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Analysis of the Equiangular Spiral Antenna
on a Dielectric Substrate

Michael McFadden, Student Member, IEEE, and Waymond R. Scott Jr., Senior Member, IEEE

Abstract—While the first equiangular spiral antennas were slots
cut from a thin conductive sheet, the widespread availability of
cheap photoetching fabrication has made it more common for the
spiral to be printed on a dielectric substrate. This paper exam-
ines the effects of the substrate on the spiral’s performance. The
finite-difference time-domain (FDTD) technique is used to model
the spiral over a range of configurations. The results are used to
construct a design graph that shows that the substrate significantly
affects the impedance of the antenna. The results also show that the
substrate can negatively impact the bore-sight gain and radiation
patterns. Measurements from two spirals are used to verify the ac-
curacy of the numerical model.

Index Terms—Broadband antennas, electromagnetic analysis,
spiral antennas.

I. INTRODUCTION

I N MANY applications, it is desirable that an antenna per-
form the same way at every frequency. Rumsey summarized

the features that an antenna with this property would have [1].
Prior to his work, it had been observed that the impedance and
radiation pattern of an antenna vary only with the geometry as
described in wavelengths. As a consequence, changing the op-
erating frequency of an antenna is equivalent to scaling its ge-
ometry. This is referred to as the scaling principle or principle of
similitude. Rumsey suggested that an antenna with a geometry
that was invariant to scaling transformations would be frequency
independent.

Geometries that satisfy this requirement must be infinitely
large. However, finite approximations to these antennas may
still have arbitrarily large bandwidths if the finite antenna ra-
diates in the same way as the infinite one. In order to truncate
the antenna properly, at any particular frequency, the majority
of the radiation from the infinite antenna must be concentrated
in a finite region. Rumsey referred to this necessity as the trun-
cation principle.

The class of geometries that are identical after a scaling
transformation consists of angular and conic sections such as
infinitely large biconical antennas or bowties. Unfortunately,
geometries of this type depend on their truncation to radiate
effectively, and consequently fail to adhere to Rumsey’s trun-
cation principle.
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However, slightly less restrictive requirements did lead to
some successful frequency-independent antennas. If the re-
quirements placed on the antenna’s geometry by the scaling
principle are only enforced for certain scaling parameters, the
class of log-periodic antennas may be derived [2], [3]. Rumsey
proposed an alternative way to relax the requirements which
allowed scaling to modify the antenna’s geometry, but only by
a rotation. This clearly would leave the impedance properties
of the antenna the same. If, in addition, the radiation pattern of
the antenna were rotationally symmetric, then true frequency
independence could be achieved. Rumsey’s specifications led
to Dyson’s development of the equiangular spiral antenna and
its generalization, the conical spiral [4], [5]. Over the next 50
years, the spiral was the subject of a number of numerical and
analytical studies [2], [6]–[11]. It has been used in various
applications including direction finding, ground penetrating
radar, and global positioning systems [12]–[14].

This paper will focus exclusively on the planar equiangular
spiral operating in free space and examine the impedance, bore-
sight gain, and radiation pattern of the antenna. Previous work
in this area has primarily focused on the operation of the an-
tenna without a dielectric backing. In his original work, Dyson
developed estimates for the usable frequencies of the planar
slot-spiral antenna and explored how the truncations affected the
radiation pattern but the slot-spiral does not require a substrate.
Wentworth and Rao performed a parametric study on the spiral,
but they did not include the effects of a dielectric backing [9].

Some effort has been put into determining the effect of a sub-
strate on the impedance of the antenna [15], [16], but to date
there has not been the exhaustive study that is best achieved by a
full numerical analysis. This effect will be explored in this paper
and design graphs showing the antenna’s impedance as the di-
electric constant and thickness are varied will be provided. In
addition, the bore-sight gain and radiation pattern in the pres-
ence of the substrate will be discussed and a simple model will
be proposed to explain the behavior of the bore-sight gain.

II. ANTENNA GEOMETRY AND OPERATION

In [1], Rumsey derives a curve that satisfies the property that
a scaling is equivalent to a rotation. This curve is written in polar
coordinates as where the constant deter-
mines the rate of wrapping and the constant rotates the curve.
The curve, called the equiangular spiral, has the property that at
any two points the angles between the tangent and radial vectors
are equal. In fact, this angle is frequently used to describe the
spiral’s geometry instead of . The angle, here denoted , can
be related to by .

When this curve is repeatedly rotated by 90 , it forms the
edges of a two-armed self-complementary structure as shown in

0018-926X/$25.00 © 2007 IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 14,2010 at 11:28:27 EST from IEEE Xplore.  Restrictions apply. 



3164 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 55, NO. 11, NOVEMBER 2007

Fig. 1. Geometry of a truncated two-arm equiangular spiral antenna.

Fig. 1. The exterior of the antenna may be truncated in a number
of ways. The truncation used in Fig. 1 was introduced by Dyson
in [17] because it maximizes the number of turns for a given
outer radius.

If the geometry is such that the spiral arms become close
enough together to directly connect to a waveguide, no addi-
tional feed section is necessary at the inner truncation. However,
due to fabrication tolerances, this is often not possible. In this
study, a self-complementary bowtie structure is used to feed the
antenna.

The spiral has been observed to radiate a circularly polarized
wave with approximately constant impedance and gain proper-
ties over a wide range of frequencies. Numerical results have
shown that the radiation from a particular frequency compo-
nent is concentrated in a ring of circumference [2].
A simple model is sometimes used to explain this result. The
model was first proposed by Kaiser and was initially used to
describe the operation of the Archimedean spiral [18], [19]. In
the model, the spiral is described as a transmission line struc-
ture that transforms into a radiating structure when the traveling
wave reaches a ring of circumference for integer .

III. NUMERICAL MODELING

The finite-difference time-domain (FDTD) method is used to
model the spirals in this work. A considerable amount of atten-
tion has been given to the method in the literature. Interested
readers should consult [20] for a full description. As a time-do-
main method, FDTD allows a wide range of frequencies to be
simulated simultaneously by choosing an appropriate excita-
tion. This makes it an excellent choice for modeling a broad-
band antenna.

In order to calculate the performance of the antenna in free
space, the simulation space is truncated with a perfectly matched
layer (PML). Radiation patterns are constructed using a near-
field-to-far-field transformer (NFFFT). The spiral is inserted as
a perfectly conducting 2-D structure by zeroing out the tangen-
tial electrical field components interior to the conductor at the
end of each component update. The simulation space is divided
into sections and each is updated in parallel on a Beowulf cluster
using the OpenMPI library.

It is possible to minimize the amount of simulation space in
the dimension normal to the spiral plane (the -axis in Fig. 1)
because the structure is essentially 2-D. Since the region very

close to the perfect conductor is characterized by extremely
sharp drops in the field, a significant amount of evanescent wave
content is a concern. The traditional uniaxial PML fails to ab-
sorb some evanescent content, therefore the convolutional PML
(CPML) proposed by Gedney was implemented instead [21].

In order to verify that the CPML was functioning properly,
lower resolution spirals were simulated in large cubic simula-
tion spaces on the order of 500 500 500 cells. The thick-
ness along the -dimension was then successively decreased and
comparisons were made between impedance and gain calcula-
tions for each simulation. In the absence of a dielectric, it was
found that the free space surrounding the antenna could be re-
duced to the point that only four cells lie between the metal sur-
face and the CPML boundary in the -dimension regardless of
the cell size without any significant effect on the measured pa-
rameters. This result is in agreement with Gedney’s reports on
the CPML in [21]. In problems where the spiral’s dielectric is
included, the simulation space remains fairly thin and the nu-
merical mesh has a typical size of 1000 1000 40 cells for
the spirals run in the design graph section.

Since the PML thickness is ten cells, the volume of the space
filled with PML is equal to and in some cases larger than the
simulation space itself. In addition, the NFFFT surface contains
a comparable number of cells to the simulation space itself. In
many simulations, the majority of the computation time is spent
on the PML and NFFFT calculations.

The feed of the antenna was implemented by attaching a
separate 1-D transmission line simulation into the grid at the
center point of the bowtie. The details of this method are
described in [22]. This feed allowed the source to be matched
to the impedance of the line thereby reducing the length of the
required reflection response time when the spiral was excited
in frequencies of interest.

IV. VALIDATION BY MEASUREMENT

Two spirals with design parameters 79 , 3 mm,
and 0.114 m were fabricated for measurements to
demonstrate the validity of the simulated data. The first was
made on Arlon Foamclad R/F 100 with a thickness of ap-
proximately 1 mm. Foamclad is a composite dielectric with a
thin layer of polyester film , on top of a foam layer
( ). For the second, Rogers RO3006 substrate was used
with a thickness of 1.27 mm and .

The impedance and gain measurements of the spirals were
obtained using an HP8720D network analyzer. The outer con-
ductors of two lengths of 085 semirigid coax were electrically
bound together with conducting tape to form a balanced trans-
mission line. The line was attached at one end to a Picosecond
Pulse Labs 5315 balun. At the opposite end, the outer conductor
was removed and the inner conductors of the coax were stripped
of their dielectric casing.

Since a set of balanced transmission line calibration standards
were not available, removable calibration standards were con-
structed to perform the match-open-short calibration procedure
described in [23]. The calibration standards consisted of a small
connector piece built from two subminiature B connector con-
tacts and a disk of polycarbonate. A match (100 chip resistor),
open, and short (copper disk), as well as the spiral antenna were
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Fig. 2. Calibration standards used in impedance measurement.

Fig. 3. Comparison of measured and FDTD resistance for the Foamclad and
Rogers substrate with design parameters  = 79 , R = 3 mm, and R =

0.114 m.

soldered to the connector pieces. These calibration standards are
shown in Fig. 2.

The two spirals were simulated in the finite-difference model.
The Rogers substrate was modeled as a uniform dielectric with

. The Foamclad substrate was modeled as a 0.1-mm
layer of polyester and the foam layer was approximated with air.
Comparisons between the measured and simulated impedances
for the Foamclad and Rogers spirals are shown in Figs. 3 and
4. The experimental and simulated data show very good agree-
ment. It should also be noted that the resistance of the Foamclad
spiral is near 188 as expected.

Bore-sight gain measurements were also taken for the two
spirals. These were performed using the two-antenna method
[24]. In order to perform these measurements, the antenna was
placed on a table made of low dielectric constant foam 1 m from
any scatterers. The gain measurements were time-gated to re-
move reflections from objects in the test area. The measured
and simulated curves for the bore-sight gain of the two spirals
are shown in Figs. 5 and 6.

Fig. 4. Comparison of measured and FDTD reactance for the Foamclad and
Rogers substrate with design parameters  = 79 , R = 3 mm, and R =

0.114 m.

Fig. 5. Comparison of measured and FDTD gain results for the Foamclad sub-
strate with design parameters  = 79 , R = 3 mm, and R = 0.114 m.

V. IMPEDANCE

With the veracity of the numerical results established, sev-
eral graphs were constructed from simulation data in order to
present the effect of the dielectric on the impedance of the spiral
antenna. In this section, the theoretical value for the impedance
of the spiral is discussed and a plot of the impedance as a func-
tion of the most important parameters is provided.
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Fig. 6. Comparison of measured and FDTD gain results for the Rogers sub-
strate with design parameters  = 79 , R = 3 mm, and R = 0.114 m.

Fig. 7. Real impedance curves for spirals designed to be (top to bottom): 188
,
148 
, and 108 
. The triangular markers denote the edges of the operating
band. The dashed lines show the calculated characteristic impedance, defined
here to be the average in the operating band.

A. Impedance Curves

Spiral antenna impedance curves tend to show three distinct
regions of behavior. The lower frequencies are dominated by
the outer truncation, the upper frequency behavior relates to
the inner truncation, and the behavior in the intermediate fre-
quencies is determined by the shape of the spiral curve itself.
Portions of the traveling wave model proposed by Kaiser for
the Archimedean spiral will be used to explain the form of the
curves in a manner similar to [15].

Using the auxiliary 1-D transmission line described in
Section III, impedance curves as a function of frequency were
calculated for the spiral on the substrates of interest. The real
parts of some of these curves are shown in Fig. 7. The imagi-
nary portions are very similar but have an average value of zero
regardless of the dielectric.

The spirals used in Fig. 7 had the parameters 79 ,
3 mm, and 0.114 m. Each spiral shown had a 1.27-mm-

thick substrate with dielectric constants 1.3, 2.9, and 6.2
from top to bottom. These values were chosen to progressively
decrease the impedance by about 40 . The spiral impedance
curves show three important features which are present in all
impedance curves seen in this study: The lower frequency re-
gion of the impedance is dominated by a series of resonant
peaks, the middle frequencies are approximately constant, and
the upper frequencies contain either a resonant peak or a region
where the real impedance decreases with frequency.

The low-frequency peaks arise from the portion of the en-
ergy inserted onto the spiral arms that travels to the end of the
spiral and reflects back to the feed without radiating. On an in-
finitely large spiral, a traveling wave at any particular frequency
propagates along the spiral arms until it reaches a circular ac-
tive region with a circumference equal to one wavelength. At
this point, the majority of the energy in the wave is converted
to radiation. However, when the spiral is truncated at a given
outer radius, all frequencies low enough to have active regions
outside the chosen truncation point will reach the edge of the
spiral and reflect back to the feed. The reflection causes ripples
that take the form of a series of peaks because the current at the
feed point consists of the initial feed current summed with a
delayed reflected current , where is the particular
angular frequency of interest, is a reflection coefficient, and

is the delay time necessary for the wave to propagate to the
end of the spiral arms and back. This sum has a variation which
is roughly periodic as a function of frequency. The amplitude of
the ripple decreases rapidly as frequency increases and more of
the active region for a particular frequency fits onto the antenna.
All spirals shown in Fig. 7 will have an outer circumference of
one free-space wavelength at 419 MHz. The frequency at which
this occurs is typically taken to be the low-frequency cutoff of
the spiral.

In the region between the erratic behavior at the upper and
lower frequencies, a band of nearly constant impedance is seen.
Because this is the expected behavior of a frequency-indepen-
dent antenna, this region is referred to as the “operating band.”
Since the spiral arm structure is self-complementary, a spiral
lodged in a homogeneous dielectric would have an operating
band impedance of

(1)

by Booker’s relation [25]. In free space, this impedance is ap-
proximately 188 .

In the nonhomogeneous case, the expression may still be
used, but the value must be replaced with an equivalent
dielectric constant, typically denoted , which may be
thought of as an average of the dielectric constants in the region
weighted in some way by the magnitude of the electric field
in a given region of space. The value is the equivalent
homogeneous dielectric constant that would be required to
match the phase velocity of the traveling wave on the dielectric
backed spiral arms. A wave traveling down the spiral arms
will have a different effective permittivity value because the
arms become wider with respect to the substrate thickness. In
the operating band, the effective permittivity near the inner
truncation appears to determine the impedance of the spiral.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 14,2010 at 11:28:27 EST from IEEE Xplore.  Restrictions apply. 



MCFADDEN AND SCOTT: ANALYSIS OF THE EQUIANGULAR SPIRAL ANTENNA ON A DIELECTRIC SUBSTRATE 3167

When the inner truncation is sufficiently small compared to
the substrate thickness, the impedance can be approximated by
evaluating Booker’s relation in a half-space of dielectric. This
approximation and others appear in [15], [16], [26]

(2)

(3)

In Fig. 7, the dashed lines are a computed average value for
the operating band impedance and these show a fair agreement
with (2) and (3). It may be noted that while the effective permit-
tivity near the feed does predict the operating band impedance
with some accuracy, it does not predict the minimum operating
frequency very well.

The impedance in the operating band ends with a resonant
peak for the thicker, higher dielectric constant substrates, and
a downward trend in the impedance otherwise. This upper fre-
quency behavior is caused by the reflection at the discontinuity
between the spiral arms and the bowtie structure. The peak may
be made more severe by increasing the angle of the bend .

B. Impedance Design Graphs

The impedance of the feed line to the spiral should be
matched to the nearly constant value in the operating band
seen in Fig. 7. This value is referred to as the characteristic
impedance of the spiral . To obtain this value for a particular
spiral’s impedance plot , the interval over which the
impedance remained approximately constant was required.
This was defined to be the largest interval , over
which the standard deviation of the impedance in the interval
was less than a fixed value. was then defined as the average
value of on this interval. The intervals chosen for the
curves in Fig. 7 are denoted by the marker arrows and the
average values taken are the dashed lines. In this figure and
all subsequent figures that make use of the calculation, the
maximum standard deviation was set to 7 .

In the description of the spiral in which the conductor thick-
ness is assumed to be zero, five parameters define the spiral. ,

, and are defined in Fig. 1. is the dielectric constant of
the substrate and is the thickness of the dielectric substrate.
The intention of the design graphs is to relate the characteristic
impedance to these parameters. The graphs should show the
function over some restriction of its do-
main. In the course of this work, it was noted that when the av-
eraging process is taken into account the impedance can be re-
duced to a function of only two related variables: and .

Since the average value taken to be the characteristic
impedance begins at a frequency high enough to essentially
ignore the reflection from the outer truncation, the parameter

may be neglected as long as the value is large enough to
obtain a well-defined operating band. In this study, this was seen
to occur when . In addition, it was observed that
the function remained approximately constant as the thick-
ness or inner truncation were varied as long as the ratio
remained constant. This can be related to the scaling principle.
It was also found through simulations that the parameter has
a very minimal effect on the characteristic impedance of the

Fig. 8. Z as a function of  , R = 0.1143 m, R = 3 mm, and h =
1.27 mm. Dashed values show the impedance estimate in (2) and (3).

Fig. 9. Z (R =h; � ) with  = 79 , R = 3 mm, andR = 0.12 m. The
solid lines are interpolated numerical values. The dashed lines trace the edge
of each curve towards its value for no substrate (left) and an infinitely thick
substrate (right).

antenna. Instead, changes the impedance plot near the edges
of the operating band, leaving the average value the same. This
may be seen in Fig. 8 where a spiral’s characteristic impedance
is evaluated with parameters 0.114 m, 3 mm,

1.27 mm, and various over a range of .
This allows one to define the function and plot

the effect of the substrate on a single graph. The impedance
of the spiral was evaluated numerically over the range

for in Fig. 9. Here, the data was taken
from a spiral with a geometry of 79 , 0.12 m, and

3 mm, for various and .
As seen in Fig. 9, the impedance tends towards the half-space

value in (2) and (3) as and towards the free-space
value of as . In the interior region, it is seen that
for a moderately thick dielectric ( , for instance),
the impedance is a strong function of the dielectric constant and
a very weak function of the parameter . Only for a thin
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Fig. 10. Simulated gain for a spiral with  = 79 ,R = 0.12 m, andR =

2.5 mm with � from highest to lowest: 1, 2.2, and 4.2. Dotted lines denote the
minima and maxima of the gain ripple.

dielectric does show a strong effect on the impedance
value.

VI. GAIN

The NFFFT was used to determine the radiated field on bore
sight for the spiral antenna. The radiated field and simulated
impedance were used to derive the directivity of the spiral. Since
in this study the conductors are all considered perfect, this value
is also the gain on bore sight. Example curves are shown in
Fig. 10 for various dielectric constants.

In this section, the behavior of the bore-sight gain as a func-
tion of frequency will be examined. The primary effect of the
dielectric discussed here will be the tendency of the gain to de-
teriorate as frequency increases. In addition, the presence of a
ripple in the gain plots will be related to the outer truncation of
the spiral.

A. Theoretical Bore-Sight Gain on a Substrate

In this section, a simple model of the operation of the spiral
is described that shows the same qualitative behavior as the
gain curves. Referring to the model proposed by Kaiser and de-
scribed previously, the energy on the spiral arms can be thought
of as a traveling wave on a transmission line. The energy is fed
from the center of the line and travels outwards in a spiral path
towards an active region where it is radiated away. Since, un-
like the Archimedean spiral, the equiangular spiral arms expand,
the ratio of the gap width of this transmission line to the height
of the substrate becomes smaller as the wave travels along the
arms, causing the effective dielectric constant on the line to ap-
proach that of free space. Using (3), which appears to describe
the impedance of this transmission line at the feed point, one
can write the impedance of the transmission line as a function
of , the distance along the line, as

(4)

where is the impedance of free space and is the
effective permittivity at the location . While this implies the

impedance is always changing along the line, this is an ex-
tremely slow variation and it can be assumed that along the ring
that constitutes the active region, remains constant at some
value . Since the transmission lines, like the spiral arms,
are assumed lossless, the power in the wave remains constant.
Therefore, the current in this region remains constant as well.

This then implies that the radiation from the spiral will be that
from a traveling ring of current with circumference (here,
is the wavelength of the traveling wave in the active region and
is distinguished from the free-space wavelength ). The radia-
tion from a harmonically varying current distribution of angular
frequency is well known and the details of the integration nec-
essary for a traveling ring of current can be found in [27]. For a
ring of circumference , one obtains a radiated field

(5)

where is the radiated field in phasor form with an assumed
time dependence, is the free-space propagation constant,

defined as , and is the magnitude of the trav-
eling ring of current in the active region. Equation (5) shows the
expected result that the radiated wave at bore sight is circularly
polarized. If the current and impedance at the feed point are de-
noted and , respectively, and the effective permittivity in
the active region ring is denoted , one may use (5) to write
the gain in terms of the known radiated power per unit area on
bore sight and the power inserted into the spiral

(6)

(7)

(8)

Assuming that prior to reaching the ring there was no loss in the
traveling wave, one may write

(9)

(10)

(11)

where is the power in the wave at the active region and (4)
is used in the derivation of (11).

This means that the free-space spiral should radiate a constant
gain of at all frequencies. However, for a spiral on a dielectric
substrate, the gain can be expected to monotonically decrease as
the frequency increases, moving the active region inward toward
the feed. As this occurs, moves upwards towards its value
near the feed of approximately .

Some effort was put into finding a relationship between
and the frequency in order to obtain a functional form for the
gain using a transmission line approximation, but aside from the
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limiting values discussed previously, the match was unsatisfac-
tory. The effect on the gain is directly related to the failure of
the antenna to truly satisfy Rumsey’s scaling principle. If the di-
electric thickness were to increase as the wave moved outward,
the could conceivably be kept constant and this would imply
that the gain would remain constant. The data shown in Figs. 5
and 6 show this decreasing behavior with a rate of descent that
becomes steeper with a higher dielectric constant. This is again
seen in Fig. 10, here with simulated data. In addition to the de-
creasing gain, a gain ripple is observed with an amplitude of
approximately 1 to 2 dB. It will be shown in Section VI-B that
this ripple is related to the outer truncation of the spiral.

B. Bore-Sight Gain Ripple

The ripples seen in Figs. 5, 6, and 10 are present in all FDTD
simulations of the bore-sight gain in this study as well as mea-
sured gain results. In Fig. 10, a sequence of gain curves is shown
for various dielectric constants with 79 , 0.12 m,
and 2.5 mm.

Ripples in the frequency domain are often the result of an
echo in the time domain, as noted in Section V-A. Here, the
radiated field takes the form of some initial pulse and a de-
layed scattered pulse . This gives a Fourier transform
of the form . The magnitude of this func-
tion shows a periodic ripple on top of the original response with
a period in the frequency domain of . In Fig. 10, all three
plotted gain functions show a ripple with a period of approxi-
mately 2.2 GHz which corresponds to a time delay of 0.45 ns.
The fact that each of the gain curves shows the same ripple pe-
riod makes it unlikely that the secondary radiation is the result
of the traveling wave in the spiral, since the phase velocity of
the traveling wave is a stronger function of the dielectric than
the shown variation in the period.

Instead, it would appear that the initial pulse is radiated into
free space and the second pulse is the result of some scattering
which occurs at a distance of 13.5 cm. The
truncation of the spiral occurs 12 cm from the feed, and after
running a number of simulations with various radii for the spi-
rals, it became apparent that the time delay which causes the
ripple tends to be approximately , where is the radius of
the spiral. In order to verify that the ripple is related to the trun-
cation of the spiral and to present more convincing support than
the theoretical gain model proposed previously, a large spiral
was modeled in FDTD so that the secondary ripple could be
seen separated from the initial radiated pulse. In Figs. 11 and
12, three spirals with differing dielectric constants and a radius
of 1.2 m are shown in the frequency domain and time domain.

The time-domain plots in Fig. 12 show an initial radiation
with a peak around 0 ns and a secondary radiation with a peak
around 4 ns. The delay is the expected transit time for a spiral
of this size. With the two pulses separated, the effect of the sec-
ondary radiation can be removed by time gating. This is seen
in Fig. 11 as the dotted line. It should be noted that both peaks
in the time plot show a chirping property with high frequen-
cies being radiated earlier than low frequencies. This is most
easily seen in the case. The fact that this chirping ap-
pears in both pulses suggests that the delayed pulse is a scat-
tering from the radiation in the active region. If the initial pulse

Fig. 11. Simulated gain for three 1.2-m radius spirals (top to bottom): � = 1,
6, 11. Time gated gain is shown dotted.

Fig. 12. Time domain response for 1.2-m radius spirals (top to bottom): � =

1, 6, 11. Here, r refers to the distance from the center of the spiral to an
observer in the far field.

were radiated at the feed point then the scattered pulse would
be a delayed version of the excitation (a differentiated Gaussian
pulse, in this case). Instead, each frequency is believed to be ra-
diated at its active region where . The signal travels
to the outer radius and scatters as depicted in Fig. 13. Since the
time delay between the two pulses is

, the radiated field takes the form

(12)
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Fig. 13. Diagram of the radiation of a narrowband pulse of angular frequency
!. The time scale shown includes the delay to a far-field observer at r from
the antenna’s center.

which has the periodic variation that is typically observed.
It should be noted that this scattering occurs even when the di-
electric is not present and only at the outer truncation point of
the spiral, not at each successive arm of the spiral that the radi-
ated wave encounters.

C. Radiation Patterns

Since the antenna is modeled as lossless here, the power ra-
diated must still be the power inserted at the feed. Because of
this, it may be of interest where the energy that is deflected from
bore sight is radiated. This can be determined by constructing a
radiation pattern of the antenna. Since the lower hemisphere is
almost identical to the upper hemisphere, only the upper hemi-
sphere is shown here. Fig. 14 shows the gain as a function of an
angle for the upper hemisphere of the antennas in Fig. 10 at the
dielectric constants 4.2 and 1.

In Fig. 14, it can be seen that the scattered pulse acts to al-
ternately expand and contract the pattern along the -axis in the
free-space case. These expansions correspond with the maxima
of the gain ripple observed. In the dielectric case, the pattern
becomes more complicated at the higher frequencies with more
radiated power deflected into sidelobes, but the same behavior
is still observed.

The introduction of the absorbing can that is typically used
with the spiral antenna could be expected to change the nature
of the scattering at the truncation point since there would be an
additional scattering off of the can edge. Also, many designers
truncate the outer radius of the spiral with absorber to reduce the
reflected traveling wave. This may have the added side effect of
absorbing the radiated wave described here.

VII. CONCLUSION

An FDTD model of the spiral element was constructed and
compared against measured data. This model was then used to
study the effects of the dielectric backing on the spiral. These
effects consist of a decrease in the impedance and bore-sight

Fig. 14. Radiation patterns for the upper and lower gain curves at the respective
minima and maxima denoted in Fig. 10 by dotted vertical lines.

gain over the operating band which becomes more severe as
the dielectric constant and substrate thickness are increased. In
addition, the source of a scattered radiation that complicates
the bore-sight gain as a function of frequency was analyzed. A
number of simple models for some of these effects have been
presented or summarized from other work. Questions remain as
to the nature of the wave that generates the scattered radiation
and why it appears to travel radially outward through the spiral
arms without scattering, only to scatter at the truncation point.

It is hoped that the design graph presented may be used ei-
ther as an aid to design or as a conceptual aid. While all results
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in this study are for the free-space case, the spiral antenna is
typically operated in an absorbing can and preliminary simu-
lations show the impedance graph in Fig. 9 may still be appli-
cable. Some features seen in this study may be specific to the
particular method of feeding the antenna with a bowtie and per-
haps additional work could show how these effects are changed
by different feed methods. In addition, the gain ripple presented
in Section VI can be altered by using different types of outer
truncations and future work could explore this further as well
as determine the effect of the can on the gain ripple observed in
the bore-sight gain section.
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