

Optimization of CF Host Operation

Application Note
Version 1.1

Document No. 80-36-00233
February 2005

SanDisk Corporation
Corporate Headquarters • 140 Caspian Court • Sunnyvale, CA 94089

Phone (408) 542-0500 • Fax (408) 542-0503
www.sandisk.com

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 2 02/05, Lit# 80-36-00233

SanDisk® Corporation general policy does not recommend the use of its products in life
support applications where in a failure or malfunction of the product may directly
threaten life or injury. Per SanDisk Terms and Conditions of Sale, the user of SanDisk
products in life support applications assumes all risk of such use and indemnifies
SanDisk against all damages.

The information in this document is subject to change without notice.
SanDisk Corporation shall not be liable for technical or editorial errors or omissions
contained herein; nor for incidental or consequential damages resulting from the
furnishing, performance, or use of this material.

All portions of SanDisk documentation are protected by copyright law and all rights are
reserved. This documentation may not, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form
without prior consent, in writing, from SanDisk Corporation.
SanDisk and the SanDisk logo are registered trademarks of SanDisk Corporation.
Product names mentioned herein are for identification purposes only and may be
trademarks and/or registered trademarks of their respective companies.
© 2005 SanDisk Corporation. All rights reserved.

SanDisk products are covered or licensed under one or more of the following U.S. Patent
Nos. 5,070,032; 5,095,344; 5,168,465; 5,172,338; 5,198,380; 5,200,959; 5,268,318;
5,268,870; 5,272,669; 5,418,752; 5,602,987. Other U.S. and foreign patents awarded
and pending.
Lit. No. 80-36-00233 Rev. 1.1, Edited on 2/28/05
Printed in U.S.A.

Revision History
• Revision 0.1—First document draft
• Revision 0.2—Second review
• Revision 1.0—Initial release
• Revision 1.1—additions of PIO4-6, DMA 3,4

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 3 02/05, Lit# 80-36-00233

Introduction
This application note provides host application developers with insight into SanDisk
memory card operations. Developers who use this information will be able to better
integrate SanDisk memory cards into their applications for optimum overall application
performance.

Developers will be able to better understand their impact on a particular host’s behavior
by reviewing the architectural and operational details presented in this document. Details
begin with a review of each host behavior point of optimization and end with examples of
host behavior one should avoid.

Updates will be made to this document when significant changes in memory or card
system architecture occur.

Memory Architecture
SanDisk CompactFlash® memory cards are based on NAND flash-memory technology.
NAND flash memory is composed of groups of memory cells that can be read,
programmed, and erased by a memory card controller. Host data is programmed to, or
read from, units of sectors (512 bytes) or multiple numbers of sectors. Sectors are erased
in large groups commonly referred to as erase blocks.

Understanding the detailed implementation of the memory architecture is not critical to
understanding the recommendations in this document. However, this information can
serve as a basis for showing why our recommendations are necessary.

Data-throughput Efficiency
The highest performance during write and read operations can be achieved when a
memory card performs operations on multiple sectors simultaneously. Operation
efficiency is dependent on both the data transfer length for the overall operation1 and the
starting and ending boundaries of the operation.2

The various reasons behind this efficiency depend on the internal memory card
architecture. For example—a memory card may operate simultaneously on multiple
physical locations of memory. However, to perform these simultaneous operations
optimally, certain logical-address boundary conditions in the memory must be met.

Optimizing memory card operation for performance is accomplished by performing
operations that are minimally the size of maximum sector operation concurrency and fall

1 Sector count.
2 Usually logical block addresses or LBAs.

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 4 02/05, Lit# 80-36-00233

on optimal logical address boundaries. More detail for the optimization process is
provided in the sections that follow.

Erase Block Architecture
As previously mentioned, NAND flash-memory is divided into erasable units referred to
as erase blocks. Each erase block contains a number of host-addressable elements called
sectors, which are used to store host data. A host sector contains 512 bytes of data.
Currently available technologies typically use NAND architectures that contain 32 or 64
sectors in each erase block.

Multiple blocks can be erased concurrently to improve the memory card’s maximum
write performance. In such cases sector addresses from logically contiguous groups are
assigned to multiple, parallel blocks. This increases the effective size of the erase block
by a degree equal to the degree of concurrency. For example, Table 1 outlines several
SanDisk products and their most effective erase-block sizes.

Table 1. Memory Effective Erase Block Examples

Product Effective Erase Block
8 MB Standard 8 kB

16 MB Standard 16 kB

64 MB Standard 128 kB

128MB Ultra 128 kB

Future 256 kB or greater

The large difference in size between the effective erase block and the basic sector unit of
host access sometimes requires the card to perform internal maintenance operations.
Such operations copy valid data sectors from one erase block to another in order to keep
some number of blocks available for subsequent write operations. As a result, average
system performance suffers when these copy operations occur. The larger the data group
copied, the greater the negative impact on average performance.

Although most SanDisk products are optimized to handle write operations that are not
aligned to block boundaries, it is more efficient when the first sector of a write command
aligns to the first page in an erase block. In addition, writing as large of a portion of data
as possible adds to the efficiency. More details for these recommendations can be found
in sections that follow.

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 5 02/05, Lit# 80-36-00233

Host Behavior Recommendations

Large Sequential Write Commands
The only way to sustain the memory card’s maximum transfer rate to the host interface
occurs when the host uses the minimum number of commands with the maximum
number of sectors, per command, to write data to the card to sequential addresses. For
example—in the SanDisk CompactFlash® specification, up to 256 sectors can be written
with a single command; by writing the maximum number of sectors allowed, the card is
able to exercise its maximum level of flash-operation concurrency.

In addition, less overhead-command processing is required and amortized over more data
transfers, lowering their impact on performance. Finally, by writing to sequential
addresses with successive commands, the internal data structures of the card will need
less processing which will further reduce overhead processing during commands.

An example of the sector count’s effect on the memory card’s maximum write-transfer
rate is shown in Table 2. As shown, significant improvements in transfer rate can be
achieved with larger sector counts.

Table 2. Sample Write Transfer Rate v. Command Size

Cylinder Sct Cnt Speed (KB/s) Min. Tf Time (ms) Max. Tf Time (ms)
0 1 205 2.97 3.2

0 2 363 3.3 3.45

0 3 530 3.37 3.58

0 4 683 3.46 3.63

0 5 795 3.7 3.9

0 6 926 3.8 3.94

0 7 1057 3.86 4.1

0 8 1169 3.96 4.1

0 16 1479 3.4 6.5

0 32 2421 6.9 9.9

0 64 3117 11 11.1

0 65 2103 11.15 11.4

0 128 3483 19.2 20.75

0 129 1289 21.7 55.4

0 255 3505 37.6 37.9

All the data for a single command does not need to be contained in a single RAM buffer.
SanDisk CompactFlash® products will not timeout waiting for sector transfers from the
host. For example—a transfer of 256 sectors may be processed in a single command but
the data processed and transferred 16 sectors at a time, if a host has only 8 kB of buffer
space.

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 6 02/05, Lit# 80-36-00233

Host Bus Bandwidth
One factor that affects the maximum sustained write-performance is the host-bus
bandwidth. It is important to use the highest host-bus bandwidth possible.

Many host interface specifications for flash cards have various timing modes of operation
(for the transfer of data and commands to and data from the card). SanDisk products are
designed to operate at the highest timing modes, as specified in the various applicable
specifications.

For example—SanDisk CompactFlash® memory cards are designed to support operation
using PIO Mode 4, the fastest specified timing mode for the ATA interface. The host
should take advantage of this capability whenever possible. The benefit is a reduction, in
the data transfer to and from the card, as a contributor to the overall duration of a
command. Using PIO Mode 4 also increases the memory card’s performance. The
maximum benefit, however, is achieved on cards with higher intrinsic write-performance.

Table 3. PIO Cycle Timing Summary

PIO Mode Cycle Time Transfer Rate (MB/s)
0 600 3.33

1 383 5.22

2 240 8.33

3 180 11.11

4 120 16.67

5 100 20.00

6 80 25.00

Table 4. Multi-word DMA Cycle Timing Summary

DMA Mode Cycle Time Transfer Rate (MB/s)
0 480 4.17

1 150 13.33

2 120 16.67

3 100 20.00

4 80 25.00

Higher performance occurs even when the host-interface timing mode is higher than the
card-write rate. This is attributed to the overhead in the host file system and the interface
drivers. Using the highest timing mode possible increases the overall efficiency. Another
way to increase system efficiency is to use a DMA operation: doing so removes the data
transfer burden from the host CPU.

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 7 02/05, Lit# 80-36-00233

File System Optimization

Cluster Boundary Alignment

Typically, write operations are performed on sector clusters defined by the operating
system. These clusters occupy the logical address space from slightly beyond the
directory and file allocation table (FAT) until the end of the usable storage space. Cluster
boundaries should be aligned on a module boundary equal to the cluster size to increase
the efficiency of parallel write operations. Misalignment can occur when the number of
system area sectors for the boot record, directory, and FAT is not evenly divisible by the
number of sectors in a cluster.

Misaligned clusters can cause parts of single clusters to reside in different physical erase
block groups. When a cluster is written that straddles physical blocks, it might prohibit
the card from writing the maximum data in parallel. It can also cause the memory card to
perform internal-data copy operations, which further decreases overall performance.

Figure 1 illustrates two file-system configurations for cards having the same capacity and
cluster size of four sectors. The diagram on the left shows data structures aligned in an
optimized configuration with no wasted sectors. The configuration on the right shows
how the insertion of a single sector can align the data clusters to a cluster-divisible
boundary. Clusters aligned with even 256-sector boundaries are optimal. However,
when optimal alignment is impossible, alignment to a cluster-divisible boundary should
be pursued.

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 8 02/05, Lit# 80-36-00233

File Fragmentation
The most effective way to use a card is to sequentially write entire physical erase-blocks;
doing so avoids file system fragmentation.

If a file system becomes fragmented, clusters from single files become scattered logically,
and hence, physically, around a card. Subsequently, when the file is re-written, all
physical blocks containing clusters from that file will be updated. The card then needs to
perform additional maintenance operations on the data (from other files) contained in
those physical blocks. Additional maintenance may involve copy operations that result in
reduced overall performance.

Boot Record

Directory 0

Directory 1

Directory 2

Directory 3

Directory 4

Directory 5

Directory 6

Directory 7

Directory 30

Directory 31

Primary FAT 0

Primary FAT 1

Primary FAT 2

Secondary FAT 0

Secondary FAT 1

Cluster0 0

Cluster0 1

Cluster0 2

Cluster0 3

Cluster1 0

Secondary FAT 2

Boot Record

Directory 0

Directory 1

Directory 2

Directory 3

Directory 4

Directory 5

Directory 6

Directory 7

Directory 30

Directory 31

Primary FAT 0

Primary FAT 1

Primary FAT 2

Secondary FAT 0

Secondary FAT 1

Cluster0 0

Cluster0 1

Cluster0 2

Cluster0 3

Secondary FAT 2

Pad Sector
Cluster Aligned

Single Sector
Alignment

Figure 1 File System Examples of Cluster Alignment (4-sector cluster)

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 9 02/05, Lit# 80-36-00233

Figure 2 shows an example of a fragmented file in its cluster allocation. The particular
file cluster chain illustrated is {5, 6, 7, 13, 46, 47, 48, 49, 1028, 1029, 1218, 2}. If the
card had a physical erase-block containing 4 clusters each, potentially 16 clusters would
have to be copied internally to the card. The file-write itself is only 12 clusters. That
makes the overall operation efficiency less than 43% (worst case).

The diagram in Figure 3 shows how a same-size file can be better allocated in terms of
the number of fragmented blocks. In this case, the same 12-cluster file would potentially
cause 4 additional clusters to be copied, which could result in an overall efficiency of
75% (worst case).

In most cases, file-system fragmentation cannot be avoided. Periodic file-system de-
fragmentation, during periods when such activity is acceptable to the overall system, is a
recommended solution.

Cluster 0 Cluster 1 Cluster 2 Cluster 3

Cluster 4 Cluster 5 Cluster 6 Cluster 7

Cluster 8 Cluster 9 Cluster 10 Cluster 11

Cluster 12 Cluster 13 Cluster 14 Cluster 15

Cluster 44 Cluster 45 Cluster 46 Cluster 47

Cluster 48 Cluster 49 Cluster 50 Cluster 51

Cluster 1028 Cluster 1029 Cluster 1030 Cluster 1031

Cluster 1216 Cluster 1217 Cluster 1218 Cluster 1219

Cluster 0 Cluster 1 Cluster 2 Cluster 3

Cluster 4 Cluster 5 Cluster 6 Cluster 7

Cluster 8 Cluster 9 Cluster 10 Cluster 11

Cluster 12 Cluster 13 Cluster 14 Cluster 15

Cluster 16 Cluster 17 Cluster 18 Cluster 19

Cluster 20 Cluster 21 Cluster 22 Cluster 23

Figure 3 File Allocation without Fragmentation Example

Figure 2 File Allocation with Fragmentation Example

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 10 02/05, Lit# 80-36-00233

Minimal System-file Updates

File systems used on flash memory cards typically have system-file structures intended
for directory and file allocation. These records are contained in the file system’s
directory and FAT system files. The records contained in these system files are typically
very small and result in update operations occurring with only single sector writes. Some
SanDisk products are optimized for such system-file writes that occur to frequently used,
repeating addresses.

For severely fragmented file systems or systems containing many small files, such
updates may not occur to repeating addresses. Single-sector write operations can result in
internal card operations which can cause a maximum reduction in the overall card-write
performance. Therefore, system file modifications should be consolidated into the fewest
number of write operations possible and occupy the smallest possible range of addresses.

Larger cluster sizes will reduce the number of records required for a specific capacity
and, as a result, reduce the overall size of the FAT. As mentioned earlier, using larger
cluster sizes provides many other benefits.

Some designs incorporate an update to the FAT for every cluster of the data file written.
These types of designs can slow write performance, because the FAT is constantly being
erased and re-written. The best design approach would be to write all the file clusters and
update the FAT once to avoid multiple erases and re-writes of all the blocks within the
erase block.

Small File Writes

Like system file structures, small file storage can reduce the memory card’s overall write
performance. This is especially relevant when those files are written to a fragmented file
system that scatters the files over a wide range of random addresses. Small file types
may include picture “thumbnails” from a digital camera or data-log records in an
embedded computing application. Because these files are not handled as optimally as
system files, they may cause severe latencies due to internal card maintenance operations.
These latency events could reduce the average write performance to its lowest level.

In addition, accessing random addresses causes thrashing of internal card data structures
used to perform the logical-to-physical address translation. The result is increased card-
processing overhead and further reduced average write performance. This type of data-
structure thrashing has a negative impact on read and performance.

We recommend, when possible, grouping and writing small files together using fewer
write commands. Also, updates to such files should only be performed when absolutely
necessary and avoided whenever possible.

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 11 02/05, Lit# 80-36-00233

Examples of Host-access Behavior to Avoid
The following examples demonstrate the types of host access behavior to avoid.

Example 1: Small Transfer of Misaligned Sectors
Some host systems access the card sequentially but do not use large sector counts. The
example below shows an 8-sector sequential write transferring the majority of the data,
and single-sector writes transferring some portion of the data.

Example 1 also shows multiple-sector write operations that are not aligned to the
boundaries of parallelism. In this case the cluster size is 8 sectors, therefore, the write
operations should be aligned to addresses on 8-sector boundaries.

Write ADDR:0000097 LEN:08
Write ADDR:000009F LEN:08
Write ADDR:00000A7 LEN:08
Write ADDR:00000AF LEN:08
Write ADDR:00000B7 LEN:08
Write ADDR:00000BF LEN:08
Write ADDR:00000C7 LEN:01
Write ADDR:00000C8 LEN:01
Write ADDR:00000C9 LEN:01
Write ADDR:00000CA LEN:01
Write ADDR:00000CB LEN:01
Write ADDR:00000CC LEN:01
Write ADDR:00000CD LEN:01

The net result is an average of 300 kB/s on a card that is capable of a speed greater than
3 MB/s.

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 12 02/05, Lit# 80-36-00233

Example 2: Interrupted Write Transfer or Misaligned Sectors
The operation in Example 2 takes better advantage of the card’s performance capabilities
by using large sector count operations (up to 252 sectors). However, due to an internal
operational issue, the host performed a 4-sector read-modify-write operation between the
large writes.

As in the first example, this application is also not aligning the write operation to even
addresses.

Write ADDR:00064BB LEN:48
Read ADDR:0006503 LEN:04
Write ADDR:0006503 LEN:04
Write ADDR:0006507 LEN:FC
Read ADDR:0006603 LEN:04
Write ADDR:0006603 LEN:04
Write ADDR:0006607 LEN:FC
Read ADDR:0006703 LEN:04
Write ADDR:0006703 LEN:04
Write ADDR:0006707 LEN:3C

The net result is an average of 1.7 MB/s on a card that is capable of speeds greater than
3 MB/s.

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 13 02/05, Lit# 80-36-00233

Example 3: Repeated Address Write
Example 3 is similar to Example 2 in that due to internal host operational issues, sectors
are occasionally written more than once. Also, similar to the previous example, the write
stream is fragmented. Again, the write operation sector counts are relatively low. And
similar to both of the previous examples, the write operations do not start on even cluster
boundaries.

Write ADDR:0002617 LEN:08
Read ADDR:000002A LEN:01
Write ADDR:000002A LEN:01
Write ADDR:000011F LEN:01
Write ADDR:000261F LEN:08
Read ADDR:000002A LEN:01
Write ADDR:000002A LEN:01
Write ADDR:000011F LEN:01
Write ADDR:0002627 LEN:08
Read ADDR:000002A LEN:01
Write ADDR:000002A LEN:01
Write ADDR:000011F LEN:01
Write ADDR:000262F LEN:08
Read ADDR:000002A LEN:01
Write ADDR:000002A LEN:01

The net result is an average 13 kB/s on a card that is capable of speeds greater than
1 MB/s.

Optimization of CF Host Operation Application Note
 Revision 1.1

© 2005 SanDisk Corporation 14 02/05, Lit# 80-36-00233

Example 4: Broken Write Address Sequence
The following sequence shows a host application that skips some addresses and then later
returns and backfills the missing sectors. This application, like the others, does not
adequately align its write operations to even boundaries.

Write ADDR:00010EB LEN:04
Write ADDR:00010EF LEN:11
Write ADDR:0001100 LEN:09
Write ADDR:000110A LEN:3F
Write ADDR:000114A LEN:3F
Write ADDR:000118A LEN:3F
Write ADDR:00011CA LEN:3F
Write ADDR:0001109 LEN:01
Write ADDR:000120A LEN:3F
Write ADDR:0001149 LEN:01
Write ADDR:000124A LEN:3F
Write ADDR:0001189 LEN:01
Write ADDR:000128A LEN:3F

The net result is an average of 632 kB/s on a card that is capable of speeds greater than
3 MB/s.

