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nearly proportional to the square of the velocity saturation voltage, LECRIT , or the square of channel
length and ECRIT . This suggests that ICCRIT might be approximately 13% !!0"065#m/0"18#m$2$ of
the value of 25 shown in Figure 3.25 for an L= 0"18#m, nMOS device, or 3.3 for an L= 0"065#m,
nMOS device. Such a critical value of ICCRIT is well into moderate inversion and is likely too low
since ICCRIT was derived for operation in strong inversion. A modified interpolation in Equation 3.42
may be required as velocity saturation effects begin to encroach closer to moderate inversion for very
short-channel devices. The designer can minimize velocity saturation reduction of gm/ID by increasing
ICCRIT by increasing channel length and using pMOS devices that have higher ECRIT . Additionally,
operation can be confined to lower IC values in moderate inversion.

3.8.2.3 Predicted and measured values

Figure 3.26 shows measured and predicted gm/ID for L= 0"18, 0.28, 0.48, 1, and 4#m, nMOS devices
in the 0"18#m process described in Table 3.2. Measurements for L = 2#m devices are not shown
but lie essentially on the L = 4#m values. gm/ID is predicted as described for Figure 3.24, using
the process parameters previously mentioned for Figure 3.25. gm/ID is presented as a function of the
inversion coefficient from IC = 0"01 (deep weak inversion) to 100 (deep strong inversion) over a wide
range of channel lengths, providing a full characterization of the process for analog design.

In Figure 3.26, gm/ID is constant and maximum in weak inversion,9 before decreasing modestly in
moderate inversion. In strong inversion, gm/ID decreases as 1/

√
IC for the long-channel devices that
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Figure 3.26 Predicted and measured transconductance efficiency, gm/ID, versus inversion coefficient, IC, for
L = 0"18, 0.28, 0.48, 1, and 4#m, nMOS devices in a 0"18#m CMOS process. gm/ID is maximum in weak
inversion, decreases modestly in moderate inversion, and decreases as 1/

√
IC in strong inversion. For short-channel

devices at high IC% gm/ID decreases significantly due to velocity saturation and is nearly proportional to 1/IC. At
high IC% gm/ID decreases modestly for all channel lengths due to VFMR effects. gm/ID is similar for all CMOS
processes

9 gm/ID actually peaks very slightly in weak inversion before decreasing slightly for operation deeper into weak
inversion because of the slight increase in n.
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experience little velocity saturation. However, at high levels of IC% gm/ID decreases nearly as 1/IC
for the short-channel devices that experience significant velocity saturation. gm/ID decreases more
for short channel lengths due to increased velocity saturation effects, while it decreases modestly for
all channel lengths due to VFMR effects. No velocity saturation decrease in gm/ID is observed in
weak inversion and little decrease is observed in moderate inversion. Small velocity saturation effects
in moderate inversion, even for short-channel devices, are a major advantage of operation here. The
decrease in gm/ID in strong inversion for short channel lengths, however, is significant and must be
considered in design.

Figure 3.27 shows measured and predicted gm/ID for L= 0"18, 0.28, and 1#m, pMOS devices in
the 0"18#m process described in Table 3.2. Measurements for L= 0"48, 2, and 4#m devices are not
shown but lie essentially on the L= 1#m values. gm/ID is predicted using a fixed value of n= 1"33,
thermal voltage of UT = 25"9mV !T = 300K$% ECRIT = 14V/#m, and & = 0"35/V from Table 3.2.
Channel length is adjusted from the drawn values given by subtracting DL= 0"051#m, which is also
listed in the table. The inversion coefficient for measured data is found using a technology current of
I0 = 0"135#A from the table.
In weak and moderate inversion !IC < 10$, pMOS gm/ID shown in Figure 3.27 is nearly identical

to that of nMOS devices shown in Figure 3.26. However, the gm/ID decrease in deep strong inversion
!IC = 100$ at short channel lengths is significantly less for pMOS devices because of less velocity
saturation resulting from a higher ECRIT = 14V/#m compared to 5"6V/#m for nMOS devices. While
the gm/ID decrease at short channel lengths is greater for nMOS devices due to velocity saturation, the
gm/ID decrease at long channel lengths is greater for pMOS devices because of higher VFMR effects
resulting from a higher mobility reduction factor of &= 0"35/V compared to 0.28/V for nMOS devices.
Like the drain current shown in Figures 3.11 and 3.12, and VEFF shown in Figures 3.14 and 3.15,
pMOS gm/ID is nearly equal to that of nMOS devices shown if pMOS channel length is decreased
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Figure 3.27 Predicted and measured transconductance efficiency, gm/ID, versus inversion coefficient, IC, for
L= 0"18, 0.28, and 1#m, pMOS devices in a 0"18#m CMOS process. gm/ID decreases less at high IC for short-
channel devices compared to the nMOS values shown in Figure 3.26 because of lower pMOS velocity saturation.
At high IC% gm/ID decreases modestly for all channel lengths due to VFMR effects. Measurements not shown
for L = 0"48, 2, and 4#m devices lie nearly on the measured, L = 1#m curve. gm/ID is similar for all CMOS
processes


