in every computer because of inertia. When 
you stop and think, you find there is no reason why they are included except for the fact that everybody does 
it. 

Let us talk about for example the circuit that we used in our design where we have done the same thing 
because we wanted to leave this idea for the end. We have the sequencer, micro code, MAP, and instruction 
register, etc. We also have the loop of the instruction that is what makes the computer work. The input of the 
instruction register is connected to the data bus so the normal operation of the computer is to develop the 
content of memory from the memory address register and store it in the instruction register. 

Now, the point we want to make is what we call instruction. The fundamental idea of today is that the 
instructions have to be very elementary, what we call the assembler language of the computer and, almost by 
definition these instruction have to be elementary. The question for you is why? Why do we have to have a 
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set of elementary instructions? Why we have to have instructions of the type MOVE this data from this 
register to that? etc. The answer is that it is mainly because of the inertia of the designers. There is absolutely 
no reason why we cannot have an instruction that performs the DO loop of FORTRAN. Actually, the author 
has implemented in micro code instructions of this type. With this type of instruction we do at the micro code 
level operation that are normally considered to be high level language. Notice that we are not talking about 
putting the high level language in micro code but implementing high level commands in micro code. This is 
currently done in controllers, like the video controller that receives a command to draw a circle; why not in 
computers? 

9.2.- The Stack Computer. 

Imagine we have a control unit, an arithmetic logic unit, a program counter connected to the address bus of 
the program memory, the normal stack and stack pointer for storage of the program counter during the 
subroutines, and imagine that we have another block of memory with its special stack pointer. This is what is 
called the Stack Computer. Please see Fig. 9.1. 

Fig 9-1

The stack computer has several important differences with the normal computer we are used to. One big 
advantage is that as soon as you consider the stack computer you do not have an address bus. What is the 
address bus in the normal computer becomes simply the connection between the program counter and 
memory. 

Another concept that disappears in the stack computer is the concept of operands. It is not necessary to 
specify where the operands are or where they should be. The only thing to be specified is the operation to be 
performed. For example, you have an instruction ADD. You may question add what? The answer is always 
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the top elements of the stack, since add requires two operands, the top two elements in the stack are added. 
The result of the operation is always stored on the top of the stack, after destroying the operands. 

The instructions are very simple, the computer has the same capabilities of any other computer, and the 
operation of such a language is extraordinarily fast because there is very little overhead in the operation of 
the computer. Note that since there is no operand addresses, there is no time spent in getting the address from 
wherever it is. 

If the stack pointer covers the whole memory; that is if the stack pointer is a 12 bit counter and we have 4 K 
of memory, or if the stack pointer is a 16 bit counter and we have 64 K of memory, you do not care where 
your stack starts and you could work without ever initializing the stack pointer. So we need only increment 
and decrement the stack pointer. If the stack pointer is not commensurable with the memory, then it should 
be initialized and its value tested to prevent it from going out of the available memory. Note that this stack is 
not the one used for storing the return address of the subroutines, but the computation stack. There are 
several stacks in this computer, minimum two, one for the returns and another for the computations. 

In this type of computer we normally do not need a memory address register because the main memory is 
normally only used for the program. When the application requires storage memory then it might be good to 
have another section of memory devoted to random storage and that one will have its own memory address 
register. 

There is a language, FORTH, that simulates the stack computer in a normal computer. FORTH is a language 
that was developed by Charles Moore, a computer programmer who got tired of the redundancies, and the 
limitations of the computer languages. He was working at the time in the National Radio Astronomical 
Observatory, so the language has many interesting characteristics, one of the most important ones is that it is 
the fastest high level language. The language simulating a stack computer in software runs almost at the 
speed of the assembler language for the computer in which it is implemented. If you compare it with other 
high level languages, the difference is enormous. Charles Moore, in cooperation with others, has now 
developed a computer that works in FORTH, the Novix NC4000. 

9.3.- Stack Computer Instructions. 

Now, how do we implement a high level instruction in micro code. First, we could have an assembler, as it is 
normal with all programs, that reads the input and converts the commands into codes equivalent to the 
instructions or opcodes we have been talking about. We could also go the iterative route where the micro 
code has commands to read the keyboard and interprets the input stream as commands. 

Let us start by analyzing some instructions for our computer and, doing the same as we have done before, 
having a coding form similar to the one we used before, with address driver, data bus driver, computation 
stack pointer, computation stack read/write, return stack pointer, return stack read/write, program counter, 
memory address register, memory read/write, who latches the data, arithmetic logic unit instruction, Am2910 
instruction, etc. So consider we want to implement the instruction ADD; that is, add the top two numbers in 
the stack. 
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First the data bus is driven by the computation stack; the computation stack pointer is incremented at the end 
of the clock, the arithmetic logic unit will latch and the arithmetic logic unit has the instruction D pass Q, the 
Am2910 has continue. 

The second step we leave the computation stack driving the bus, we will not change the stack pointer in this 
step because we need to store the result, the arithmetic logic unit latches, the arithmetic logic unit has the 
instruction D+Q to Q because the data bus is busy. 

Finally we change the computational stack to write, the pointer is not changed, the stack latches, the data bus 
is driven by the arithmetic logic unit. 

Note that there are no registers and the register addresses are connected to the micro code and are used only 
by the micro code. Note also that the instruction we have developed is comparable to the add memory to 
memory with the result stored in memory, an instruction that is normally quite complex and long because we 
need to read the address of both operands. This instruction is almost as fast as the register to register in the 
computers we have been studying. 

Let us look now into another instruction that is very different from the instructions that are normally 
implemented in a computer, this is the instruction SWAP, which is a typical stack instruction. The instruction 
SWAP inverts the order of the top two elements in the stack. This instruction is very useful in subtraction to 
change the order of the two numbers we wish to subtract. 

The first line is the same as before. The second line is similar in which we move the second element in the 
stack to register 0 in the arithmetic logic unit and the Am2910 continue. 

The next steps moves the content of register Q back into the stack so the arithmetic logic unit drives the data 
bus, the stack writes, the stack pointer is decremented, the arithmetic logic unit has the instruction Q OR 0, 
and the Am2910 has continue. 

The final step moves the content of register 0 back to the stack. For this purpose we need to maintain the 
arithmetic logic unit driving the bus, the stack will still write, the stack pointer is not changed, and the 
Am2910 has zero. Note the use of all the registers in the computer as auxiliary registers for the micro code. 

There are other instructions typical to stack computers like ROL that changes the position of the top three 
elements of the stack. There are two ways for implementing this instruction: one is to save the top of the 
stack in the arithmetic logic unit and then move the next two elements to their new positions and finally bring 
the element that was stored in the stack to its own position. This procedure has the problem that a lot of time 
is spent changing the address of the stack. Another way to implement this instruction is to bring the three 
elements to the arithmetic logic unit and then put them back in the stack in the new order. Note that the 
execution of this complex instruction takes only 6 microcycles plus the fetch. The other procedure takes 9 
microcycles. Performing this operation using a normal assembler language will take at least six instructions, 
each one taking several cycles. 

Another possibility is the PICK that permits to get a copy of any value in the stack and put it on top of the 
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stack. To execute the instruction we need to increment the stack pointer n times, pick the value, then 
decrement the pointer n+1 times, or save the stack pointer, and put the value back as the new top of the stack. 
Note that we could use the arithmetic logic unit to add n to the stack pointer and later subtract n+1 from the 
stack pointer, but this requires paths from the input and output of the stack pointer to the data bus, that up to 
this moment have not been considered. Since this is one of the few instructions requiring these paths, they are 
not used. 

Now we wish to look into the DO loop. The DO loop is not trivial. We are talking about the typical 
FORTRAN DO loop. We can not use the counter of the Am2910 because in any DO loop we want to have 
access to the counter of the loop. We could say for example, print I, or I+A, or any other use of the index of 
the loop. In FORTH the problem is solved by calling I the top of the return stack; that is, there is an 
instruction I that copies the top of the return stack into the computational stack that is very easy to implement 
in micro code. Then, when the loop starts, we put the pointers for the loop in the return stack. There is 
naturally the restriction that we cannot have incomplete operations inside a DO loop. 

The statement in FORTH is 1 7 DO xxxxx LOOP. The computer finds the 1 and puts it in the stack. Then it 
finds the 7 and puts it on top of the stack. Then it finds the DO and it has to enter into the loop so let us 
bypass that operation for the moment. Then it performs the operations of the loop and finally it reaches the 
instruction LOOP or CONTINUE. 

At this moment, the computer has to increment the index, compare it with the end, if I is equal to or larger 
that the end of loop, the loop has been satisfied; if it is not equal, it goes back to the beginning of the loop. 
Then when executing the DO statement we need to save some place, in a loop stack for example, the address 
of the beginning of the loop. Inside the DO loop we have the right of changing the computation stack, so, we 
have to move the two pointers to another stack. Note that all we have said can be done in micro code. The 
address of the beginning of the loop is only the program counter at that moment, so we need a path from the 
output of the program counter into the data bus which is also used by the calls for subroutines. The program 
counter must also be loadable, so we can produce jumps. 

The DO loop is very similar to the call for subroutine in the Am2910 that does not destroy the return address. 
It is very easy to perform the loop now, we increment the top of the stack, change the pointer, move the value 
to the arithmetic logic unit, compare them and at the same time move the pointer again. If the loop has not 
ended, the loop stack is copied into the program counter; if the loop has ended then the pointer to the loop 
and return stacks are moved up destroying the pointers and the return address and the program continues with 
the next address. 

This is one of the most complex instructions for a stack computer as you can easily see. You see that 
everything can be done in micro code. 

Note that if we have an instruction to copy the top of the return stack to the top of the computation stack, we 
can obtain the value of the index for whatever use we have. 

So we see it is possible to develop a stack computer whose primitive language has high level instructions. 
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9.4.- High Level Microcoded Instructions. 

Now, imagine that we do not have a stack computer but a normal architecture and we want to see if we can 
implement the DO loop in micro code. We can as long as the hardware has access to some of the registers 
where the programmer cannot access. For example, we can take two registers to store the index and the end 
of the loop and another for the return address. A big restriction arises that we cannot nest do loops. In the 
stack computer it is possible to nest loops. Another solution is to use two registers as stack pointers and 
assign an area of memory to the micro code and proceed the same way as with the stack computer. 

Let us implement the DO loop in this form in the computer we were studying before. The data bus is driven 
by the arithmetic logic unit, the address bus with the stack pointer, and we write in memory. We are storing 
the registers in the stack and the stack pointer will decrement at the end of the clock. There are two ways to 
work with the stack pointer, one where it points to the first empty location and the pointer is decremented 
after storing and incremented before reading. The other operation is the opposite where we decrement the 
stack pointer before writing and increment after reading. This method has the advantage that the top of the 
stack can be read without changing the pointer. 

In the same way we store the other two registers used by the DO loop, in the stack. 

Then, we want to store the two indices for the loop. These indices must be in the program memory just after 
the instruction DO and consequently we drive memory with the program counter to get them to the two 
registers. Next, we proceed in the same way to move the program counter into another one of the registers. 

Now we are ready to continue with the operation of the program. 

In the execution of continue we increment the register that contains the index and compare to the register 
with the end of the loop. If the loop has ended, we pull the three values from the stack to the registers, and 
continue. If the loop has not ended we move, without destroying it, the content of the proper register to the 
program counter; that is to say, we execute a Jump indirect through that register. 

So, the implementation of complex high level instructions is perfectly possible in any type of computer. 

In the same way it is possible to work with the IF --- THEN ---- ELSE ---- ENDIF construct. The computer 
executes it by ignoring the IF but only marking that an IF is being executed, if necessary for testing purposes. 
When the THEN is found it is interpreted as a branch on condition. If the condition is not zero, the computer 
continues, if not it searches for the ELSE. If the computer executes the THEN it works normal until it finds 
the ELSE, which is then interpreted as an unconditional branch to the ENDIF. In any case, when the 
computer finds the ENDIF it erases the pointer that indicates it is working in an IF construct. That is, when 
the computer finds the ENDIF, it continues normal execution. The two branches can be done simply by a 
micro code that advances the program counter and reads the value until it finds the given opcode. 

The above conditions refers to the case where the computer works without a compiler, only an interpreter 
that looks at the input string. If the computer works with a compiler then the compiler changes the construct 
into the proper branches and the micro code becomes very simple. This construct is then changed into ------- 
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Branch if true to ELSE --------- Branch Unconditionally to ENDIF ELSE ------- ENDIF. 

So, we have several examples that building a computer that works with high level instructions is not only 
possible but desirable. That it is not necessary to develop a computer always working with a low level, 
primitive, simple language. The advantage naturally, is speed. 

Finally, it is perfectly possible to have a compiler in micro code that executes the program in two passes, first 
it compiles it and stores it in some place and then executes that code. Something like the normal operation of 
a FORTRAN program but all executed at the micro code level. It is possible that the user might save the 
compiled program for later use, as it is possible in the software version. 

The micro code is a very powerful tool for the design of computers, because it has many of the characteristics 
of hardware and of software. It is really hardware but it has most of the advantages and few of the limitations 
of software. 

We have now the problem of the word size. When we talk in assembler language with the complex 
instructions that perform simple operations, there is a big advantage in a long word so the complex 
instruction uses most of the time one word. When we talk about high level language we have the problem 
that we have simple instructions that perform complex operations. Take the case of the DO, that is very 
simple and performs quite a complex operation. In this case we might want to have a short word, 8 or at the 
most 12 bits; probably 8 will be enough. So, in this case, there is another different idea, the idea of separating 
the program and the data with different memory words for data memory, and for program memory. So we 
can end up with 8 bits for program memory, 64 bits for data memory, and 24 bits for address. 

9.5.- Some Final Thoughts. 

The picture for a person who wants to design with bit slice is bright, because we are not limited to AMD as 
the only source. All these chips have second sources which assure the supply. The problem is that for all 
practical purposes we are limited to the ingenuity of AMD engineers. There are very few other manufactures 
designing bit slice chips. Intel manufactures a couple of chips, Motorola is the most aggressive at the 
moment, increasing their number of chips for bit slice, Texas Instruments produces a few chips, Analitic 
Memories, Signetics and Fairchild also produce some chips. Nobody produces the whole line of devices like 
AMD. 

Something else that is interesting to consider on the topic of fast chips is, for example multipliers. As long as 
you satisfy the conditions of the chips, there is no reason why they cannot be used in a non-bit slice 
computer. Although you will not be able to work as fast as the chip works, it will be much faster than any 
other solution. You will naturally have to fake the micro code. 

Something else that is interesting to mention is that we have been talking about computers and controllers but 
there is absolutely no reason why we cannot use bit slice to design digital filters for example, an on-line 
digital filter. A digital filter involves multiplications and additions and a few locations of memory. So, when 
the situation justifies it, it is possible to design digital filters that work very fast, as when the sampling rate is 
high. The storage needed will depend on the length of the filter. 
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In the same way we could develop, for example, a co-processor for linear predictive coding, or whatever we 
want. A chip exists for obtaining the linear predictive coding of a continuous sample of speech, but if we 
want to develop linear predictive coding for a higher sampling rate, bit slice could provide a solution to the 
problem. Many other applications can be found as co-processors, pre-processors, post-processors, etc. The 
area of application in controllers and computers is naturally the area for which these devices have been 
designed for. 

The question that remains is if bit slice is the only alternative that we have for the design of large computers. 
Note that the solution with multiprocessing has the problem which is similar to an office with one girl 
working there and you get some work done. If you add another girl you do not get double of the output, you 
get much less; another girl added does not increase the output in proportion to the number of girls but each 
one that is added, increases less the output. A moment gets where the girls start running into each other and 
the output goes to zero. The same thing happens with multiprocessing. 

The pressure for bigger and larger computer is there. What we have developed is not top of the line; 100 ns 
per instruction is not too fast. The question is what avenues you have for developing a top computer. The 
only other avenue is to design the computer and building the pieces in large scale integration so they work as 
fast as possible. 

You have to consider that the normal devices are getting faster; consider the 74Hxx family is CMOS devices 
with high speed and low power consumption. Recall that the bit slice has a large power consumption, each 
chip Am2901 takes 265 milliamps. Our computer has eight of them and they alone take 2 amps. This is a lot 
of heat to take out of the case. 

I imagine that now that CMOS is getting faster somebody will come with a family of bit slice in CMOS. 

9.6.- The Internal Buses. 

One problem we have not talked too much about is the problem of the buses. We have only one bus in our 
control unit. This is not necessary. It is possible to have several buses and have connections between the 
buses so we can parallel certain operations when the buses have been properly divided. This requires an 
analysis of what operations can be performed in parallel if the buses are divided. The reason we did not 
analyze this problem is that this does not correspond to an introductory course. The other extreme to our 
computer is not to have buses but a switching network in which every device can be connected to every other 
device, without affecting the operation of the others. A large switching network can become so complex that 
the added delay in the multiplexers reduces the efficiency of the unit. 

9.7.- A Summary. 

It is interesting to see what important concepts we have studied: 

●     Pipelining and all related concepts; 
●     Microcode and related topics; 
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●     General architecture of computers; 
●     The execution of the steps; 
●     Synchronous and asynchronous operation; 
●     Design with a computer and designing a computer; 
●     Design of the control unit; 
●     Ways to implement the control unit; 
●     The micro coded solution; 
●     The hardwired solution; 
●     The concept of bit-slice; 
●     The sequencer; 
●     The arithmetic logic unit; 
●     Architectural details; 
●     The Program Controller; 
●     Location of the program counter; 
●     The problem of the buses; 
●     Location of the stack pointer; 
●     Location of the memory address register; 
●     Use of intermediate registers; 
●     The problem of timing; 
●     Timing of the operation of the steps; 
●     Timing by delay through all paths; 
●     Analysis of the bottle necks; 
●     Microprogramming; 
●     The instruction set. 
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