
Rev. 0890A–02/99

Embedded RISC
Microcontroller
Core
Features
• Utilizes the AVR® Enhanced RISC Architecture

– High Performance and Low Power
– Sleep Mode to Conserve Power

• 120 Powerful Instructions - Most Single Clock Cycle Execution
• 32 x 8 General Purpose Working Registers
• Operating Range: 1.6 to 3.6 Volts
• Fully Static Operation, 0-33 MHz (0.5 micron), 0-45 MHz (0.35 micron)
• Seven External Interrupt Sources
• AVR Scalable Test Access Interface
• Test Vectors for >99% Fault Coverage
• Verilog and VHDL Simulation Models
• Faster Version can be Created Upon Request

Description
The AVR® Embedded RISC Microcontroller Core is a low-power CMOS 8-bit micro-
processor based on the AVR enhanced RISC architecture. By executing powerful
instructions in a single clock cycle, it achieves throughputs approaching 1 MIPS per
MHz allowing the system designer to optimize power consumption versus processing
speed.

The AVR Core is based on an enhanced RISC architecture that combines a rich
instruction set with the 32 general purpose working registers. Each of the 32 registers
are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The
resulting architecture is more code efficient while achieving throughputs up to ten
times faster than conventional CISC microcontrollers.

The architecture supports high level languages efficiently as well as extremely dense
assembler code programs. It also provides any number of external and internal inter-
rupts.

The AVR Core is provided in an encrypted netlist format with Verilog and VHDL simu-
lation models, a fully functional test bench and ATPG vectors for >99% fault coverage.
It is supported with a full suite of program and system development tools including:
macro assemblers, ANSI C Compilers, program debugger/simulators, and in-circuit
emulator.
1

I/O Configuration
Figure 1. AVR Core I/O Configuration

AVR
CORE

irqlines

irqack

irqackad

sleepi

irqok

globint

pclden

pcld
wdri

cp2

ireset

cpuwait

pc

inst

adr

iore
iowe

ramwe

dbusout

Interrupt

Sleep Control

Memory ProgrammingWatchdog

Clock

Control

Program Memory

Data Memory

dbusin

Scan Test

ramadr

coresi

coreso

I/O Registers

corese

ramre

leavbus

lbit12

astacp2

astamode

astase

astasi

astaso

ASTA Test
AVR Core2

AVR Core
I/O Description
Table 1. I/O Description

Name
Input/
Output Function

Clock Port

cp2
Clock Input Any register in the core will update its contents only on the positive edge of cp2.

Control Ports

ireset
AVR Core Reset Input

When high, ireset causes the core to reset the program counter pc, the status
register SREG, and the stack pointer, loading all with zeros ($0000). When
ireset is high and leavbus is inactive, zero ($00) is driven on the Data Bus
dbusout, and the I/O Write Strobe iowe is held high while the I/O Read Strobe
and the Data Memory Strobes (ramre, ramwe) are held low. This allows I/O
registers to be reset by reading zero from the Bus.

cpuwait
Wait CPU Input

This signal is used to add wait cycles to allow slow memory accesses. When
cpuwait is high, the core repeats the current cycle (only for instructions
addressing the RAM space such as ‘ld’ or ‘st’). When cpuwait is released, the
cycle is executed as normal. For details, refer to the timing diagrams below.

leavbus
leave dbusout Input

This signal is used to control dbusout externally. When high, dbusin is
connected directly to dbusout, and all I/O and Data Memory Strobes are held
low.

lbit12
Logical and between
Lock bit 1 and 2

Input Disables ‘lpm’ and ‘elpm’ instructions.

Program Memory Ports

pc [15:0]
Program Counter Output Program Memory always returns the instruction stored at the address pointed

to. The size of this port determines the program memory size.

inst [15:0]
Program Memory data
bus

Input Instruction from Program Memory is presented to the core, selected by the
address on pc address bus.

I/O Registers

adr [5:0]
I/O Register address bus Output Valid only when accompanied by a strobe on iore or iowe lines.

iore
I/O Registers read strobe Output

Used only with the 64 I/O memory locations. These locations can be mapped
into the regular Data Memory Address Space. The core will then issue an iore
or ramre read strobe based on target address.

iowe
I/O Registers write strobe Output

Used only with the 64 I/O memory locations. These locations can be mapped
into the regular Data Memory Address Space. The core will then issue an
iowe or ramwe read strobe based on target address.

Data Memory Ports

ramadr [15:0]
Data Memory address
bus

Output Valid only when accompanied by a strobe on ramre or ramwe lines.

ramre
Data Memory read strobe Output Used to address the SRAM memory locations. The core will issue an iore or

ramre read strobe based on target address.
3

ramwe
Data Memory write strobe Output Used to address the SRAM memory locations. The core will issue an iore or

ramre read strobe based on target address.

dbusin [7:0]
Data Bus Input Input All data transfers use dbusin or dbusout to transfer data into or out of the

core. Memory locations are selected by the address on ramadr (Data Memory
Address). I/O Register locations are selected by the address on adr.dbusout [7:0]

Data Bus Output Output

Interrupt Ports

irqlines [6:0]
Interrupt Request Lines Input

Each interrupt source drives its own dedicated IRQ line into the Core. When the
global interrupt bit is enabled, a high level (one) on any interrupt line will push
the current pc on the stack. The associated interrupt handler vector address is
put in the Program Counter pc before execution is restarted.

irqack
Interrupt Acknowledge Output

irqack will go high (one) for one clock cycle to acknowledge the interrupt being
executed. This is often used as input to interrupt flags designed to clear when
their corresponding interrupt handler is executed. The irqackad lines identify
which interrupt is being executed during the same cycle.

irqackad [2:0]
Interrupt Acknowledge
Address

Output The address of the interrupt being executed. The address is valid only if the
irqack signal is set (one).

Sleep Controller Ports

sleepi
Sleep instruction Output Set while executing the ‘sleep’ instruction. This should cause the sleep

controller to stop the clock to the core if sleep mode has been enabled.

irqok
Interrupt Request OK Output

When in sleep mode (clock stopped), this signal will tell the sleep controller that
an interrupt exists which should cause the clock to restart. The sleep controller
should start the core clock as soon as possible.

globint
Global interrupts enabled Output This is the current state of the I bit in the Core State Register. This signal is

used to qualify wake-up from power-down by external interrupts.

Memory Programming Ports

pclden
enable pc load Input Enable pc load with pcld signals.

pcld [1:0]
Load Program Counter Input Load Program Counter pc from dbusin if pclden is active. pcld [1] load high

byte, pcld [0] load low byte.

Watchdog Port

wdri
Watchdog reset
instruction

Output Set while executing the ‘wdi’ (watchdog reset) instruction.

Scan Test Ports

corese Input Core Test Scan Enable

coresi [2:0](1) Input Core Test Scan Inputs

coreso [2:0](1) Output Core Test Scan Outputs

Table 1. I/O Description (Continued)

Name
Input/
Output Function
AVR Core4

AVR Core
Note: 1. Width is subject to change.

AVR Core Architecture
Figure 2. Block Diagram of the AVR Core and a Typical Set of Peripherals

The AVR core is based on a Harvard architecture with separate memories and buses for program and data (Figure 2). The
memory spaces in the AVR architecture are all linear and regular memory maps.

ASTA Test Ports

astacp2
ASTA clock

Input Any register in the ASTA interface will update its contents only on the positive
edge of astacp2.

astamode [1:0](1) Input ASTA mode inputs used to swap between ASTA mode or normal function
mode.

astase [8:0](1) Input ASTA Test Scan Enables

astasi [8:0](1) Input ASTA Test Scan Inputs

astaso [8:0](1) Output ASTA Test Scan Outputs

Table 1. I/O Description (Continued)

Name
Input/
Output Function

ALURAM
Working Data

A
V

R
 C

O
R

E

Standard
Interfaces

Watchdog
Timer

Interrupt
Controller

Timer
Counters

Instruction
Register

32
General
Purpose
Registers

EEPROM
Reference

Data

Program
Counter

Digital Data
In/Out

System-
specific
Logic

Analog
Comparators

ADC/DAC

UART

System
Clock

Source

ROM or
Flash Program

Memory

Serial
Peripheral
Interface

Analog Data
In/Out

Program
Download

Serial Data
In/Out

16-bit
program bus

8-bit data bus

Status
Register
5

Figure 3. AVR Data Memory Map

The central AVR architectural element is a fast-access register file containing 32 x 8-bit general purpose registers with a
single clock cycle access time. This means that during one clock cycle, one ALU operation is executed. Two operands are
accessed from the register file, the operation is executed, and the result is stored back in the register file - in one clock
cycle. The ALU supports arithmetic and logic functions between registers or between a constant and a register, as well as
single register operations.

The program memory can be implemented in ROM or Flash memory. It is accessed with a single level of pipelining. While
one instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to
be executed in every clock cycle. All AVR instructions have a single 16-bit word format, meaning that every program mem-
ory address contains a single instruction. During interrupts and subroutine calls, the return address is stored on a software
stack.

The 8-bit data memory (Figure 3) has 16-bit direct addressing. This gives a potential memory space of 64K bytes. The data
memory address space includes the register file, and a 64-address I/O memory space for peripheral functions such as con-
trol registers, timer-counters and A/D converters. As shown in Figure 3, the I/O memory space is automatically re-mapped
for access by the register file.

$ 00

$ 1F

$ 20

$ 5F

$ 60

$ FFFF

$ 00

$ 3F

32*8-bit Working
Register File

I/O
Registers

Regular
Data

Memory

I/O
Registers
AVR Core6

AVR Core
The General Purpose Register File
The figure below shows the structure of the 32 general purpose working registers in the CPU.

Figure 4. AVR CPU General Purpose Working Registers

All the register operating instructions in the instruction set have direct and single cycle access to all registers. The only
exception is the five constant arithmetic and logic instructions SBCI, SUBI, CPI, ANDI and ORI between a constant and a
register and the LDI instruction for load immediate constant data. These instructions apply to the second half of the regis-
ters in the register file - R16 to R31. The general SBC, SUB, CP, AND and OR and all other operations between two regis-
ters or on a single register apply to the entire register file.

As shown in Figure 4, each register is also assigned a data memory address, mapping them directly into the first 32 loca-
tions of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization
provides great flexibility in access of the registers, as the X,Y and Z registers can be set to index any register in the file.

THE X-REGISTER, Y-REGISTER AND Z-REGISTER
The registers R26 to R31 have some added functions to their general purpose usage. These registers are address pointers
for indirect addressing of the Data Space. The three indirect address registers X, Y and Z are defined as:

Figure 5. The X, Y and Z Registers

7 0 Addr.

R0 $00

R1 $01

R2 $02

…

R13 $0D

General R14 $0E

Purpose R15 $0F

Working R16 $10

Registers R17 $11

…

R26 $1A X-register low byte

R27 $1B X-register high byte

R28 $1C Y-register low byte

R29 $1D Y-register high byte

R30 $1E Z-register low byte

R31 $1F Z-register high byte

15 0

X - register 7 0 7 0

R27 ($1B) R26 ($1A)

15 0

Y - register 7 0 7 0

R29 ($1D) R28 ($1C)

15 0

Z - register 7 0 7 0

R31 ($1F) R30 ($1E)
7

In the different addressing modes these address registers have functions as fixed displacement, automatic increment and
decrement (see the descriptions for the different instructions).

The ALU - Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a
single clock cycle, ALU operations between registers in the register file are executed. The ALU operations are divided into
three main categories - arithmetic, logical and bit-functions.

Data Memory Configuration
The following figure shows how the AVR Core Memory is organized:

Figure 6. SRAM Organization

The first 96 locations address the Register File + I/O Memory, and the next locations address the external data memory.

The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect, Indirect with
Pre-Decrement and Indirect with Post-Increment. In the register file, registers R26 to R31 feature the indirect addressing
pointer registers.

The direct addressing reaches the entire data space.

Register File Data Address Space

R0 $0000

R1 $0001

R2 $0002

… …

R29 $001D

R30 $001E

R31 $001F

I/O Registers

$00 $0020

$01 $0021

$02 $0022

… …

$3D $005D

$3E $005E

$3F $005F

External Memory

$0060

$0061

…

…

$FFFF
AVR Core8

AVR Core
The Indirect with Displacement mode features a 63 address location reach from the base address given by the Y or
Z-register.

When using register indirect addressing modes with automatic pre-decrement or post-increment, the address registers X, Y
and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O registers and the 64K bytes of external data SRAM in the AVR Core are
all accessible through all these addressing modes.

See the next section for a detailed description of the different addressing modes.

Program and Data Addressing Modes
The AVR Enhanced RISC microcontroller core supports powerful and efficient addressing modes for access to the program
memory and data memory (SRAM, Register File and I/O Memory). This section describes the different addressing modes
supported by the AVR architecture. In the figures, OP means the operation code part of the instruction word. To simplify,
not all figures show the exact location of the addressing bits.

REGISTER DIRECT, SINGLE REGISTER RD

Figure 7. Direct Single Register Addressing

The operand is contained in register d (Rd).

REGISTER DIRECT, TWO REGISTERS RD AND RR

Figure 8. Direct Register Addressing, Two Registers

The operands are contained in registers r (Rr) and d (Rd). The result is stored in register d (Rd).
9

I/O DIRECT

Figure 9. I/O Direct Addressing

The operand address is contained in 6 bits of the instruction word. n is the destination or source register address.

DATA DIRECT

Figure 10. Direct Data Addressing

A 16-bit Data Address is contained in the 16 LSBs of a two-word instruction. Rd/Rr specify the destination or source regis-
ter.

DATA INDIRECT WITH DISPLACEMENT

Figure 11. Data Indirect with Displacement

The operand address is the result of the Y or Z-register contents added to the displacement contained in 6 bits of the
instruction word.
AVR Core10

AVR Core
DATA INDIRECT

Figure 12. Data Indirect Addressing

The operand address is the contents of the X, Y or the Z-register.

DATA INDIRECT WITH PRE-DECREMENT

Figure 13. Data Indirect Addressing With Pre-Decrement

The X, Y or the Z-register is decremented before the operation. The operand address is the decremented contents of the X,
Y or the Z-register.

DATA INDIRECT WITH POST-INCREMENT

Figure 14. Data Indirect Addressing With Post-Increment

The X, Y or the Z-register is incremented after the operation. The operand address is the content of the X, Y or the Z-regis-
ter prior to incrementing.
11

CONSTANT ADDRESSING USING THE LPM INSTRUCTION

Figure 15. Code Memory Constant Addressing

Constant byte address is specified by the Z-register contents. The 15 MSBs select the word address (0 - 32K) and the LSB
selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1). If ELPM is used, LSB of the RAM Page Z register -
RAMPZ is used to select low or high memory page (RAMPZ0 = 0: Low Page, RAMPZ0 = 1: High Page).

DIRECT PROGRAM ADDRESS, JMP AND CALL

Figure 16. Direct Program Memory Addressing

Program execution continues at the address immediate in the instruction words.

INDIRECT PROGRAM ADDRESSING, IJMP AND ICALL

Figure 17. Indirect Program Memory Addressing

Program execution continues at address contained by the Z-register (i.e. the pc is loaded with the contents of the Z-regis-
ter).

31 1621 20

15 0

OP 6 MSBs

16 LSBs
AVR Core12

AVR Core
RELATIVE PROGRAM ADDRESSING, RJMP AND RCALL

Figure 18. Relative Program Memory Addressing

Program execution continues at address pc + k + 1. The relative address k is -2048 to 2047.
13

Data Memory Access
Data Memory is accessed in two clock cycles. During the first cycle of a write instruction, the data is driven onto dbusout.
During the second cycle, the core issues an address on ramadr and the ramwe strobe. When ramwe is high and ramadr
matches the address of an existing memory location, the memory should update its contents only if this occurs on the rising
edge of cp2. As the new data is no longer valid on dbusout, the data must be latched outside the core.

During the second cycle of a read instruction, the core issues an address on ramadr and the ramre strobe. While ramre is
high and ramadr matches the address of an existing memory location, the memory should drive its contents onto dbusin.

Data memory space from address $00 to $5F cannot be used for SRAM data space because it is used for the general
purpse register file and the I/O registers (see Figure 3 on page 6).

Figure 19. Data Memory Access. Read is combinatorial, write is synchronous. During write, the data value disappears from
dbusin in cycle 2 and needs to be latched for one cycle outside the core.

Figure 20. AVR SRAM Memory Read, using 'ld' or ‘lds’ instruction.

cp2

A

DI

WE

ramwe

ramadr
dbusin

DOD Q

ramre

dbusout

MUX from I/Os

cp2

ramre

ramadr

dbusin valid

valid

Id
cycle 2

next instructionId
cycle 1
AVR Core14

AVR Core
Figure 21. AVR SRAM Memory Read, using 'ld' or ‘lds’ instruction with one wait state.

Figure 22. AVR SRAM Memory Write, using ‘st’ or ‘sts’ instruction.

Note: Not valid when the source register is subject to post-incrementation or pre-decrementation, i.e. the instructions ‘st-Z/Z+,
r30/r31’, ‘st-Y/Y+, r28/r29’, ‘st-X/X+, r26/r27’.

cp2

cpuwait

ramadr

dbusin valid

valid

Id
cycle 2

next instructionId
cycle 1

Id
cycle 2

valid

ramre

X

cp2

ramwe

ramadr

dbusout valid 1valid

st
cycle 2

next instructionst
cycle 1

valid
15

Figure 23. AVR SRAM Memory Write, using ‘st’ or ‘sts’ instruction with one wait cycle.

Note: Not valid when the source register is subject to post-incrementation or pre-decrementation, i.e. the instructions ‘st-Z/Z+,
r30/r31’, ‘st-Y/Y+, r28/r29’, ‘st-X/X+, r26/r27’.

Stack Access
Figure 24. Pushing Program Counter to SRAM Stack with 'rcall/icall’ instruction.

cp2

cpuwait

ramadr

dbusout valid

valid

st
cycle 2

next instructionst
cycle 1

st
cycle 2

valid

ramwe

valid 1 valid 1

cp2

ramwe

dbusout

pc

rcall/icall/eicall
cycle 2

next
instruction

rcall/icall/eicall
cycle 1

ramadr

XX

inst XX

Stack Address Stack Address -1

PC low byte PC high byte

valid valid

valid valid

rcall/icall/eicall
cycle 3

program memory
access
AVR Core16

AVR Core
Figure 25. Popping Program Counter from SRAM Stack with 'ret/reti’ instruction.

Figure 26. Pushing Register to SRAM Stack with 'push’ instruction

cp2

ramre

dbusin

pc

ret/reti
cycle 2

next
instruction

ret/reti
cycle 1

ramadr

XX

inst XX

PC high byte PC low byte

valid

valid

ret/reti
cycle 3

ret/reti
cycle 4

X

X

Stack Address Stack Address -1

program memory
access

cp2

ramwe

ramadr

dbusout

valid

push
cycle 2

next instructionpush
cycle 1

valid
17

Figure 27. Popping to Register from SRAM Stack with 'pop’ instruction.

I/O Memory
The I/O space definition of the AVR Core is shown in the following table:

Note: In parentheses is the SRAM address as the registers can also be addressed as ordinary SRAM locations within the
address space $20 - $5F as described in “I/O Registers” below.

Note: Unused locations are not shown in the table

I/O Registers
All the peripheral status, control and data registers can be accessed by making them addressable in the I/O space by con-
necting adr, iore and iowe signals. The different I/O locations are directly accessed by the IN and OUT instructions trans-
ferring data between the 32 general purpose working registers and the I/O space. When using IN and OUT (SBIS and
SBIC), the I/O register address $00 - $3F must be used. As the I/O registers are also represented in the SRAM address
space, they can also be addressed as ordinary SRAM locations using “ld/lds” and “st/sts” instructions within the address
space $20 - $5F. The SRAM address is obtained by adding $20 to the direct I/O address. The SRAM address is given in
parentheses after the I/O direct address throughout this document. I/O registers within the address range $00 ($20) - $1F
($3F) are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be
checked by using the SBIS and SBIC instructions. Refer to the instruction set chapter for more details.

The different I/O and peripherals control registers are explained in the following sections.

Table 2. AVR Core I/O Space

Address Hex Name Function

$3F ($5F) SREG Status Register

$3E ($5E) SPH Stack Pointer High

$3D ($5D) SPL Stack Pointer Low

$3C ($5C) - Reserved for next AVR Core generation

$3B ($5B) RAMPZ RAMPZ Register

$3A ($5A)

- Reserved for next AVR Core generation$39 ($39)

$38 ($58)

$37 ($57)

- User specific I/O registers...

$00 ($20)

cp2

ramre

ramadr

dbusin

valid

pop
cycle 2

next instructionpop
cycle 1

valid
AVR Core18

AVR Core
Status Register
The core register most commonly read and written by software is the Status Register (SREG). This register is updated on
all arithmetic and logical instructions, and is also supported by special instructions in the instruction set. Software can also
access this register to store or manipulate register contents directly.

The AVR status register - SREG - at I/O space location $3F is defined as:

Bit 7 - I: Global Interrupt Enable:

The global interrupt enable bit must be set (one) for the interrupts to be enabled. The individual interrupt enable control
must be performed externally. If the global interrupt enable bit is cleared (zero), none of the interrupts are enabled,
independent of the external individual enable values. The I-bit is cleared by hardware after an interrupt has occurred,
and is set by the RETI instruction to enable subsequent interrupts.

Bit 6 - T: Bit Copy Storage:

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T bit as source and destination for the operated
bit. A bit from a register in the register file can be copied into T by the BST instruction, and a bit in T can be copied into
a bit in a register in the register file by the BLD instruction.

Bit 5 - H: Half Carry Flag:

The half carry flag H indicates a half carry in some arithmetic operations. See the Instruction Set Description for
detailed information.

Bit 4 - S: Sign Bit, S = N ⊕ V:

The S-bit is always an exclusive or between the negative flag N and the two’s complement overflow flag V. See the
Instruction Set Description for detailed information.

Bit 3 - V: Two’s Complement Overflow Flag:

The two’s complement overflow flag V supports two’s complement arithmetics. See the Instruction Set Description for
detailed information.

Bit 2 - N: Negative Flag:

The negative flag N indicates a negative result after the different arithmetic and logic operations. See the Instruction
Set Description for detailed information.

Bit 1 - Z: Zero Flag:

The zero flag Z indicates a zero result after the different arithmetic and logic operations. See the Instruction Set
Description for detailed information.

Bit 0 - C: Carry Flag:

The carry flag C indicates a carry in an arithmetic or logic operation. See the Instruction Set Description for detailed
information.

Bit 7 6 5 4 3 2 1 0

$3F ($5F) I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
19

The Stack Pointer - SP
The general AVR 16-bit Stack Pointer is effectively built up of two 8-bit registers in the I/O space locations $3E ($5E) and
$3D ($5D). As the AVR Core supports up to 64K bytes SRAM, all 16 bit are used.

The Stack Pointer points to the data SRAM stack area where the Subroutine and Interrupt Stacks are located. This Stack
space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are
enabled. The Stack Pointer is decremented by one when data is pushed onto the Stack with the PUSH instruction, and it is
decremented by two when data is pushed onto the Stack with subroutine CALL and interrupt. The Stack Pointer is incre-
mented by one when data is popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.

Extended Memory Pointer Registers - RAMPZ
The AVR architecture supports four pointers, X-, Y-, Z-, and Stack-Pointer. On systems with more than 64K bytes of pro-
gram memory, the Z-pointer will not reach the whole memory space with the 16 bits located in the General Purpose Regis-
ter File. For the Z-pointer to reach the entire memory area, the remaining bit is read and written by software through I/O,
through the register RAMPZ.

The RAMPZ register is normally used to select which 64K RAM Page is accessed by the Z pointer. As the AVR Core does
not support more than 64K of SRAM memory, this register is used only to select which page in the program memory is
accessed when the ‘elpm’ instruction is used. The different settings of the RAMPZ0 bit have the following effects.

RAMPZ0 = 0: Program memory address $0000 - $7FFF (lower 64K bytes) is accessed by ‘elpm’.

RAMPZ0 = 1: Program memory address $8000 - $FFFF (upper 64K bytes) is accessed by ‘elpm’.

Bit 15 14 13 12 11 10 9 8

$3E ($5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

$3D ($5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$3B ($5B) - - - - - - - RAMPZ0 RAMPZ

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 0 0 0 0 0 0 0 0
AVR Core20

AVR Core
I/O Memory Access
I/O registers can be accessed in a single clock cycle. During this clock cycle, the core will issue a 6-bit address on adr, and
either an iore or an iowe. While iore is high and adr matches the address of the register, the I/O register should drive its
contents onto dbusin. When iowe is high and adr matches the address of the register, the register should update its con-
tents only if this occurs on a rising edge of cp2.

Figure 28. A typical I/O Register Construction. Write is synchronous, read is combinatorial.

Figure 29. AVR I/O Register Read, using 'in' instruction. ‘dbusin’ is driven by I/O Register.

cp2

Address Decode

A

DI

WE

iowe

iore

adr[5:0]

dbusin

dbusout

MUX

from I/Os

from I/Os

cp2

iore

adr

dbusin valid

valid

in next instruction
21

Figure 30. AVR I/O Register Write, using ‘out’ instruction. ‘dbusout’ is driven by AVR Core.

As the I/O registers are also represented in the SRAM address space, I/O registers are accessible by regular memory
access instructions ‘ld/ldd/lds’ and st/std/sts’. The access will appear like any other memory access, but the address will be
presented on adr and mapped from the address range 0x20-0x5F used in SRAM, down to the 0x00-0x3F recognized by
the I/O registers. This operation is performed automatically by the core.

Figure 31. AVR I/O Register Read, using 'ld' instruction. ‘dbusin’ is driven by I/O Register.

Figure 32. AVR I/O Register Write, using ‘st’ instruction.

cp2

iowe

adr

dbusout valid

valid

out next instruction

cp2

iore

adr

dbusin valid

valid

Id
cycle 2

next instructionId
cycle 1

cp2

iowe

adr

dbusout valid

valid

Id
cycle 2

next instructionId
cycle 1
AVR Core22

AVR Core
Reset and Interrupt Handling
The AVR Core provides 7 different interrupt sources. These interrupts and the separate reset vector each have a separate
program vector in the program memory space. All interrupts are enabled by the I-bit in the status register.

The lowest addresses in the program memory space are automatically defined as the Reset and Interrupt vectors. The
complete list of vectors is shown in . The list also determines the priority levels of the different interrupts. The lower the
address, the higher the priority level. ireset has the highest priority, and next are irqlines[0] to irqlines[6].

The most typical and general program setup for the Reset and Interrupt Vector Addresses are:

Address Labels Code Comments

$000 rjmp RESET ; Reset Handle

$001 nop ;

$002 jmp INT0 ; IRQ0 Handle

$004 jmp INT1 ; IRQ1 Handle

$006 rjmp INT2 ; IRQ2 Handle

$007 nop

$008 rjmp INT3 ; IRQ3 Handle

$009 nop

$00A rjmp INT4 ; IRQ4 Handle

$00B nop

$00C jmp INT5 ; IRQ5 Handle

$00E jmp INT6 ; IRQ6 Handle

;

$010 RESET: <instr> xxx ; Main program start

 … … … …

Table 3. Reset and Interrupt Vectors

Vector No. Program Address Source Interrupt Definition

1 $000 ireset Internal Reset

2 $002 irqlines[0] Interrupt Request Line 0

3 $004 irqlines[1] Interrupt Request Line 1

4 $006 irqlines[2] Interrupt Request Line 2

5 $008 irqlines[3] Interrupt Request Line 3

6 $00A irqlines[4] Interrupt Request Line 4

7 $00C irqlines[5] Interrupt Request Line 5

8 $00E irqlines[6] Interrupt Request Line 6
23

Reset
The ireset line controls the reset of the AVR Core. To properly reset the AVR, a three cycle pulse must be applied to the
ireset input. After this, the program counter is reset to 0000 and the AVR Core is ready.

Note: Setup and hold times must be respected on the ireset line (see timing diagrams).

Interrupts
None of the irqlines are latched in the AVR Core. For this reason, it is necessary to maintain the irqlines[6:0] signals until
the corresponding acknowledgment. The figure below shows the interrupt acknowledgment schemes.

Figure 33. Interrupt arriving in last cycle of instruction

cycle 0 cycle 1 cycle 2 cycle 3

CP2

instruction
last cycle

irqlines[X]

Drive PC to dbusout

ramwe

irqackad

irqack

Next PC valid

 high byte low byte

valid

ramadr stack address stack address-1
AVR Core24

AVR Core
Figure 34. Interrupt arriving in cycle other than last

cycle 0 cycle 1 cycle 2 cycle 3

CP2

Previous
instruction

irqlines[X]

Drive PC to dbusout

ramwe

irqackad

irqack

Next PC valid

cycle -X

last cycle

high byte low byte

valid

ramadr stack address stack address-1
25

AVR Scalable Test Access (ASTA) Interface
The AVR Scalable Test Access (ASTA) interface provides designers with great flexibility to test the AVR Embedded Core
and its peripherals. First, the ASTA architecture allows the designer to apply pre-computed ATPG test vectors with more
than 99% fault coverage. Secondly, it allows ATPG vectors to be generated for the rest of the chip. The main characteristic
of the ASTA architecture however, is its capability to be scaled and split into several scan chains, making it possible to test
the program memory space, the RAM space and the I/O space simultaneously.

The ASTA interface can be considered as a boundary scan ring that encompasses the entire AVR Embedded Core. This
scan chain allows all primary AVR inputs to be controlled and all primary AVR outputs to be observed, resulting in over a
99% fault coverage. This scan ring is actually split into nine different scan chains which can be grouped as desired, giving
the flexibility to create specific tests such as RAM space testing or program memory space testing.

All of the scan chains which form the ASTA scan ring have a common clock (astacp2). However, they have separate scan
inputs (astasi[8:0]) and outputs (astaso[8:0]) as well as separate scan enable signals (astase[8:0]) which gives this archi-
tecture its flexibility.

To achieve 99% fault coverage, the three internal scan chains which have coresi[2:0] for inputs, coreso[2:0] for outputs
and a common corese for scan enable must be used for applying ATPG vectors.

The ASTA interface is shown below:

Figure 35. The ASTA Interface.

AVRCORE

AVR

Functional
Inputs

Functional

Inputs

Functional

Inputs

Functional

Functional

Outputs

Functional

Outputs

Outputs

ENCRYPTEDENCRYPTED

ENCRYPTED
ENCRYPTED

ENCRYPTED

ENCRYPTED

ENCRYPTED

astase[8:0]

astaso[8]

astasi[8]

astaso[4]

astasi[0]

cp2
corese

astacp2

astaso[0]

astasi[3]

astaso[3]

astasi[4]
AVR Core26

AVR Core
ASTA Signals
The signals which control the ASTA interface are described below.

ASTA Scan Chains
The ASTA architecture is based on the possibility of joining the ASTA scan chains in order to dynamically create new scan
chains dedicated to a specific test goal. The ASTA architecture is formed by nine scan chains which are defined below:

In all scan chains LSB is scanned in first and MSB scanned out first.

Table 4. ASTA Signals

Signal Description

astacp2 Clock for all ASTA flip-flops

astamode[1:0] ASTA mode select for inputs (astamode[0]) and outputs (astamode[1])

astamode[0] = 0
Functional Mode and External Capture Mode
The ASTA input interface is transparent. This implies that the device is in Functional Mode.
Nevertheless, the ASTA scan chains can capture all AVR input signals.

astamode[0] = 1
Internal Control Mode
The ASTA input interface is controlled by ASTA scan chains. The ASTA interface can control all AVR input
signals.

astamode[1] = 0
Functional Mode and Internal Capture Mode
The ASTA output interface is transparent. This implies that the device is in Functional Mode.
Nevertheless, the ASTA scan chains can capture all AVR output signals.

astamode[1] = 1
External Control Mode
The ASTA output interface is controlled by ASTA scan chains. The ASTA interface can control all AVR output
signals.

astasi[8:0] ASTA scan inputs

astaso[8:0] ASTA scan outputs

astase[8:0] ASTA scan enables

Table 5. ASTA Scan Chains

ASTA Chain Scan Input Scan Output Scan Enable AVR Inputs/Outputs Controlled/Observed

ASTA chain 0 astasi[0] astaso[0] astase[0] inst[15:0]

ASTA chain 1 astasi[1] astaso[1] astase[1] dbusin[7:0]

ASTA chain 2 astasi[2] astaso[2] astase[2] irqlines[6:0]

ASTA chain 3 astasi[3] astaso[3] astase[3] control = lbit12, pcld[1:0], pclden, leavbus, cpuwait, ireset

ASTA chain 4 astasi[4] astaso[4] astase[4] irq outputs = globint, irqackad[2:0], irqack, irqok, sleepi, wdri

ASTA chain 5 astasi[5] astaso[5] astase[5] RAM space = ramadr[15:0], ramwe, ramre

ASTA chain 6 astasi[6] astaso[6] astase[6] I/O space = adr[5:0], iowe, iore

ASTA chain 7 astasi[7] astaso[7] astase[7] dbusout[7:0]

ASTA chain 8 astasi[8] astaso[8] astase[8] pc[15:0]
27

ASTA Scan Input Cell
Each primary input of the AVR Embedded core is connected to an ASTA scan input cell which can be configured to run in
different modes.

Figure 36. ASTA Scan Input Cell

The following signals control the ASTA scan input cell:

ASTA Scan Output Cell
Each primary output of the AVR Embedded core is connected to an A.S.T.A scan output cell which can be configured in dif-
ferent modes.

Table 6. ASTA Scan Input Cell

Signal Description

astacp2 Clock for all ASTA flip-flops

astase[X] Local scan enable for the selected ASTA scan chain

astamode[0] Test mode selector

astamode[0] = 0
Functional Mode and External Capture Mode
The ASTA input interface is transparent. This implies that the device is in Functional Mode.
Nevertheless, the ASTA scan chains can capture all AVR input signals. See Table 4.

astamode[0] = 1
Internal Control Mode
The ASTA input interface is controlled by ASTA scan chains. The ASTA interface can control all AVR
input signals. See Table 4.

0

1

To AVRCORE
Input

From previous
scan ouput

To next scan input

D Q

SE

SI

SO

From AVR

Primary Input

astacp2

astase[X]

astamode[0]
AVR Core28

AVR Core
Figure 37. ASTA Scan Output Cell

The following signals control the ASTA scan output cell:

Testing the AVR Embedded Core
The AVR Embedded Core is shipped with a pre-computed set of ATPG test vectors ensuring over a 99% fault coverage.
This set of vectors is generated with a special configuration of the ASTA interface. The designer must recreate this config-
uration in his design.

In order to apply the precomputed ATPG vectors:

1. The designer must have access to the following top level pins:
cp2: global clock
test_se: new global scan enable (to be created by the user)
astamode[1:0]: astamode selectors
coresi[2:0]: Internal scan chain inputs
coreso[2:0]: Internal scan chain outputs
asta_scin: ASTA boundary ring input (to be created by the user)
asta_scout: ASTA boundary ring output (to be created by the user)

2. The following signals must be tied together:
cp2 = astacp2
test_se = corese = astase[8:0]

3. The ASTA boundary ring must be connected as follows:
asta_scin = astasi[0]
astaso[0] = astasi[1]

Table 7. ASTA Scan Output Cell

Signal Description

astacp2 Clock for all ASTA flip-flops

astase[X] Local scan enable for the selected ASTA scan chain

astamode[1] Test mode selector

astamode[1] = 0
Functional Mode and Internal Capture Mode
The ASTA output interface is transparent. This is Functional Mode.
Nevertheless, the ASTA scan chains can capture all AVR output signals. See Table 4.

astamode[1] = 1
External Control Mode
The ASTA output interface is controlled by ASTA scan chains. The ASTA interface can control
all AVR output signals. See Table 4.

0

1

From previous

D Q

SE

SI

SO

To AVR
Primary Output

From AVRCORE

Output

astase[X]

astacp2

astamode[1]

scan ouput cell

To next scan input cell
29

astaso[1] = astasi[2]
astaso[2] = astasi[3]
astaso[3] = astasi[4]
astaso[4] = astasi[5]
astaso[5] = astasi[6]
astaso[6] = astasi[7]
astaso[7] = astasi[8]
astaso[8] = asta_scout
which results in a scan chain linked as follows:
asta_scin, ASTA chain 0, ASTA chain 1, ASTA chain 2, ASTA chain 3, ASTA chain 4, ASTA chain 5, ASTA chain 6,
ASTA chain 7, ASTA chain 8, asta_scout

Testing the AVR Peripherals
The AVR Peripherals can be separated into three classes: standard AVR peripherals (AVR UART, AVR SPI, etc.), other
embedded Macros and User Defined Logic (UDL). All can be tested using the ASTA interface.

Methodologies
Because the test goal for today’s designs is over a 99% fault coverage, the recommended methodology for testing designs
containing the AVR Embedded core is Full Scan. This is the simplest methodology. In specific cases however, good cover-
age can be achieved with Partial Scan, BIST or non scan techniques. To allow a large amount of freedom in a design, the
ASTA architecture makes it possible to use all of these special DFT methodologies.

Test Configuration
A fourth scan chain must be created around the AVR Embedded Core by linking the nine ASTA scan chains as described
in the previous section. With this scan chain, the AVR Embedded Core can be bypassed (the core is an ATPG black box for
the designer due to its encrypted format), and ATPG test vectors can then be generated for the rest of the chip, including
AVR standard peripherals, embedded Macros and UDL. Partial Scan or ad-hoc methodologies can also be used by con-
trolling this scan chain.

Special Tests with the ASTA Interface
Using the ASTA Interface allows all AVR output pins to be controlled and all AVR input pins to be observed. Specific tests
can then be created as described below.

Ram Space Testing
By linking ASTA chain 5 with ASTA chain 1, test sequences can be generated to verify the correct functionality of the RAM
itself or of the RAM space mapping.

I/O Space Testing
By linking ASTA chain 6 with ASTA chain 1, test sequences can be generated to verify the correct functionality of the I/O
space mapping.

Program Memory Space Testing
By linking ASTA chain 8 with ASTA chain 0, test sequences can be generated to verify the correct functionality of the Pro-
gram Memory space.
AVR Core30

AVR Core
Input/Output Timing

Note: The delays shown in this diagram are all process specific. For the corresponding characterized values, refer to one
of the following datasheets:

• AVR Embedded Core ATC50 Electrical Characteristics
(0.5 micron three-layer-metal CMOS process intended for use with a supply voltage of 3.3V ± 0.3V)

• AVR Embedded Core ATC50/E2 Electrical Characteristics
(0.5 micron three-layer-metal CMOS/NVM process intended for use with a supply voltage of 3.3V ± 0.3V)

• AVR Embedded Core ATC35 Electrical Characteristics
(0.35 micron three-layer-metal CMOS process intended for use with a supply voltage of 3.3V ± 0.3V)

Symbol Parameter

tCP2 Clock cycle

tSU Input setup time

tHO Input hold time

tCKO Clock to output delay

tCOMB Combinational delay; input to output

tSU

/astacp2

Valid

Valid

Inputs

Outputs

Inputs

Outputs

tHO

tCKO (max)
tCKO (min)

tCOMB (min)

tCOMB (max)

t
CLK

t
HIGH

t
LOW
31

AVR Core Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

$3F ($5F) SREG I T H S V N Z C 19

$3E ($5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 20

$3D ($5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 20

$3C ($5C) - Reserved for next AVR Core generation

$3B ($5B) RAMPZ - - - - - - - RAMPZ0 20

$3A ($5A)

- Reserved for next AVR Core generation$39 ($59)

$38 ($58)

$37 ($57)

- User Specific I/O Registers

$36 ($56)

...

$01 ($21)

$00 ($20)
AVR Core32

AVR Core
AVR Core Instruction Set
Instruction Set Nomenclature:

Status Register (SREG):
SREG: Status register
C: Carry flag in status register
Z: Zero flag in status register
N: Negative flag in status register
V: Twos complement overflow indicator
S: N ⊕ V, For signed tests
H: Half Carry flag in the status register
T: Transfer bit used by BLD and BST instructions
I: Global interrupt enable/disable flag

Registers and operands:
Rd: Destination (and source) register in the register file
Rr: Source register in the register file
R: Result after instruction is executed
K: Constant literal or byte data (8 bit)
k: Constant address data for program counter
b: Bit in the register file or I/O register (3 bit)
s: Bit in the status register (3 bit)

X,Y,Z: Indirect address register (X=R27:R26,
Y=R29:R28 and Z=R31:R30)

P: I/O port address
q: Displacement for direct addressing (6 bit)

I/O Registers
RAMPZ: Register concatenated with the Z register
enabling indirect addressing of the whole Program Area on
MCUs with more than 64K bytes of Program Code (ELPM
instruction).

Stack:
STACK:Stack for return address and pushed registers
SP: Stack Pointer to STACK

Flags:
⇔: Flag affected by instruction
0: Flag cleared by instruction
1: Flag set by instruction
-: Flag not affected by instruction

Conditional Branch Summary

* Interchange Rd and Rr in the operation before the test. i.e. CP Rd,Rr → CP Rr,Rd

Test Boolean Mnemonic Complementary Boolean Mnemonic Comment

Rd > Rr Z•(N ⊕ V) = 0 BRLT* Rd ≤ Rr Z+(N ⊕ V) = 1 BRGE* Signed

Rd ≥ Rr (N ⊕ V) = 0 BRGE Rd < Rr (N ⊕ V) = 1 BRLT Signed

Rd = Rr Z = 1 BREQ Rd ≠ Rr Z = 0 BRNE Signed

Rd ≤ Rr Z+(N ⊕ V) = 1 BRGE* Rd > Rr Z•(N ⊕ V) = 0 BRLT* Signed

Rd < Rr (N ⊕ V) = 1 BRLT Rd ≥ Rr (N ⊕ V) = 0 BRGE Signed

Rd > Rr C + Z = 0 BRLO* Rd ≤ Rr C + Z = 1 BRSH* Unsigned

Rd ≥ Rr C = 0 BRSH/BRCC Rd < Rr C = 1 BRLO/BRCS Unsigned

Rd = Rr Z = 1 BREQ Rd ≠ Rr Z = 0 BRNE Unsigned

Rd ≤ Rr C + Z = 1 BRSH* Rd > Rr C + Z = 0 BRLO* Unsigned

Rd < Rr C = 1 BRLO/BRCS Rd ≥ Rr C = 0 BRSH/BRCC Unsigned

Carry C = 1 BRCS No carry C = 0 BRCC Simple

Negative N = 1 BRMI Positive N = 0 BRPL Simple

Overflow V = 1 BRVS No overflow V = 0 BRVC Simple

Zero Z = 1 BREQ Not zero Z = 0 BRNE Simple
33

Complete Instruction Set Summary

(continued)

Mnemonic Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← $FF None 1
AVR Core34

AVR Core
Complete Instruction Set Summary (continued)

(continued)

Mnemonic Operands Description Operation Flags #Clocks

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP k Direct Jump to k PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL k Direct Subroutine Call to k PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1 / 2

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1 / 2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1 / 2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1 / 2

BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1 / 2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1 / 2
35

Complete Instruction Set Summary (continued)

(continued)

Mnemonic Operands Description Operation Flags #Clocks

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd ← (k) None 3

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 3

LPM Load Program Memory R0 ← (Z) None 3

ELPM Extended Load Program Memory R0 ← (RAMPZ, Z) None 3

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2
AVR Core36

AVR Core
Complete Instruction Set Summary (continued)

Mnemonic Operands Description Operation Flags #Clocks

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 3

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1
37

ADC - Add with Carry

Description:

Adds two registers and the contents of the C flag and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd + Rr + C

Syntax: Operands: Program Counter:

(i) ADC Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) Boolean Formulae:

H: Rd3•Rr3+Rr3•R3+R3•Rd3
Set if there was a carry from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7•Rr7•R7+Rd7•Rr7•R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: Rd7• Rr7• Rr7 • R7 • R7 •Rd7
Set if the result is $00; cleared otherwise.

C: Rd7•Rr7+Rr7•R7+R7•Rd7
Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
; Add R1:R0 to R3:R2

add r2,r0 ; Add low byte

adc r3,r1 ; Add with carry high byte

Words: 1 (2 bytes)
Cycles: 1

0001 11rd dddd rrrr

I T H S V N Z C

− − ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
AVR Core38

AVR Core
ADD - Add without Carry

Description:

Adds two registers without the C flag and places the result in the destination register Rd.
Operation:

(i) Rd ← Rd + Rr

Syntax: Operands: Program Counter:

(i) ADD Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: Rd3•Rr3+Rr3•R3+R3•Rd3
Set if there was a carry from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7•Rr7•R7+Rd7•Rr7•R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4 •R3 •R2 •R1 •R0
Set if the result is $00; cleared otherwise.

C: Rd7 •Rr7 +Rr7 •R7+ R7 •Rd7
Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
add r1,r2 ; Add r2 to r1 (r1=r1+r2)

add r28,r28 ; Add r28 to itself (r28=r28+r28)

Words: 1 (2 bytes)

Cycles: 1

0000 11rd dddd rrrr

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
39

ADIW - Add Immediate to Word

Description:

Adds an immediate value (0-63) to a register pair and places the result in the register pair. This instruction operates on the
upper four register pairs, and is well suited for operations on the pointer registers.

Operation:

(i) Rdh:Rdl ← Rdh:Rdl + K

Syntax: Operands: Program Counter:

(i) ADIW Rdl,K dl ∈ {24,26,28,30}, 0 ≤ K ≤ 63 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: Rdh7 R15
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R15
Set if MSB of the result is set; cleared otherwise.

Z: R15 •R14 •R13 •R12 •R11 •R10 •R9 •R8 •R7• R6• R5• R4• R3• R2 •R1• R0
Set if the result is $0000; cleared otherwise.

C: R15 • Rdh7
Set if there was carry from the MSB of the result; cleared otherwise.

R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, Rdl7-Rdl0=R7-R0).

Example:
adiw r24,1 ; Add 1 to r25:r24

adiw r30,63 ; Add 63 to the Z pointer(r31:r30)

Words: 1 (2 bytes)

Cycles: 2

1001 0110 KKdd KKKK

I T H S V N Z C

- - - ⇔ ⇔ ⇔ ⇔ ⇔
AVR Core40

AVR Core
AND - Logical AND

Description:

Performs the logical AND between the contents of register Rd and register Rr and places the result in the destination regis-
ter Rd.

Operation:

(i) Rd ← Rd • Rr

Syntax: Operands: Program Counter:

(i) AND Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6 •R5 •R4 •R3• R2 •R1 •R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
and r2,r3 ; Bitwise and r2 and r3, result in r2

ldi r16,1 ; Set bitmask 0000 0001 in r16

and r2,r16 ; Isolate bit 0 in r2

Words: 1 (2 bytes)
Cycles: 1

0010 00rd dddd rrrr

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -
41

ANDI - Logical AND with Immediate

Description:

Performs the logical AND between the contents of register Rd and a constant and places the result in the destination regis-
ter Rd.

Operation:

 (i) Rd ← Rd • K

Syntax: Operands: Program Counter:

 (i) ANDI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6• R5•R4 •R3• R2• R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
andi r17,$0F ; Clear upper nibble of r17

andi r18,$10 ; Isolate bit 4 in r18

andi r19,$AA ; Clear odd bits of r19

Words: 1 (2 bytes)
Cycles: 1

0111 KKKK dddd KKKK

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -
AVR Core42

AVR Core
ASR - Arithmetic Shift Right

Description:

Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 is loaded into the C flag of the SREG. This operation
effectively divides a twos complement value by two without changing its sign. The carry flag can be used to round the
result.

Operation:

(i)

Syntax: Operands: Program Counter:

(i) ASR Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: N ⊕ C (For N and C after the shift)

Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6 •R5• R4 •R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd0
Set if, before the shift, the LSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
ldi r16,$10 ; Load decimal 16 into r16

asr r16 ; r16=r16 / 2

ldi r17,$FC ; Load -4 in r17

asr r17 ; r17=r17/2

Words: 1 (2 bytes)

Cycles: 1

1001 010d dddd 0101

I T H S V N Z C

- - - ⇔ ⇔ ⇔ ⇔ ⇔

b7 - - - - - - - - - b0 C
43

BCLR - Bit Clear in SREG

Description:

Clears a single flag in SREG.

Operation:

(i) SREG(s) ← 0

Syntax: Operands: Program Counter:

(i) BCLR s 0 ≤ s ≤ 7 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

I: 0 if s = 7; Unchanged otherwise.

T: 0 if s = 6; Unchanged otherwise.

H: 0 if s = 5; Unchanged otherwise.

S: 0 if s = 4; Unchanged otherwise.

V: 0 if s = 3; Unchanged otherwise.

N: 0 if s = 2; Unchanged otherwise.

Z: 0 if s = 1; Unchanged otherwise.

C: 0 if s = 0; Unchanged otherwise.

Example:
bclr 0 ; Clear carry flag

bclr 7 ; Disable interrupts

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1sss 1000

I T H S V N Z C

⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
AVR Core44

AVR Core
BLD - Bit Load from the T Flag in SREG to a Bit in Register.

Description:

Copies the T flag in the SREG (status register) to bit b in register Rd.

Operation:

 (i) Rd(b) ← T

Syntax: Operands: Program Counter:

 (i) BLD Rd,b 0 ≤ d ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
; Copy bit

bst r1,2 ; Store bit 2 of r1 in T flag

bld r0,4 ; Load T flag into bit 4 of r0

Words: 1 (2 bytes)

Cycles: 1

1111 100d dddd 0bbb

I T H S V N Z C

- - - - - - - -
45

BRBC - Branch if Bit in SREG is Cleared

Description:

Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is cleared. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is
represented in two’s complement form.

Operation:

(i) If SREG(s) = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRBC s,k 0 ≤ s ≤ 7, -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cpi r20,5 ; Compare r20 to the value 5

brbc 1,noteq ; Branch if zero flag cleared

...

noteq:nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk ksss

I T H S V N Z C

- - - - - - - -
AVR Core46

AVR Core
BRBS - Branch if Bit in SREG is Set

Description:

Conditional relative branch. Tests a single bit in SREG and branches relatively to PC if the bit is set. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form.

Operation:

(i) If SREG(s) = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRBS s,k 0 ≤ s ≤ 7, -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
bst r0,3 ; Load T bit with bit 3 of r0

brbs 6,bitset ; Branch T bit was set

...

bitset: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 00kk kkkk ksss

I T H S V N Z C

- - - - - - - -
47

BRCC - Branch if Carry Cleared

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is cleared. This instruction branches
relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBC 0,k).

Operation:

(i) If C = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRCC k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
 addr22,r23 ; Add r23 to r22

brccnocarry ; Branch if carry cleared

...

nocarry: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk k000

I T H S V N Z C

- - - - - - - -
AVR Core48

AVR Core
BRCS - Branch if Carry Set

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is set. This instruction branches rel-
atively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBS 0,k).

Operation:

(i) If C = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRCS k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cpi r26,$56 ; Compare r26 with $56

brcs carry ; Branch if carry set

...

carry: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 00kk kkkk k000

I T H S V N Z C

- - - - - - - -
49

BREQ - Branch if Equal

Description:

Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC if Z is set. If the instruction is executed
immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or signed
binary number represented in Rd was equal to the unsigned or signed binary number represented in Rr. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form. (Equivalent to instruction BRBS 1,k).

Operation:

(i) If Rd = Rr (Z = 1) then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BREQ k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cpr1,r0 ; Compare registers r1 and r0

breqequal ; Branch if registers equal

...

equal: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false

2 if condition is true

1111 00kk kkkk k001

I T H S V N Z C

- - - - - - - -
AVR Core50

AVR Core
BRGE - Branch if Greater or Equal (Signed)

Description:

Conditional relative branch. Tests the Signed flag (S) and branches relatively to PC if S is cleared. If the instruction is exe-
cuted immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the signed binary
number represented in Rd was greater than or equal to the signed binary number represented in Rr. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form. (Equivalent to instruction BRBC 4,k).

Operation:

(i) If Rd ≥ Rr (N ⊕ V = 0) then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRGE k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cpr11,r12 ; Compare registers r11 and r12

brgegreateq ; Branch if r11 >= r12 (signed)

...

greateq: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false

2 if condition is true

1111 01kk kkkk k100

I T H S V N Z C

- - - - - - - -
51

BRHC - Branch if Half Carry Flag is Cleared

Description:

Conditional relative branch. Tests the Half Carry flag (H) and branches relatively to PC if H is cleared. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form. (Equivalent to instruction BRBC 5,k).

Operation:

(i) If H = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRHC k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
brhc hclear ; Branch if half carry flag cleared

...

hclear: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk k101

I T H S V N Z C

- - - - - - - -
AVR Core52

AVR Core
BRHS - Branch if Half Carry Flag is Set

Description:

Conditional relative branch. Tests the Half Carry flag (H) and branches relatively to PC if H is set. This instruction branches
relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBS 5,k).

Operation:

(i) If H = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRHS k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
brhshset ; Branch if half carry flag set

...

hset: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false

2 if condition is true

1111 00kk kkkk k101

I T H S V N Z C

- - - - - - - -
53

BRID - Branch if Global Interrupt is Disabled

Description:

Conditional relative branch. Tests the Global Interrupt flag (I) and branches relatively to PC if I is cleared. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form. (Equivalent to instruction BRBC 7,k).

Operation:

(i) If I = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRID k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
brid intdis ; Branch if interrupt disabled

...

intdis: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false

2 if condition is true

1111 01kk kkkk k111

I T H S V N Z C

- - - - - - - -
AVR Core54

AVR Core
BRIE - Branch if Global Interrupt is Enabled

Description:

Conditional relative branch. Tests the Global Interrupt flag (I) and branches relatively to PC if I is set. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form. (Equivalent to instruction BRBS 7,k).

Operation:

(i) If I = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRIE k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
brieinten ; Branch if interrupt enabled

...

inten: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 00kk kkkk k111

I T H S V N Z C

- - - - - - - -
55

BRLO - Branch if Lower (Unsigned)

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is set. If the instruction is executed
immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned binary
number represented in Rd was smaller than the unsigned binary number represented in Rr. This instruction branches rela-
tively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBS 0,k).

Operation:

(i) If Rd < Rr (C = 1) then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRLO k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
eor r19,r19 ; Clear r19

loop: inc r19 ; Increase r19

...

cpi r19,$10 ; Compare r19 with $10

brlo loop ; Branch if r19 < $10 (unsigned)

nop ; Exit from loop (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false

2 if condition is true

1111 00kk kkkk k000

I T H S V N Z C

- - - - - - - -
AVR Core56

AVR Core
BRLT - Branch if Less Than (Signed)

Description:

Conditional relative branch. Tests the Signed flag (S) and branches relatively to PC if S is set. If the instruction is executed
immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the signed binary num-
ber represented in Rd was less than the signed binary number represented in Rr. This instruction branches relatively to PC
in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in two’s comple-
ment form. (Equivalent to instruction BRBS 4,k).

Operation:

(i) If Rd < Rr (N ⊕ V = 1) then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRLT k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cp r16,r1 ; Compare r16 to r1

brlt less ; Branch if r16 < r1 (signed)

...

less: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false

2 if condition is true

1111 00kk kkkk k100

I T H S V N Z C

- - - - - - - -
57

BRMI - Branch if Minus

Description:

Conditional relative branch. Tests the Negative flag (N) and branches relatively to PC if N is set. This instruction branches
relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBS 2,k).

Operation:

(i) If N = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRMI k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
subi r18,4 ; Subtract 4 from r18

brmi negative ; Branch if result negative

...

negative: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 00kk kkkk k010

I T H S V N Z C

- - - - - - - -
AVR Core58

AVR Core
BRNE - Branch if Not Equal

Description:

Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC if Z is cleared. If the instruction is exe-
cuted immediately after any of the instructions CP, CPI, SUB or SUBI, the branch will occur if and only if the unsigned or
signed binary number represented in Rd was not equal to the unsigned or signed binary number represented in Rr. This
instruction branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC
and is represented in two’s complement form. (Equivalent to instruction BRBC 1,k).

Operation:

(i) If Rd ≠ Rr (Z = 0) then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRNE k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
eor r27,r27 ; Clear r27

loop: inc r27 ; Increase r27

...

cpi r27,5 ; Compare r27 to 5

brne loop ; Branch if r27<>5

nop ; Loop exit (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk k001

I T H S V N Z C

- - - - - - - -
59

BRPL - Branch if Plus

Description:

Conditional relative branch. Tests the Negative flag (N) and branches relatively to PC if N is cleared. This instruction
branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is rep-
resented in two’s complement form. (Equivalent to instruction BRBC 2,k).

Operation:

(i) If N = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRPL k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
subi r26,$50 ; Subtract $50 from r26

brpl positive ; Branch if r26 positive

...

positive: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk k010

I T H S V N Z C

- - - - - - - -
AVR Core60

AVR Core
BRSH - Branch if Same or Higher (Unsigned)

Description:

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC if C is cleared. If the instruction is exe-
cuted immediately after execution of any of the instructions CP, CPI, SUB or SUBI the branch will occur if and only if the
unsigned binary number represented in Rd was greater than or equal to the unsigned binary number represented in Rr.
This instruction branches relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from
PC and is represented in two’s complement form. (Equivalent to instruction BRBC 0,k).

Operation:

(i) If Rd ≥Rr (C = 0) then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRSH k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
subi r19,4 ; Subtract 4 from r19

brsh highsm ; Branch if r19 >= 4 (unsigned)

...

highsm: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false

2 if condition is true

1111 01kk kkkk k000

I T H S V N Z C

- - - - - - - -
61

BRTC - Branch if the T Flag is Cleared

Description:

Conditional relative branch. Tests the T flag and branches relatively to PC if T is cleared. This instruction branches rela-
tively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBC 6,k).

Operation:

(i) If T = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRTC k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
bst r3,5 ; Store bit 5 of r3 in T flag

brtc tclear ; Branch if this bit was cleared

...

tclear: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk k110

I T H S V N Z C

- - - - - - - -
AVR Core62

AVR Core
BRTS - Branch if the T Flag is Set

Description:

Conditional relative branch. Tests the T flag and branches relatively to PC if T is set. This instruction branches relatively to
PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in two’s com-
plement form. (Equivalent to instruction BRBS 6,k).

Operation:

(i) If T = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRTS k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
bst r3,5 ; Store bit 5 of r3 in T flag

brts tset ; Branch if this bit was set

...

tset: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 00kk kkkk k110

I T H S V N Z C

- - - - - - - -
63

BRVC - Branch if Overflow Cleared

Description:

Conditional relative branch. Tests the Overflow flag (V) and branches relatively to PC if V is cleared. This instruction branch-
es relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented
in two’s complement form. (Equivalent to instruction BRBC 3,k).

Operation:

(i) If V = 0 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRVC k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
add r3,r4 ; Add r4 to r3

brvc noover ; Branch if no overflow

...

noover: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 01kk kkkk k011

I T H S V N Z C

- - - - - - - -
AVR Core64

AVR Core
BRVS - Branch if Overflow Set

Description:

Conditional relative branch. Tests the Overflow flag (V) and branches relatively to PC if V is set. This instruction branches
relatively to PC in either direction (PC-64≤destination≤PC+63). The parameter k is the offset from PC and is represented in
two’s complement form. (Equivalent to instruction BRBS 3,k).

Operation:

(i) If V = 1 then PC ← PC + k + 1, else PC ← PC + 1

Syntax: Operands: Program Counter:

(i) BRVS k -64 ≤ k ≤ +63 PC ← PC + k + 1
PC ← PC + 1, if condition is false

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
add r3,r4 ; Add r4 to r3

brvs overfl ; Branch if overflow

...

overfl: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1 if condition is false
2 if condition is true

1111 00kk kkkk k011

I T H S V N Z C

- - - - - - - -
65

BSET - Bit Set in SREG

Description:

Sets a single flag or bit in SREG.

Operation:

(i) SREG(s) ← 1

Syntax: Operands: Program Counter:

(i) BSET s 0 ≤ s ≤ 7 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

I: 1 if s = 7; Unchanged otherwise.

T: 1 if s = 6; Unchanged otherwise.

H: 1 if s = 5; Unchanged otherwise.

S: 1 if s = 4; Unchanged otherwise.

V: 1 if s = 3; Unchanged otherwise.

N: 1 if s = 2; Unchanged otherwise.

Z: 1 if s = 1; Unchanged otherwise.

C: 1 if s = 0; Unchanged otherwise.

Example:
bset 6 ; Set T flag

bset 7 ; Enable interrupt

Words: 1 (2 bytes)

Cycles: 1

1001 0100 0sss 1000

I T H S V N Z C

⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
AVR Core66

AVR Core
BST - Bit Store from Bit in Register to T Flag in SREG

Description:

Stores bit b from Rd to the T flag in SREG (status register).

Operation:

(i) T ← Rd(b)

Syntax: Operands: Program Counter:

(i) BST Rd,b 0 ≤ d ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

T: 0 if bit b in Rd is cleared. Set to 1 otherwise.

Example:
; Copy bit

bst r1,2 ; Store bit 2 of r1 in T flag

bld r0,4 ; Load T into bit 4 of r0

Words: 1 (2 bytes)
Cycles: 1

1111 101d dddd Xbbb

I T H S V N Z C

- ⇔ - - - - - -
67

CALL - Long Call to a Subroutine

Description:

Calls to a subroutine within the entire program memory. The return address (to the instruction after the CALL) will be stored
onto the stack. (See also RCALL).

Operation:

(i) PC ← k Devices with 16 bits PC, 128K bytes program memory maximum.
(ii) PC ← k Devices with 22 bits PC, 8M bytes program memory maximum.

Syntax: Operands: Program Counter:Stack

 (i) CALL k 0 ≤ k ≤ 64K PC ← kSTACK ← PC+2
SP ← SP-2, (2 bytes, 16 bits)

(ii) CALL k 0 ≤ k ≤ 4M PC ← kSTACK ← PC+2
SP ← SP-3 (3 bytes, 22 bits)

32 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
mov r16,r0 ; Copy r0 to r16

call check ; Call subroutine

nop ; Continue (do nothing)

...

check: cpi r16,$42 ; Check if r16 has a special value

breq error ; Branch if equal

ret ; Return from subroutine

...

error: rjmp error ; Infinite loop

Words: 2 (4 bytes)
Cycles: 4

1001 010k kkkk 111k

kkkk kkkk kkkk kkkk

I T H S V N Z C

- - - - - - - -
AVR Core68

AVR Core
CBI - Clear Bit in I/O Register

Description:

Clears a specified bit in an I/O register. This instruction operates on the lower 32 I/O registers - addresses 0-31.

Operation:

(i) I/O(P,b) ← 0

Syntax: Operands: Program Counter:

 (i) CBI P,b 0 ≤ P ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cbi $12,7 ; Clear bit 7 in Port D

Words: 1 (2 bytes)
Cycles: 2

1001 1000 pppp pbbb

I T H S V N Z C

- - - - - - - -
69

CBR - Clear Bits in Register

Description:

Clears the specified bits in register Rd. Performs the logical AND between the contents of register Rd and the complement
of the constant mask K. The result will be placed in register Rd.

Operation:

(i) Rd ← Rd • ($FF - K)

Syntax: Operands: Program Counter:

 (i) CBR Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode: See ANDI with K complemented.

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
cbr r16,$F0 ; Clear upper nibble of r16

cbr r18,1 ; Clear bit 0 in r18

Words: 1 (2 bytes)

Cycles: 1

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -
AVR Core70

AVR Core
CLC - Clear Carry Flag

Description:

Clears the Carry flag (C) in SREG (status register).

Operation:

(i) C ← 0

Syntax: Operands: Program Counter:

 (i) CLC None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

C: 0
Carry flag cleared

Example:
add r0,r0 ; Add r0 to itself

clc ; Clear carry flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1000 1000

I T H S V N Z C

- - - - - - - 0
71

CLH - Clear Half Carry Flag

Description:

Clears the Half Carry flag (H) in SREG (status register).

Operation:

(i) H ← 0

Syntax: Operands: Program Counter:

 (i) CLH None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: 0
Half Carry flag cleared

Example:
clh ; Clear the Half Carry flag

Words: 1 (2 bytes)
Cycles: 1

1001 0100 1101 1000

I T H S V N Z C

- - 0 - - - - -
AVR Core72

AVR Core
CLI - Clear Global Interrupt Flag

Description:

Clears the Global Interrupt flag (I) in SREG (status register).

Operation:

(i) I ← 0

Syntax: Operands: Program Counter:

 (i) CLI None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

I: 0
Global Interrupt flag cleared

Example:
cli ; Disable interrupts

in r11,$16 ; Read port B

sei ; Enable interrupts

Words: 1 (2 bytes)
Cycles: 1

1001 0100 1111 1000

I T H S V N Z C

0 - - - - - - -
73

CLN - Clear Negative Flag

Description:

Clears the Negative flag (N) in SREG (status register).

Operation:

(i) N ← 0

Syntax: Operands: Program Counter:

 (i) CLN None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

N: 0
Negative flag cleared

Example:
add r2,r3 ; Add r3 to r2

cln ; Clear negative flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1010 1000

I T H S V N Z C

- - - - - 0 - -
AVR Core74

AVR Core
CLR - Clear Register

Description:

Clears a register. This instruction performs an Exclusive OR between a register and itself. This will clear all bits in the reg-
ister.

Operation:

(i) Rd ← Rd ⊕ Rd

Syntax: Operands: Program Counter:

 (i) CLR Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode: (see EOR Rd,Rd)

Status Register (SREG) and Boolean Formulae:

S: 0
Cleared

V: 0
Cleared

N: 0
Cleared

Z: 1
Set

R (Result) equals Rd after the operation.

Example:
clr r18 ; clear r18

loop: inc r18 ; increase r18

...

cpi r18,$50 ; Compare r18 to $50

brne loop

Words: 1 (2 bytes)
Cycles: 1

0010 01dd dddd dddd

I T H S V N Z C

- - - 0 0 0 1 -
75

CLS - Clear Signed Flag

Description:

Clears the Signed flag (S) in SREG (status register).

Operation:

(i) S ← 0

Syntax: Operands: Program Counter:

 (i) CLS None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: 0
Signed flag cleared

Example:
add r2,r3 ; Add r3 to r2

cls ; Clear signed flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1100 1000

I T H S V N Z C

- - - 0 - - - -
AVR Core76

AVR Core
CLT - Clear T Flag

Description:

Clears the T flag in SREG (status register).

Operation:

(i) T ← 0

Syntax: Operands: Program Counter:

 (i) CLT None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

T: 0
T flag cleared

Example:
clt ; Clear T flag

Words: 1 (2 bytes)
Cycles: 1

1001 0100 1110 1000

I T H S V N Z C

- 0 - - - - - -
77

CLV - Clear Overflow Flag

Description:

Clears the Overflow flag (V) in SREG (status register).

Operation:

(i) V ← 0

Syntax: Operands: Program Counter:

 (i) CLV None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

V: 0
Overflow flag cleared

Example:
add r2,r3 ; Add r3 to r2

clv ; Clear overflow flag

Words: 1 (2 bytes)

Cycles: 1

1001 0100 1011 1000

I T H S V N Z C

- - - - 0 - - -
AVR Core78

AVR Core
CLZ - Clear Zero Flag

Description:

Clears the Zero flag (Z) in SREG (status register).

Operation:

(i) Z ← 0

Syntax: Operands: Program Counter:

 (i) CLZ None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Z: 0
Zero flag cleared

Example:
add r2,r3 ; Add r3 to r2

clz ; Clear zero

Words: 1 (2 bytes)
Cycles: 1

1001 0100 1001 1000

I T H S V N Z C

- - - - - - 0 -
79

COM - One’s Complement

Description:

This instruction performs a one’s complement of register Rd.

Operation:

(i) Rd ← $FF - Rd

Syntax: Operands: Program Counter:

 (i) COM Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V
For signed tests.

V: 0
Cleared.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6• R5• R4 •R3 •R2• R1 •R0
Set if the result is $00; Cleared otherwise.

C: 1
Set.

R (Result) equals Rd after the operation.

Example:
com r4 ; Take one’s complement of r4

breq zero ; Branch if zero

...

zero: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

1001 010d dddd 0000

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ 1
AVR Core80

AVR Core
CP - Compare

Description:

This instruction performs a compare between two registers Rd and Rr. None of the registers are changed. All conditional
branches can be used after this instruction.

Operation:

(i) Rd - Rr

Syntax: Operands: Program Counter:

 (i) CP Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: Rd3 •Rr3+ Rr3 •R3 +R3• Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7• Rd7 •R7+ Rd7 •Rr7 •R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: Rd7 •Rr7 +Rr7• R7+ R7• Rd7
Set if the result is $00; cleared otherwise.

C: Rd7 •Rr7+ Rr7• R7 +R7• Rd7
Set if the absolute value of the contents of Rr is larger than the absolute value of Rd; cleared otherwise.

 R (Result) after the operation.

Example:
cp r4,r19 ; Compare r4 with r19

brne noteq ; Branch if r4 <> r19

...

noteq: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

0001 01rd dddd rrrr

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
81

CPC - Compare with Carry

Description:

This instruction performs a compare between two registers Rd and Rr and also takes into account the previous carry. None
of the registers are changed. All conditional branches can be used after this instruction.

Operation:

(i) Rd - Rr - C

Syntax: Operands: Program Counter:

 (i) CPC Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: Rd3 •Rr3+ Rr3 •R3 +R3 •Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7 •Rr7• R7+ Rd7• Rr7 •R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6• R5• R4 •R3 •R2 •R1• R0 •Z
Previous value remains unchanged when the result is zero; cleared otherwise.

C: Rd7 •Rr7+ Rr7• R7 +R7 •Rd7
Set if the absolute value of the contents of Rr plus previous carry is larger than the absolute value of Rd; cleared
otherwise.

 R (Result) after the operation.
Example:

; Compare r3:r2 with r1:r0

cp r2,r0 ; Compare low byte

cpc r3,r1 ; Compare high byte

brne noteq ; Branch if not equal

...

noteq: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

0000 01rd dddd rrrr

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
AVR Core82

AVR Core
CPI - Compare with Immediate

Description:

This instruction performs a compare between register Rd and a constant. The register is not changed. All conditional
branches can be used after this instruction.

Operation:

(i) Rd - K

Syntax: Operands: Program Counter:

 (i) CPI Rd,K 16 ≤ d ≤ 31, 0≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: Rd3 •K3+ K3• R3+ R3 •Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7 •K7 •R7 +Rd7 •K7 •R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6• R5 •R4• R3• R2 •R1 •R0
Set if the result is $00; cleared otherwise.

C: Rd7 •K7 +K7 •R7+ R7 •Rd7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.

 R (Result) after the operation.

Example:
cpi r19,3 ; Compare r19 with 3

brne error ; Branch if r19<>3

...

error: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

0011 KKKK dddd KKKK

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
83

CPSE - Compare Skip if Equal

Description:

This instruction performs a compare between two registers Rd and Rr, and skips the next instruction if Rd = Rr.

Operation:

(i) If Rd = Rr then PC ← PC + 2 (or 3) else PC ← PC + 1

Syntax: Operands: Program Counter:

 (i) CPSE Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1, Condition false - no skip
PC ← PC + 2, Skip a one word instruction
PC ← PC + 3, Skip a two word instruction

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
inc r4 ; Increase r4

cpse r4,r0 ; Compare r4 to r0

neg r4 ; Only executed if r4<>r0

nop ; Continue (do nothing)

Words: 1 (2 bytes)
Cycles: 1

0001 00rd dddd rrrr

I T H S V N Z C

- - - - - - - -
AVR Core84

AVR Core
DEC - Decrement

Description:

Subtracts one -1- from the contents of register Rd and places the result in the destination register Rd.

The C flag in SREG is not affected by the operation, thus allowing the DEC instruction to be used on a loop counter in mul-
tiple-precision computations.

When operating on unsigned values, only BREQ and BRNE branches can be expected to perform consistently. When
operating on two’s complement values, all signed branches are available.

Operation:

(i) Rd ← Rd - 1

Syntax: Operands: Program Counter:

(i) DEC Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

S: N ⊕ V
For signed tests.

V: R7 •R6 •R5 •R4• R3• R2 •R1• R0
Set if two’s complement overflow resulted from the operation; cleared otherwise. Two’s complement overflow occurs
if and only if Rd was $80 before the operation.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6• R5 •R4• R3• R2• R1• R0
Set if the result is $00; Cleared otherwise.

R (Result) equals Rd after the operation.

Example:
ldi r17,$10 ; Load constant in r17

loop: add r1,r2 ; Add r2 to r1

dec r17 ; Decrement r17

brne loop ; Branch if r17<>0

nop ; Continue (do nothing)

Words: 1 (2 bytes)

Cycles: 1

1001 010d dddd 1010

I T H S V N Z C

- - - ⇔ ⇔ ⇔ ⇔ -
85

ELPM - Extended Load Program Memory

Description:

Loads one byte pointed to by the (RAMPZ, Z) register into register 0 (R0). This instruction features a 100% space effective
constant initialization or constant data fetch. The program memory is organized in 16 bits words and the LSB of the
(RAMPZ, Z) (17 bits) pointer selects either low byte (0) or high byte (1). This instruction can address 128K bytes (64K
words) of program memory.

Operation: Comment:

(i) R0 ← (RAMPZ, Z) (RAMPZ, Z) points to program memory

Syntax: Operands: Program Counter:

(i) ELPM None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
clr r31 ; Clear Z high byte

ldi r30,$F0 ; Set Z low byte

elpm ; Load constant from program

; memory pointed to by Z (r31:r30)

Words: 1 (2 bytes)

Cycles: 3

1001 0101 1101 1000

I T H S V N Z C

- - - - - - - -
AVR Core86

AVR Core
EOR - Exclusive OR

Description:

Performs the logical EOR between the contents of register Rd and register Rr and places the result in the destination regis-
ter Rd.

Operation:

(i) Rd ← Rd ⊕ Rr

Syntax: Operands: Program Counter:

(i) EOR Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6 •R5 •R4• R3• R2 •R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
eor r4,r4 ; Clear r4

eor r0,r22 ; Bitwise exclusive or between r0 and r22

Words: 1 (2 bytes)

Cycles: 1

0010 01rd dddd rrrr

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -
87

ICALL - Indirect Call to Subroutine

Description:

Indirect call of a subroutine pointed to by the Z (16 bits) pointer register in the register file. The Z pointer register is 16 bits
wide and allows call to a subroutine within the current 64K words (128K bytes) section in the program memory space.

Operation:

 (i) PC(15-0) ← Z(15 - 0)Devices with 16 bits PC, 128K bytes program memory maximum.
(ii) PC(15-0) ← Z(15 - 0)Devices with 22 bits PC, 8M bytes program memory maximum.

PC(21-16) is unchanged

Syntax: Operands: Program Counter: Stack

 (i) ICALL None See Operation STACK ← PC+1
SP ← SP-2 (2 bytes, 16 bits)

(ii) ICALL None See Operation STACK ← PC+1
SP ← SP-3 (3 bytes, 22 bits)

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
mov r30,r0 ; Set offset to call table

icall ; Call routine pointed to by r31:r30

Words: 1 (2 bytes)
Cycles: 3

1001 0101 XXXX 1001

I T H S V N Z C

- - - - - - - -
AVR Core88

AVR Core
IJMP - Indirect Jump

Description:

Indirect jump to the address pointed to by the Z (16 bits) pointer register in the register file. The Z pointer register is 16 bits
wide and allows jump within the current 64K words (128K bytes) section of program memory.

Operation:

 (i) PC ← Z(15 - 0) Devices with 16 bits PC, 128K bytes program memory maximum.
(ii) PC(15-0) ← Z(15-0)Devices with 22 bits PC, 8M bytes program memory maximum.

PC(21-16) is unchanged

Syntax: Operands: Program Counter: Stack

(ii) IJMP None See Operation Not Affected
(iii) IJMP None See Operation Not Affected

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
mov r30,r0 ; Set offset to jump table

ijmp ; Jump to routine pointed to by r31:r30

Words: 1 (2 bytes)

Cycles: 2

1001 0100 XXXX 1001

I T H S V N Z C

- - - - - - - -
89

IN - Load an I/O Port to Register

Description:

Loads data from the I/O Space (Ports, Timers, Configuration registers etc.) into register Rd in the register file.

Operation:

(i) Rd ← P

Syntax: Operands: Program Counter:

(i) IN Rd,P 0 ≤ d ≤ 31, 0 ≤ P ≤ 63 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
in r25,$16 ; Read Port B

cpi r25,4 ; Compare read value to constant

breq exit ; Branch if r25=4

...

exit: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

1011 0PPd dddd PPPP

I T H S V N Z C

- - - - - - - -
AVR Core90

AVR Core
INC - Increment

Description:

Adds one -1- to the contents of register Rd and places the result in the destination register Rd.

The C flag in SREG is not affected by the operation, thus allowing the INC instruction to be used on a loop counter in mul-
tiple-precision computations.

When operating on unsigned numbers, only BREQ and BRNE branches can be expected to perform consistently. When
operating on two’s complement values, all signed branches are available.

Operation:

(i) Rd ← Rd + 1

Syntax: Operands: Program Counter:

(i) INC Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

S: N ⊕ V

For signed tests.

V: R7 •R6 •R5 •R4 •R3• R2 •R1 •R0
Set if two’s complement overflow resulted from the operation; cleared otherwise. Two’s complement overflow occurs
if and only if Rd was $7F before the operation.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7 •R6 •R5 •R4•R3 •R2• R1• R0
Set if the result is $00; Cleared otherwise.

R (Result) equals Rd after the operation.

Example:
clr r22 ; clear r22

loop: inc r22 ; increment r22

...

cpi r22,$4F ; Compare r22 to $4f

brne loop ; Branch if not equal

nop ; Continue (do nothing)

Words: 1 (2 bytes)
Cycles: 1

1001 010d dddd 0011

I T H S V N Z C

- - - ⇔ ⇔ ⇔ ⇔ -
91

JMP - Jump

Description:

Jump to an address within the entire 4M (words) program memory. See also RJMP.

Operation:

(i) PC ← k

Syntax: Operands: Program Counter: Stack

(i) JMP k 0 ≤ k ≤ 4M PC ← k Unchanged

32 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
mov r1,r0 ; Copy r0 to r1

jmp farplc ; Unconditional jump

...

farplc: nop ; Jump destination (do nothing)

Words: 2 (4 bytes)
Cycles: 3

1001 010k kkkk 110k

kkkk kkkk kkkk kkkk

I T H S V N Z C

- - - - - - - -
AVR Core92

AVR Core
LD - Load Indirect from SRAM to Register using Index X

Description:

Loads one byte indirect from SRAM, I/O location or register file to register. This memory location is pointed to by the X (16
bits) pointer register in the register file. Memory access is limited to the current SRAM, I/O location or register file page of
64K bytes.

The X pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These
features are especially suited for accessing arrays, tables, and stack pointer usage of the X pointer register.

The results loaded by the following instructions are undefined.

ld XL, X+ ld XH, X+ ld XL, -X ld XH, -X

Using the X pointer:
Operation: Comment:

(i) Rd ← (X) X: Unchanged
(ii) Rd ← (X) X ← X + 1 X: Post incremented
(iii) X ← X - 1 Rd ← (X) X: Pre decremented

Syntax: Operands: Program Counter:

(i) LD Rd, X 0 ≤ d ≤ 31 PC ← PC + 1
(ii) LD Rd, X+ 0 ≤ d ≤ 31 PC ← PC + 1
(iii) LD Rd,-X 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode :

Status Register (SREG) and Boolean Formulae:

Example:
clr r27 ; Clear X high byte

ldi r26,$1F ; Set X low byte to $1F

ld r0,X+ ; Load r0 with memory loc. $1F-R31(X post inc)

ld r1,X ; Load r1 with memory loc. $20-I/O loc. $00

ldi r26,$60 ; Set X low byte to $60

ld r2,X ; Load r2 with memory loc. $60-SRAM loc. $60

ld r3,-X ; Load r3 with memory loc. $5F-I/O loc. $3F(X pre dec)

Words: 1 (2 bytes)

Cycles: 2

(i) 1001 000d dddd 1100

(ii) 1001 000d dddd 1101

(iii) 1001 000d dddd 1110

I T H S V N Z C

- - - - - - - -
93

LD (LDD) - Load Indirect from SRAM to Register using Index Y

Description:

Loads one byte indirect with or without displacement from SRAM, I/O location or register file to register. This memory loca-
tion is pointed to by the Y (16 bits) pointer register in the register file. Memory access is limited to the current SRAM, I/O
location or register file page of 64K bytes.

The Y pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These
features are especially suited for accessing arrays, tables, and stack pointer usage of the Y pointer register.

The results loaded by the following instructions are undefined.

ld YL, Y+ ld YH, Y+ ld YL, -Y ld YH, -Y

Using the Y pointer:
Operation: Comment:

(i) Rd ← (Y) Y: Unchanged
(ii) Rd ← (Y) Y ← Y + 1 Y: Post incremented
(iii) Y ← Y - 1 Rd ← (Y) Y: Pre decremented
(iiii) Rd ← (Y+q) Y: Unchanged, q: Displacement

Syntax: Operands: Program Counter:

(i) LD Rd, Y 0 ≤ d ≤ 31 PC ← PC + 1
(ii) LD Rd, Y+ 0 ≤ d ≤ 31 PC ← PC + 1
(iii) LD Rd,-Y 0 ≤ d ≤ 31 PC ← PC + 1
(iiii) LDD Rd, Y+q 0 ≤ d ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1

16 bit Opcode :

Status Register (SREG) and Boolean Formulae:

Example:
clr r29 ; Clear Y high byte

ldi r28,$1F ; Set Y low byte to $1F

ld r0,Y+ ; Load r0 with memory loc. $1F-R31(Y post inc)

ld r1,Y ; Load r1 with memory loc. $20-I/O loc. $00

ldi r28,$60 ; Set Y low byte to $60

ld r2,Y ; Load r2 with memory loc. $60-SRAM loc. $60

ld r3,-Y ; Load r3 with memory loc. $5F-I/O loc. $3F(Y pre dec)

ldd r4,Y+2 ; Load r4 with memory loc. $61-SRAM loc. $61

Words: 1 (2 bytes)
Cycles: 2

(i) 1000 000d dddd 1000

(ii) 1001 000d dddd 1001

(iii) 1001 000d dddd 1010

(iiii) 10q0 qq0d dddd 1qqq

I T H S V N Z C

- - - - - - - -
AVR Core94

AVR Core
LD (LDD) - Load Indirect From SRAM to Register using Index Z

Description:

Loads one byte indirectly with or without displacement from SRAM, I/O location or register file to register. This memory
location is pointed to by the Z (16 bits) pointer register in the register file. Memory access is limited to the current SRAM,
I/O location or register file page of 64K bytes.

The Z pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These
features are especially suited for stack pointer usage of the Z pointer register, however because the Z pointer register can
be used for indirect subroutine calls, indirect jumps and table lookup, it is often more convenient to use the X or Y pointer
as a dedicated stack pointer.

For using the Z pointer for table lookup in program memory see the LPM and ELPM instructions.

The results loaded by the following instructions are undefined.

ld ZL, Z+ ld ZH, Z+ ld ZL, -Z ld ZH, -Z

Using the Z pointer:
Operation: Comment:

(i) Rd ← (Z) Z: Unchanged
(ii) Rd ← (Z) Z ← Z + 1 Z: Post increment
(iii) Z ← Z -1 Rd ← (Z) Z: Pre decrement
(iiii) Rd ← (Z+q) Z: Unchanged, q: Displacement

Syntax: Operands: Program Counter:

(i) LD Rd, Z 0 ≤ d ≤ 31 PC ← PC + 1
(ii) LD Rd, Z+ 0 ≤ d ≤ 31 PC ← PC + 1
(iii) LD Rd,-Z 0 ≤ d ≤ 31 PC ← PC + 1
(iiii) LDD Rd, Z+q 0 ≤ d ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1

16 bit Opcode :

Status Register (SREG) and Boolean Formulae:

Example:
clr r29 ; Clear Z high byte

ldi r28,$10 ; Set Z low byte to $10

ld r0,Z+ ; Load r0 with memory loc. $10-R16(Z post inc)

ld r1,Z ; Load r1 with memory loc. $11-R17

ldi r28,$60 ; Set Z low byte to $60

ld r2,Z ; Load r2 with memory loc. $60-SRAM loc. $60

ld r3,-Z ; Load r3 with memory loc. $5F-I/O loc. $3F(Z pre dec)

ldd r4,Z+2 ; Load r4 with memory loc. $61-SRAM loc. $61

Words: 1 (2 bytes)
Cycles: 2

(i) 1000 000d dddd 0000

(ii) 1001 000d dddd 0001

(iii) 1001 000d dddd 0010

(iiii) 10q0 qq0d dddd 0qqq

I T H S V N Z C

- - - - - - - -
95

LDI - Load Immediate

Description:

Loads an 8 bit constant directly to register 16 to 31.

Operation:

(i) Rd ← K

Syntax: Operands: Program Counter:

(i) LDI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
clr r31 ; Clear Z high byte

ldi r30,$F0 ; Set Z low byte to $F0

lpm ; Load constant from program

; memory pointed to by Z

Words: 1 (2 bytes)
Cycles: 1

1110 KKKK dddd KKKK

I T H S V N Z C

- - - - - - - -
AVR Core96

AVR Core
LDS - Load Direct from SRAM

Description:

Loads one byte from the SRAM to a Register. A 16-bit address must be supplied. Memory access is limited to the current
SRAM Page of 64K bytes. The LDS instruction uses the RAMPZ register to access memory above 64K bytes.

Operation:

(i) Rd ← (k)

Syntax: Operands: Program Counter:

(i) LDS Rd,k 0 ≤ d ≤ 31, 0 ≤ k ≤ 65535 PC ← PC + 2

32 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
lds r2,$FF00 ; Load r2 with the contents of SRAM location $FF00

add r2,r1 ; add r1 to r2

sts $FF00,r2 ; Write back

Words: 2 (4 bytes)
Cycles: 3

1001 000d dddd 0000

kkkk kkkk kkkk kkkk

I T H S V N Z C

- - - - - - - -
97

LPM - Load Program Memory

Description:

Loads one byte pointed to by the Z register into register 0 (R0). This instruction features a 100% space effective constant
initialization or constant data fetch. The program memory is organized in 16 bits words and the LSB of the Z (16 bits)
pointer selects either low byte (0) or high byte (1). This instruction can address the first 64K bytes (32K words) of program
memory.

Operation: Comment:

(i) R0 ← (Z) Z points to program memory

Syntax: Operands: Program Counter:

(i) LPM None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
clr r31 ; Clear Z high byte

ldi r30,$F0 ; Set Z low byte

lpm ; Load constant from program

; memory pointed to by Z (r31:r30)

Words: 1 (2 bytes)

Cycles: 3

1001 0101 1100 1000

I T H S V N Z C

- - - - - - - -
AVR Core98

AVR Core
LSL - Logical Shift Left

Description:

Shifts all bits in Rd one place to the left. Bit 0 is cleared. Bit 7 is loaded into the C flag of the SREG. This operation effec-
tively multiplies an unsigned value by two.

Operation:

(i)

Syntax: Operands: Program Counter:

(i) LSL Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode: (see ADD Rd,Rd)

Status Register (SREG) and Boolean Formulae:

H: Rd3

S: N ⊕ V, For signed tests.

V: N ⊕ C (For N and C after the shift)

Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd7
Set if, before the shift, the MSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
add r0,r4 ; Add r4 to r0

lsl r0 ; Multiply r0 by 2

Words: 1 (2 bytes)
Cycles: 1

←

C ← b7 - - - - - - - - - - - - - - - - - - b0 ← 0

0000 11dd dddd dddd

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
99

LSR - Logical Shift Right

Description:

Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is loaded into the C flag of the SREG. This operation effec-
tively divides an unsigned value by two. The C flag can be used to round the result.

Operation:

Syntax: Operands: Program Counter:

(i) LSR Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: N ⊕ C (For N and C after the shift)

Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).

N: 0

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd0
Set if, before the shift, the LSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
add r0,r4 ; Add r4 to r0

lsr r0 ; Divide r0 by 2

Words: 1 (2 bytes)
Cycles: 1

→

0 → b7 - - - - - - - - - - - - - - - - - - b0 → C

1001 010d dddd 0110

I T H S V N Z C

- - - ⇔ ⇔ 0 ⇔ ⇔
AVR Core100

AVR Core
MOV - Copy Register

Description:

This instruction makes a copy of one register into another. The source register Rr is left unchanged, while the destination
register Rd is loaded with a copy of Rr.

Operation:

(i) Rd ← Rr

Syntax: Operands: Program Counter:

(i) MOV Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
mov r16,r0 ; Copy r0 to r16

call check ; Call subroutine

...

check: cpi r16,$11 ; Compare r16 to $11

...

ret ; Return from subroutine

Words: 1 (2 bytes)

Cycles: 1

0010 11rd dddd rrrr

I T H S V N Z C

- - - - - - - -
101

MUL - Multiply

Description:

This instruction performs 8-bit × 8-bit → 16-bit unsigned multiplication.

The multiplicand Rr and the multiplier Rd are two registers. The 16-bit product is placed in R1 (high byte) and R0 (low byte).
Note that if the multiplicand and the multiplier is selected from R0 or R1 the result will overwrite those after multiplication.

Operation:

(i) R1,R0 ← Rr × Rd

Syntax: Operands: Program Counter:

(i) MUL Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

C: R15
Set if bit 15 of the result is set; cleared otherwise.

R (Result) equals R1,R0 after the operation.

Example:
mulr6,r5; Multiply r6 and r5

movr6,r1; Copy result back in r6:r5

movr5,r0; Copy result back in r6:r5

Words: 1 (2 bytes)
Cycles: 2

Not available in AVR Embedded Core.

Rr Rd R1 R0

Multiplicand × Multiplier → Product High Product Low

8 8 16

1001 11rd dddd rrrr

I T H S V N Z C

- - - - - - - ⇔
AVR Core102

AVR Core
NEG - Two’s Complement

Description:

Replaces the contents of register Rd with its two’s complement; the value $80 is left unchanged.
Operation:

(i) Rd ← $00 - Rd

Syntax: Operands: Program Counter:

 (i) NEG Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: R3• Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V
For signed tests.

V: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if there is a two’s complement overflow from the implied subtraction from zero; cleared otherwise. A two’s com-
plement overflow will occur if and only if the contents of the Register after operation (Result) is $80.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; Cleared otherwise.

C: R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared otherwise. The C flag will be set in all cases
except when the contents of Register after operation is $00.

R (Result) equals Rd after the operation.

Example:
sub r11,r0 ; Subtract r0 from r11

brpl positive ; Branch if result positive

neg r11 ; Take two’s complement of r11

positive: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

1001 010d dddd 0001

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
103

NOP - No Operation

Description:

This instruction performs a single cycle No Operation.

Operation:

(i) No

Syntax: Operands: Program Counter:

(i) NOP None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
clr r16 ; Clear r16

ser r17 ; Set r17

out $18,r16 ; Write zeros to Port B

nop ; Wait (do nothing)

out $18,r17 ; Write ones to Port B

Words: 1 (2 bytes)
Cycles: 1

0000 0000 0000 0000

I T H S V N Z C

- - - - - - - -
AVR Core104

AVR Core
OR - Logical OR

Description:

Performs the logical OR between the contents of register Rd and register Rr and places the result in the destination register
Rd.

Operation:

(i) Rd ← Rd v Rr

Syntax: Operands: Program Counter:

(i) OR Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
or r15,r16 ; Do bitwise or between registers

bst r15,6 ; Store bit 6 of r15 in T flag

brts ok ; Branch if T flag set

...

ok: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

0010 10rd dddd rrrr

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -
105

ORI - Logical OR with Immediate

Description:

Performs the logical OR between the contents of register Rd and a constant and places the result in the destination register
Rd.

Operation:

 (i) Rd ← Rd v K

Syntax: Operands: Program Counter:

 (i) ORI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
ori r16,$F0 ; Set high nibble of r16

ori r17,1 ; Set bit 0 of r17

Words: 1 (2 bytes)
Cycles: 1

0110 KKKK dddd KKKK

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -
AVR Core106

AVR Core
OUT - Store Register to I/O port

Description:

Stores data from register Rr in the register file to I/O space (Ports, Timers, Configuration registers etc.).

Operation:

(i) P ← Rr

Syntax: Operands: Program Counter:

(i) OUT P,Rr 0 ≤ r ≤ 31, 0 ≤ P ≤ 63 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
clr r16 ; Clear r16

ser r17 ; Set r17

out $18,r16 ; Write zeros to Port B

nop ; Wait (do nothing)

out $18,r17 ; Write ones to Port B

Words: 1 (2 bytes)
Cycles: 1

1011 1PPr rrrr PPPP

I T H S V N Z C

- - - - - - - -
107

POP - Pop Register from Stack

Description:

This instruction loads register Rd with a byte from the STACK.

Operation:

(i) Rd ← STACK

Syntax: Operands: Program Counter:Stack

 (i) POP Rd 0 ≤ d ≤ 31 PC ← PC + 1SP ← SP + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
call routine ; Call subroutine

...

routine: push r14 ; Save r14 on the stack

push r13 ; Save r13 on the stack

...

pop r13 ; Restore r13

pop r14 ; Restore r14

ret ; Return from subroutine

Words: 1 (2 bytes)
Cycles: 2

1001 000d dddd 1111

I T H S V N Z C

- - - - - - - -
AVR Core108

AVR Core
PUSH - Push Register on Stack

Description:

This instruction stores the contents of register Rr on the STACK.

Operation:

(i) STACK ← Rr

Syntax: Operands: Program Counter:Stack:

(i) PUSH Rr 0 ≤ r ≤ 31 PC ← PC + 1SP ← SP - 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
call routine ; Call subroutine

...

routine: push r14 ; Save r14 on the stack

push r13 ; Save r13 on the stack

...

pop r13 ; Restore r13

pop r14 ; Restore r14

ret ; Return from subroutine

Words: 1 (2 bytes)
Cycles: 2

1001 001d dddd 1111

I T H S V N Z C

- - - - - - - -
109

RCALL - Relative Call to Subroutine

Description:

Calls a subroutine within ± 2K words (4K bytes). The return address (the instruction after the RCALL) is stored onto the
stack. (See also CALL).

Operation:

 (i) PC ← PC + k + 1 Devices with 16 bits PC, 128K bytes program memory maximum.
(ii) PC ← PC + k + 1 Devices with 22 bits PC, 8M bytes program memory maximum.

Syntax: Operands: Program Counter: Stack

 (i) RCALL k -2K ≤ k ≤ 2K PC ← PC + k + 1 STACK ← PC+1
SP ← SP-2 (2 bytes, 16 bits)

(ii) RCALL k -2K ≤ k ≤ 2K PC ← PC + k + 1 STACK ← PC+1
SP ← SP-3 (3 bytes, 22 bits)

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
rcall routine ; Call subroutine

...

routine: push r14 ; Save r14 on the stack

...

pop r14 ; Restore r14

ret ; Return from subroutine

Words: 1 (2 bytes)

Cycles: 3

1101 kkkk kkkk kkkk

I T H S V N Z C

- - - - - - - -
AVR Core110

AVR Core
RET - Return from Subroutine

Description:

Returns from subroutine. The return address is loaded from the STACK.

Operation:

 (i) PC(15-0) ← STACKDevices with 16 bits PC, 128K bytes program memory maximum.
(ii) PC(21-0) ← STACKDevices with 22 bits PC, 8M bytes program memory maximum.

Syntax: Operands: Program Counter: Stack

 (i) RET None See Operation SP←SP+2,(2 bytes,16 bits pulled)

(ii) RET None See Operation SP←SP+3,(3 bytes,22 bits pulled)

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
call routine ; Call subroutine

...

routine: push r14 ; Save r14 on the stack

...

pop r14 ; Restore r14

ret ; Return from subroutine

Words: 1 (2 bytes)

Cycles: 4

1001 0101 0XX0 1000

I T H S V N Z C

- - - - - - - -
111

RETI - Return from Interrupt

Description:

Returns from interrupt. The return address is loaded from the STACK and the global interrupt flag is set.

Operation:

(i) PC(15-0) ← STACKDevices with 16 bits PC, 128K bytes program memory maximum.
(ii) PC(21-0) ← STACKDevices with 22 bits PC, 8M bytes program memory maximum.

Syntax: Operands: Program Counter: Stack

 (i) RETI None See Operation SP ← SP +2 (2 bytes, 16 bits)

(ii) RETI None See Operation SP ← SP +3 (3 bytes, 22 bits)

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

I: 1
The I flag is set.

Example:
...

extint: push r0 ; Save r0 on the stack

...

pop r0 ; Restore r0

reti ; Return and enable interrupts

Words: 1 (2 bytes)
Cycles: 4

1001 0101 0XX1 1000

I T H S V N Z C

1 - - - - - - -
AVR Core112

AVR Core
RJMP - Relative Jump

Description:

Relative jump to an address within PC-2K and PC + 2K (words). In the assembler, labels are used instead of relative oper-
ands. For AVR microcontrollers with program memory not exceeding 4K words (8K bytes) this instruction can address the
entire memory from every address location.

Operation:

(i) PC ← PC + k + 1

Syntax: Operands: Program Counter: Stack

(i) RJMP k -2K ≤ k ≤ 2K PC ← PC + k + 1 Unchanged

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
cpi r16,$42 ; Compare r16 to $42

brne error ; Branch if r16 <> $42

rjmp ok ; Unconditional branch

error: add r16,r17 ; Add r17 to r16

inc r16 ; Increment r16

ok: nop ; Destination for rjmp (do nothing)

Words: 1 (2 bytes)
Cycles: 2

1100 kkkk kkkk kkkk

I T H S V N Z C

- - - - - - - -
113

ROL - Rotate Left trough Carry

Description:

Shifts all bits in Rd one place to the left. The C flag is shifted into bit 0 of Rd. Bit 7 is shifted into the C flag.

Operation:

Syntax: Operands: Program Counter:

(i) ROL Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode: (see ADC Rd,Rd)

Status Register (SREG) and Boolean Formulae:

H: Rd3

S: N ⊕ V, For signed tests.

V: N ⊕ C (For N and C after the shift)

Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd7
Set if, before the shift, the MSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
rolr15 ; Rotate left

brcsoneenc ; Branch if carry set

...

oneenc: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

←

C ← b7 - - - - - - - - - - - - - - - - - - b0 ← C

0001 11dd dddd dddd

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
AVR Core114

AVR Core
ROR - Rotate Right trough Carry

Description:

Shifts all bits in Rd one place to the right. The C flag is shifted into bit 7 of Rd. Bit 0 is shifted into the C flag.

Operation:

Syntax: Operands: Program Counter:

(i) ROR Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: N ⊕ C (For N and C after the shift)

Set if (N is set and C is clear) or (N is clear and C is set); Cleared otherwise (for values of N and C after the shift).

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd0
Set if, before the shift, the LSB of Rd was set; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
rorr15 ; Rotate right

brcczeroenc ; Branch if carry cleared

...

zeroenc: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)

Cycles: 1

→

C → b7 - - - - - - - - - - - - - - - - - - b0 → C

1001 010d dddd 0111

I T H S V N Z C

- - - ⇔ ⇔ ⇔ ⇔ ⇔
115

SBC - Subtract with Carry

Description:

Subtracts two registers and subtracts with the C flag and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd - Rr - C

Syntax: Operands: Program Counter:

(i) SBC Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

H: Rd3• Rr3 + Rr3• R3 + R3 •Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7 •Rr7• R7 +Rd7 •Rr7 •R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0• Z
Previous value remains unchanged when the result is zero; cleared otherwise.

C: Rd7 •Rr7+ Rr7 •R7 +R7 •Rd7
Set if the absolute value of the contents of Rr plus previous carry is larger than the absolute value of the Rd; cleared
otherwise.

 R (Result) equals Rd after the operation.

Example:
; Subtract r1:r0 from r3:r2

sub r2,r0 ; Subtract low byte

sbc r3,r1 ; Subtract with carry high byte

Words: 1 (2 bytes)

Cycles: 1

0000 10rd dddd rrrr

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
AVR Core116

AVR Core
SBCI - Subtract Immediate with Carry

Description:

Subtracts a constant from a register and subtracts with the C flag and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd - K - C

Syntax: Operands: Program Counter:

(i) SBCI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

H: Rd3• K3 + K3• R3 + R3 •Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7 •K7• R7 +Rd7 •K7 •R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0• Z
Previous value remains unchanged when the result is zero; cleared otherwise.

C: Rd7 •K7+ K7 • R7 +R7 •Rd7
Set if the absolute value of the constant plus previous carry is larger than the absolute value of Rd; cleared other-
wise.

 R (Result) equals Rd after the operation.

Example:
; Subtract $4F23 from r17:r16

subi r16,$23 ; Subtract low byte

sbci r17,$4F ; Subtract with carry high byte

Words: 1 (2 bytes)

Cycles: 1

0100 KKKK dddd KKKK

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
117

SBI - Set Bit in I/O Register

Description:

Sets a specified bit in an I/O register. This instruction operates on the lower 32 I/O registers - addresses 0-31.

Operation:

(i) I/O(P,b) ← 1

Syntax: Operands: Program Counter:

 (i) SBI P,b 0 ≤ P ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
out $1E,r0 ; Write EEPROM address

sbi $1C,0 ; Set read bit in EECR

in r1,$1D ; Read EEPROM data

Words: 1 (2 bytes)

Cycles: 2

1001 1010 pppp pbbb

I T H S V N Z C

- - - - - - - -
AVR Core118

AVR Core
SBIC - Skip if Bit in I/O Register is Cleared

Description:

This instruction tests a single bit in an I/O register and skips the next instruction if the bit is cleared. This instruction oper-
ates on the lower 32 I/O registers - addresses 0-31.

Operation:

(i) If I/O(P,b) = 0 then PC ← PC + 2 (or 3) else PC ← PC + 1

Syntax: Operands: Program Counter:

 (i) SBIC P,b 0 ≤ P ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1, If condition is false, no skip.
PC ← PC + 2, If next instruction is one word.
PC ← PC + 3, If next instruction is JMP or CALL

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:

e2wait: sbic $1C,1 ; Skip next inst. if EEWE cleared

rjmp e2wait ; EEPROM write not finished

nop ; Continue (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false (no skip)

2 if condition is true (skip is executed)

1001 1001 pppp pbbb

I T H S V N Z C

- - - - - - - -
119

SBIS - Skip if Bit in I/O Register is Set

Description:

This instruction tests a single bit in an I/O register and skips the next instruction if the bit is set. This instruction operates on
the lower 32 I/O registers - addresses 0-31.

Operation:

(i) If I/O(P,b) = 1 then PC ← PC + 2 (or 3) else PC ← PC + 1

Syntax: Operands: Program Counter:

 (i) SBIS P,b 0 ≤ P ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1, Condition false - no skip
PC ← PC + 2, Skip a one word instruction
PC ← PC + 3, Skip a JMP or a CALL

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:

waitset: sbis $10,0 ; Skip next inst. if bit 0 in Port D set

rjmp waitset ; Bit not set

nop ; Continue (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false (no skip)

2 if condition is true (skip is executed)

1001 1011 pppp pbbb

I T H S V N Z C

- - - - - - - -
AVR Core120

AVR Core
SBIW - Subtract Immediate from Word

Description:

Subtracts an immediate value (0-63) from a register pair and places the result in the register pair. This instruction operates
on the upper four register pairs, and is well suited for operations on the pointer registers.

Operation:

(i) Rdh:Rdl ← Rdh:Rdl - K

Syntax: Operands: Program Counter:

(i) SBIW Rdl,K dl ∈ {24,26,28,30}, 0 ≤ K ≤ 63 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: Rdh7 •R15
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R15
Set if MSB of the result is set; cleared otherwise.

Z: R15• R14 •R13 •R12 •R11• R10• R9• R8• R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $0000; cleared otherwise.

C: R15• Rdh7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.

R (Result) equals Rdh:Rdl after the operation (Rdh7-Rdh0 = R15-R8, Rdl7-Rdl0=R7-R0).

Example:
sbiw r24,1 ; Subtract 1 from r25:r24

sbiw r28,63 ; Subtract 63 from the Y pointer(r29:r28)

Words: 1 (2 bytes)
Cycles: 2

1001 0111 KKdd KKKK

I T H S V N Z C

- - - ⇔ ⇔ ⇔ ⇔ ⇔
121

SBR - Set Bits in Register

Description:

Sets specified bits in register Rd. Performs the logical ORI between the contents of register Rd and a constant mask K and
places the result in the destination register Rd.

Operation:

(i) Rd ← Rd v K

Syntax: Operands: Program Counter:

 (i) SBR Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
sbr r16,3 ; Set bits 0 and 1 in r16

sbr r17,$F0 ; Set 4 MSB in r17

Words: 1 (2 bytes)
Cycles: 1

0110 KKKK dddd KKKK

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -
AVR Core122

AVR Core
SBRC - Skip if Bit in Register is Cleared

Description:

This instruction tests a single bit in a register and skips the next instruction if the bit is cleared.

Operation:

(i) If Rr(b) = 0 then PC ← PC + 2 (or 3) else PC ← PC + 1

Syntax: Operands: Program Counter:

 (i) SBRC Rr,b 0 ≤ r ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1, If condition is false, no skip.
PC ← PC + 2, If next instruction is one word.
PC ← PC + 3, If next instruction is JMP or CALL

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
sub r0,r1 ; Subtract r1 from r0

sbrc r0,7 ; Skip if bit 7 in r0 cleared

sub r0,r1 ; Only executed if bit 7 in r0 not cleared

nop ; Continue (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false (no skip)

2 if condition is true (skip is executed)

1111 110r rrrr Xbbb

I T H S V N Z C

- - - - - - - -
123

SBRS - Skip if Bit in Register is Set

Description:

This instruction tests a single bit in a register and skips the next instruction if the bit is set.

Operation:

(i) If Rr(b) = 1 then PC ← PC + 2 (or 3) else PC ← PC + 1

Syntax: Operands: Program Counter:

 (i) SBRS Rr,b 0 ≤ r ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 1, Condition false - no skip
PC ← PC + 2, Skip a one word instruction
PC ← PC + 3, Skip a JMP or a CALL

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
sub r0,r1 ; Subtract r1 from r0

sbrs r0,7 ; Skip if bit 7 in r0 set

neg r0 ; Only executed if bit 7 in r0 not set

nop ; Continue (do nothing)

Words: 1 (2 bytes)
Cycles: 1 if condition is false (no skip)

2 if condition is true (skip is executed)

1111 111r rrrr Xbbb

I T H S V N Z C

- - - - - - - -
AVR Core124

AVR Core
SEC - Set Carry Flag

Description:

Sets the Carry flag (C) in SREG (status register).

Operation:

(i) C ← 1

Syntax: Operands: Program Counter:

 (i) SEC None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

C: 1
Carry flag set

Example:
sec ; Set carry flag

adc r0,r1 ; r0=r0+r1+1

Words: 1 (2 bytes)
Cycles: 1

1001 0100 0000 1000

I T H S V N Z C

- - - - - - - 1
125

SEH - Set Half Carry Flag

Description:

Sets the Half Carry (H) in SREG (status register).

Operation:

(i) H ← 1

Syntax: Operands: Program Counter:

 (i) SEH None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

H: 1
Half Carry flag set

Example:
seh ; Set Half Carry flag

Words: 1 (2 bytes)
Cycles: 1

1001 0100 0101 1000

I T H S V N Z C

- - 1 - - - - -
AVR Core126

AVR Core
SEI - Set Global Interrupt Flag

Description:

Sets the Global Interrupt flag (I) in SREG (status register).

Operation:

(i) I ← 1

Syntax: Operands: Program Counter:

 (i) SEI None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

I: 1
Global Interrupt flag set

Example:
cli ; Disable interrupts

in r13,$16 ; Read Port B

sei ; Enable interrupts

Words: 1 (2 bytes)

Cycles: 1

1001 0100 0111 1000

I T H S V N Z C

1 - - - - - - -
127

SEN - Set Negative Flag

Description:

Sets the Negative flag (N) in SREG (status register).

Operation:

(i) N ← 1

Syntax: Operands: Program Counter:

 (i) SEN None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

N: 1
Negative flag set

Example:
add r2,r19 ; Add r19 to r2

sen ; Set negative flag

Words: 1 (2 bytes)
Cycles: 1

1001 0100 0010 1000

I T H S V N Z C

- - - - - 1 - -
AVR Core128

AVR Core
SER - Set all bits in Register

Description:

Loads $FF directly to register Rd.

Operation:

(i) Rd ← $FF

Syntax: Operands: Program Counter:

(i) SER Rd 16 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
clr r16 ; Clear r16

ser r17 ; Set r17

out $18,r16 ; Write zeros to Port B

nop ; Delay (do nothing)

out $18,r17 ; Write ones to Port B

Words: 1 (2 bytes)
Cycles: 1

1110 1111 dddd 1111

I T H S V N Z C

- - - - - - - -
129

SES - Set Signed Flag

Description:

Sets the Signed flag (S) in SREG (status register).

Operation:

(i) S ← 1

Syntax: Operands: Program Counter:

 (i) SES None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

S: 1
Signed flag set

Example:
add r2,r19 ; Add r19 to r2

ses ; Set negative flag

Words: 1 (2 bytes)
Cycles: 1

1001 0100 0100 1000

I T H S V N Z C

- - - 1 - - - -
AVR Core130

AVR Core
SET - Set T Flag

Description:

Sets the T flag in SREG (status register).

Operation:

(i) T ← 1

Syntax: Operands: Program Counter:

 (i) SET None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

T: 1
T flag set

Example:
set ; Set T flag

Words: 1 (2 bytes)
Cycles: 1

1001 0100 0110 1000

I T H S V N Z C

- 1 - - - - - -
131

SEV - Set Overflow Flag

Description:

Sets the Overflow flag (V) in SREG (status register).

Operation:

(i) V ← 1

Syntax: Operands: Program Counter:

 (i) SEV None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

V: 1
Overflow flag set

Example:
add r2,r19 ; Add r19 to r2

sev ; Set overflow flag

Words: 1 (2 bytes)
Cycles: 1

1001 0100 0011 1000

I T H S V N Z C

- - - - 1 - - -
AVR Core132

AVR Core
SEZ - Set Zero Flag

Description:

Sets the Zero flag (Z) in SREG (status register).

Operation:

(i) Z ← 1

Syntax: Operands: Program Counter:

 (i) SEZ None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Z: 1
Zero flag set

Example:
add r2,r19 ; Add r19 to r2

sez ; Set zero flag

Words: 1 (2 bytes)
Cycles: 1

1001 0100 0001 1000

I T H S V N Z C

- - - - - - 1 -
133

SLEEP

Description:

This instruction sets the circuit in sleep mode defined by the MCU control register. When an interrupt wakes up the MCU
from a sleep state, the instruction following the SLEEP instruction will be executed before the interrupt handler is executed.

Operation:

Syntax: Operands: Program Counter:

SLEEP None PC ← PC + 1

16 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
mov r0,r11 ; Copy r11 to r0

sleep ; Put MCU in sleep mode

Words: 1 (2 bytes)
Cycles: 1

1001 0101 100X 1000

I T H S V N Z C

- - - - - - - -
AVR Core134

AVR Core
ST - Store Indirect From Register to SRAM using Index X

Description:

Stores one byte indirect from Register to SRAM, I/O location or register file. This Memory location is pointed to by the X (16
bits) pointer register in the register file. Memory access is limited to the current SRAM, I/O location or register file Page of
64K bytes.

The X pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These
features are especially suited for stack pointer usage of the X pointer register.

The results stored by the following instructions are undefined.

st X+, XL st X+, XH st -X, XL st -X, XH

Using the X pointer:

Operation: Comment:

(i) (X) ← Rr X: Unchanged
(ii) (X) ← Rr X ← X+1 X: Post incremented
(iii) X ← X - 1 (X) ← Rr X: Pre decremented

Syntax: Operands: Program Counter:

(i) ST X, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(ii) ST X+, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iii) ST -X, Rr 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode :

Status Register (SREG) and Boolean Formulae:

Example:
clr r27 ; Clear X high byte

ldi r26,$1F ; Set X low byte to $1F

st X+,r0 ; Store r0 in memory loc. $1F-R31(X post inc)

st X,r1 ; Store r1 in memory loc. $20-I/O loc. $00

ldi r26,$60 ; Set X low byte to $60

st X,r2 ; Store r2 in memory loc. $60-SRAM loc. $60

st -X,r3 ; Store r3 in memory loc. $5F-I/O loc. $3F(X pre dec)

Words: 1 (2 bytes)
Cycles: 2

(i) 1001 001r rrrr 1100

(ii) 1001 001r rrrr 1101

(iii) 1001 001r rrrr 1110

I T H S V N Z C

- - - - - - - -
135

ST (STD) - Store Indirect From Register to SRAM using Index Y

Description:

Stores one byte indirect with or without displacement from Register to SRAM. The SRAM location is pointed to by the Y (16
bits) pointer register in the register file. Memory access is limited to the current SRAM Page of 64K bytes. To access
another SRAM page the RAMPY register in the I/O area has to be changed.

The Y pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These
features are especially suited for stack pointer usage of the Y pointer register.

The results stored by the following instructions are undefined.

st Y+, YL st Y+, YH st -Y, YL st -Y, YH

Using the Y pointer:
Operation: Comment:

(i) (Y) ← Rr Y: Unchanged
(ii) (Y) ← Rr Y ← Y+1 Y: Post incremented
(iii) Y ← Y - 1 (Y) ← Rr Y: Pre decremented
(iiii) (Y+q) ← Rr Y: Unchanged, q: Displacement

Syntax: Operands: Program Counter:

(i) ST Y, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(ii) ST Y+, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iii) ST -Y, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iiii) STD Y+q, Rr 0 ≤ r ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1

16 bit Opcode :

Status Register (SREG) and Boolean Formulae:

Example:
clr r29 ; Clear Y high byte

ldi r28,$1F ; Set Y low byte to $1F

st Y+,r0 ; Store r0 in memory loc. $1F-R31(Y post inc)

st Y,r1 ; Store r1 in memory loc. $20-I/O loc. $00

ldi r28,$60 ; Set Y low byte to $60

st Y,r2 ; Store r2 in memory loc. $60-SRAM loc. $60

st -Y,r3 ; Store r3 in memory loc. $5F-I/O loc. $3F(Y pre dec)

std Y+2,r4 ; Store r4 in memory loc. $61-SRAM loc. $61

Words: 1 (2 bytes)
Cycles: 2

(i) 1000 001r rrrr 1000

(ii) 1001 001r rrrr 1001

(iii) 1001 001r rrrr 1010

(iiii) 10q0 qq1r rrrr 1qqq

I T H S V N Z C

- - - - - - - -
AVR Core136

AVR Core
ST (STD) - Store Indirect From Register to SRAM using Index Z

Description:

Stores one byte indirect with or without displacement from Register to SRAM. The SRAM location is pointed to by the Z (16
bits) pointer register in the register file. Memory access is limited to the current SRAM Page of 64K bytes. To access
another SRAM page the RAMPZ register in the I/O area has to be changed.

The Z pointer register can either be left unchanged after the operation, or it can be incremented or decremented. These
features are very suited for stack pointer usage of the Z pointer register, but because the Z pointer register can be used for
indirect subroutine calls, indirect jumps and table lookup it is often more convenient to use the X or Y pointer as a dedicated
stack pointer.

The results stored by the following instructions are undefined.

st Z+, ZL st Z+, ZH st -Z, ZL st -Z, ZH

Using the Z pointer:
Operation: Comment:

(i) (Z) ←Rr Z: Unchanged
(ii) (Z) ← Rr Z ← Z+1 Z: Post incremented
(iii) Z ← Z - 1 (Z) ← Rr Z: Pre decremented
(iiii) (Z+q) ← Rr Z: Unchanged, q: Displacement

Syntax: Operands: Program Counter:

(i) ST Z, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(ii) ST Z+, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iii) ST -Z, Rr 0 ≤ r ≤ 31 PC ← PC + 1
(iiii) STD Z+q, Rr 0 ≤ r ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1

16 bit Opcode :

Status Register (SREG) and Boolean Formulae:

Example:
clr r31 ; Clear Z high byte

ldi r30,$10 ; Set Z low byte to $10

st Z+,r0 ; Store r0 in memory loc. $10-R16(Z post inc)

st Z,r1 ; Store r1 in memory loc. $11-R17

ldi r30,$60 ; Set Z low byte to $60

st Z,r2 ; Store r2 in memory loc. $60-SRAM loc. $60

st -Z,r3 ; Store r3 in memory loc. $5F-I/O loc. $3F(Z pre dec)

std Z+2,r4 ; Store r4 in memory loc. $61-SRAM loc. $61

Words: 1 (2 bytes)

Cycles: 2

(i) 1000 001r rrrr 0000

(ii) 1001 001r rrrr 0001

(iii) 1001 001r rrrr 0010

(iiii) 10q0 qq1r rrrr 0qqq

I T H S V N Z C

- - - - - - - -
137

STS - Store Direct to SRAM

Description:

Stores one byte from a Register to the SRAM. A 16-bit address must be supplied. Memory access is limited to the current
SRAM Page of 64K bytes. The SDS instruction uses the RAMPZ register to access memory above 64K bytes.

Operation:

(i) (k) ← Rr

Syntax: Operands: Program Counter:

(i) STS k,Rr 0 ≤ r ≤ 31, 0 ≤ k ≤ 65535 PC ← PC + 2

32 bit Opcode:

Status Register (SREG) and Boolean Formulae:

Example:
lds r2,$FF00 ; Load r2 with the contents of SRAM location $FF00

add r2,r1 ; add r1 to r2

sts $FF00,r2 ; Write back

Words: 2 (4 bytes)

Cycles: 3

1001 001d dddd 0000

kkkk kkkk kkkk kkkk

I T H S V N Z C

- - - - - - - -
AVR Core138

AVR Core
SUB - Subtract without Carry

Description:

Subtracts two registers and places the result in the destination register Rd.

Operation:

(i) Rd ← Rd - Rr

Syntax: Operands: Program Counter:

(i) SUB Rd,Rr 0 ≤ d ≤ 31, 0 ≤ r ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

H: Rd3• Rr3 +Rr3 •R3 +R3• Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7• Rr7 •R7 +Rd7 •Rr7• R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd7• Rr7 +Rr7 •R7 +R7• Rd7
Set if the absolute value of the contents of Rr is larger than the absolute value of Rd; cleared otherwise.

 R (Result) equals Rd after the operation.

Example:
sub r13,r12 ; Subtract r12 from r13

brne noteq ; Branch if r12<>r13

...

noteq: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

0001 10rd dddd rrrr

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
139

SUBI - Subtract Immediate

Description:

Subtracts a register and a constant and places the result in the destination register Rd. This instruction is working on Reg-
ister R16 to R31 and is very well suited for operations on the X, Y and Z pointers.

Operation:

 (i) Rd ← Rd - K

Syntax: Operands: Program Counter:

 (i) SUBI Rd,K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

H: Rd3• K3+K3 •R3 +R3 •Rd3
Set if there was a borrow from bit 3; cleared otherwise

S: N ⊕ V, For signed tests.

V: Rd7• K7 •R7 +Rd7• K7 •R7
Set if two’s complement overflow resulted from the operation; cleared otherwise.

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

C: Rd7• K7 +K7 •R7 +R7• Rd7
Set if the absolute value of K is larger than the absolute value of Rd; cleared otherwise.

R (Result) equals Rd after the operation.

Example:
subir22,$11 ; Subtract $11 from r22

brnenoteq ; Branch if r22<>$11

...

noteq: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

0101 KKKK dddd KKKK

I T H S V N Z C

- - ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
AVR Core140

AVR Core
SWAP - Swap Nibbles

Description:

Swaps high and low nibbles in a register.

Operation:

(i) R(7-4) ← Rd(3-0), R(3-0) ← Rd(7-4)

Syntax: Operands: Program Counter:

(i) SWAP Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

R (Result) equals Rd after the operation.

Example:
inc r1 ; Increment r1

swap r1 ; Swap high and low nibble of r1

inc r1 ; Increment high nibble of r1

swap r1 ; Swap back

Words: 1 (2 bytes)
Cycles: 1

1001 010d dddd 0010

I T H S V N Z C

- - - - - - - -
141

TST - Test for Zero or Minus

Description:

Tests if a register is zero or negative. Performs a logical AND between a register and itself. The register will remain
unchanged.

Operation:

(i) Rd ← Rd • Rd

Syntax: Operands: Program Counter:

(i) TST Rd 0 ≤ d ≤ 31 PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

S: N ⊕ V, For signed tests.

V: 0
Cleared

N: R7
Set if MSB of the result is set; cleared otherwise.

Z: R7• R6 •R5• R4• R3 •R2• R1• R0
Set if the result is $00; cleared otherwise.

R (Result) equals Rd.

Example:
tst r0 ; Test r0

breq zero ; Branch if r0=0

...

zero: nop ; Branch destination (do nothing)

Words: 1 (2 bytes)
Cycles: 1

0010 00dd dddd dddd

I T H S V N Z C

- - - ⇔ 0 ⇔ ⇔ -
AVR Core142

AVR Core
WDR - Watchdog Reset

Description:

This instruction resets the Watchdog Timer. This instruction must be executed within a limited time given by the WD pres-
caler. See the Watchdog Timer hardware specification.

Operation:

(i) WD timer restart.

Syntax: Operands: Program Counter:

(i) WDR None PC ← PC + 1

16 bit Opcode:

Status Register and Boolean Formulae:

Example:
wdr ; Reset watchdog timer

Words: 1 (2 bytes)
Cycles: 1

1001 0101 101X 1000

I T H S V N Z C

- - - - - - - -
143

AVR Core144

© Atmel Corporation 1999.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686677
FAX (44) 1276-686697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East
Kowloon, Hong Kong
TEL (852) 27219778
FAX (852) 27221369

Japan
Atmel Japan K.K.
Tonetsu Shinkawa Bldg., 9F
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4 42 53 60 00
FAX (33) 4 42 53 60 01

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

0890A–02/99/xM

	Features
	Description
	I/O Configuration
	I/O Description
	AVR Core Architecture
	The General Purpose Register File
	The ALU - Arithmetic Logic Unit
	Data Memory Configuration
	Program and Data Addressing Modes
	Data Memory Access
	Stack Access

	I/O Memory
	I/O Registers
	Status Register
	The Stack Pointer - SP

	I/O Memory Access
	Reset and Interrupt Handling
	Reset
	Interrupts

	AVR Scalable Test Access (ASTA) Interface
	ASTA Signals
	ASTA Scan Chains
	ASTA Scan Input Cell
	ASTA Scan Output Cell

	Testing the AVR Embedded Core
	Testing the AVR Peripherals
	Methodologies

	Special Tests with the ASTA Interface
	Ram Space Testing
	I/O Space Testing
	Program Memory Space Testing

	Input/Output Timing
	AVR Core Register Summary
	AVR Core Instruction Set
	Instruction Set Nomenclature:
	Complete Instruction Set Summary
	Complete Instruction Set Summary (continued)
	Complete Instruction Set Summary (continued)
	Complete Instruction Set Summary (continued)

