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Introduction g N3Cat

@ Nanotechnology is enabling the development of devices in a
scale ranging from one to a few hundred nanometers:

© At this scale, novel nanomaterials and nanoparticles show
new properties not observed at the microscopic level.
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@ Graphene is a one-atom-thick planar sheet of bonded
carbon atoms in a honeycomb crystal lattice. It is the
building material of:

© Carbon Nanotubes (CNTs): A folded strip of
graphene (1991).

© Graphene Nanoribbons (GNRs): A thin strip of
graphene (2004).

T i i

I
e T

1

1

T

T L L

1

1

1
R T

1

e e e

o s e e e

o s e N

|

|

|
T L L

1
o e Nt et
|
|
1
1
|

|
1
1
1
1
o T T N

I e

A
4
A
y,
A
y,
\
y,

@)@
55 N3Cat

@ Graphene is a firm candidate to become “the silicon of the
21st century” due to its unique electronic properties:
® Very high electron mobility
-> Very high speed switching devices.
® Very high sensitivity (all atoms exposed)
-> New types of nanosensors.

@® Thermoelectric current effect
-> Self-cooling nano-electronics.

@ New opportunities for device-technology:
nano-batteries, nano-memories, nano-processors,
nanosensors and nano-antennas.
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J. M. Jornet and I. F. Akyildiz, “Graphene-based Nano-antennas for Electromagnetic
Nanocommunications in the Terahertz Band”, in Proc. of 4th European Conference
on Antennas and Propagation, Barcelona, Spain, April 2010.

@ Graphene can be used to manufacture atomically precise nanoscale
antennas, e.g., nano-dipole, nano-patch, etc.

@ There are several quantum effects that alter the propagation of EM waves
in graphene.

@ For this, we need a new antenna theory.
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@ The main property of graphene-based nano-antennas is that
the EM wave propagation speed can be up to 100 times
lower than in the free space or in conventional materials.

© As a result, the radiation frequency of these antennas can
be also two orders of magnitude lower.

© E.g., for a 1um long antenna this frequency is in the
Terahertz Band (0.1-10 THz).




Simulation % @N3Cat

@ There are no EM simulation tools which are
able to simultaneously:
© Simulate nanoscale antennas.
© Include graphene in their material libraries.

Simulation tools % N3Cat

@ Graphene simulator @ Antenna simulators
© Atomistix toolkit (ATK) © CST
© HFSS
© IE3D
© Sonnet
EMPro
© AXIEM
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@ Computes electronic structure and transport
properties of nanoscale structures:
© E.g. nanotubes, graphene nanoribbons, molecular
electronics devices, magnetic tunnel junctions and other
magnetic system, interface structures, nanowires, etc.
@ The calculations are based on:
© Density—functional theory (DFT)
© Extended Huckel theory
© Classical potentials
® Non—equilibrium Green's function

g N3Cat

@ ATK is an electronic simulation tool...
@ ...but ultimately we need an EM field solver.

It is easier to adapt an EM field solver to use
graphene, rather than implementing a field solver
in an electronic simulation tool.
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@ CST is a EM simulation tool for classical EM
analysis:

© Enables the fast and accurate analysis of high
frequency (HF) devices such as antennas

© Offers a number of different solver for different types
of application

...but it does not have a model for graphene.

g N3Cat

@ There are some approximate conductivity
models for graphene which we can use:

© Complex permittivity model
(accounts for intraband and interband transistions of electrons)

Gusynin, V. P, Sharapoy, S. G., and Carbotte, J. P., “AC conductivity of graphene:
from tight-binding model to 2+1-dimensional quantum electrodynamics,”
International Journal of Modern Physics B, vol. 21, pp. 4611, 2007.

© Drude approximation
(only accounts for intraband transitions of electrons)

Hanson, G., “Dyadic Green's Functions for an Anisotropic, Non-Local Model of
Biased Graphene,” IEEE Transactions on Antennas and Propagation, vol. 56,
pp. 747-757, 2008.




New Material (1) % N3Cat

@ In order to define the conductivity of graphene:

© First, we consider the complex conductivity model by using the numerical
values obtained with Matlab from the previous papers.
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New Material (2) % N3Cat
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e use the Drude approximation
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New Material (3) % N3Cat
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@ Graphene is a 2D material (it is just
one atom thick!)...

@ ... but CST can only simulate 3D
structures.

@ For this, we define graphene as an
anisotropic material with very low
(~0) permittivity in the Z axis (the
thickness of the material)

Patch Antenna % N3Cat

@ Consists of three parts:

Ground plane
(PEC material)

© Dielectric
© Patch (Graphene)
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Graphene Sheet

Botuowtno gpeciet 4 . 0 o
I it i 55 G O o S s Mo o 1 o0 r
SR TREEE R CO L (A T I e ]

2E0F N\ EE

] 4
Tpbepeg T Nk l0 e m T

Results 1 : Radar Cross Section
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@ Work in progress...
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Results 2 : Absorption Cross Section % N3Cat
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@ Work in progress...

Conclusions g N3Cat

@ We can use CST to simulate graphene based
nano-antennas.

© We need a good model for graphene.

® So far we have used some approximate models but we
need a more accurate model for graphene nano-
ribbons.

@ We will need to validate these results with
experimental measurements.
® Maybe when ELCONA comes?
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Thank you for you attention!

Anastasia Pantazopoulou
ap@ac.upc.edu

11



