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ABSTRACT 
 

In this paper, we propose a learning based 

approach for alias minimization of 1-D signals. 

Given an under-sampled (aliased) test speech 

signal and a training set consisting of several 

speech signals each of which are under-sampled 

(aliased) as well as sampled greater than or equal 

to Nyquist rate (non aliased), we learn the aliased 

frequencies in the test signal. Both the test signal 

samples and each of the under-sampled training 

set (database) signals are first interpolated to the 

size of the unaliased database signals. The test 

signal and each of the training set signals are then 

divided into a number of segments and the 

Discrete Cosine Transform (DCT) is computed for 

each segment. Assuming that the lower frequencies 

are unaliased and minimally distorted (due to 

interpolation), we replace the aliased DCT 

coefficients with those learnt from the training set. 

The unaliased test signal is then reconstructed by 

taking the inverse DCT. The comparison with the 

standard interpolation techniques in terms of both 

subjective and quantitative analysis indicates 

better performance while using the proposed 

approach. 
 

 

1. INTRODUCTION 

 

Sampling of a bandlimited signal is the first step 

towards digital world. A signal which is limited in 

time cannot be bandlimited and vice-versa. This 

makes aliasing inevitable whenever a finite duration 

signal is sampled. An infinite duration signal 

bandlimited to fm Hz sampled at a rate greater than or 

equal to twice of fm can be recovered using an ideal 

low pass filter. In practice this is not possible since the 

signal itself is time limited (hence band unlimited) 

and an ideal filter is non causal and hence cannot be 

realised. The sampling of a time limited signal with 

acceptable aliasing can be done by using an anti-

aliasing filter. In our work, we show that even though 

we sample the output of the anti-aliasing filter at a 

rate less then the Nyquist rate, we can still learn the 

aliased region in frequency domain using the 

proposed learning based approach. The advantage of 

our approach is that it is possible to transmit a signal 

by undersampling it and recover the same at the 

receiver. It is a definite advantage as one need not 

sample the signal at a rate greater than or equal to 

Nyquist rate and hence the required bandwidth is 

reduced. This method can also be used for reducing 

the data storage on portable devices such as CD’s, 

flash memory etc. However the approach needs a 

larger memory for learning the aliasing as we need a 

database of correctly sampled signals. 

 

Our work is motivated by the work on image super-

resolution by the image processing community. 

Super-resolution refers to algorithmic approach to 

attain a high spatial resolution image given a set of 

low resolution images. Here different approaches have 

been proposed for obtaining high spatial resolution 

image, given the image captured at low spatial 

resolution. Recently learning based approaches have 

been proposed for   obtaining non-aliased and non-

blur images using a database of training images at 

high resolution as well as at low resolution.  

 

It is important to note that our work differs from the 

work on multirate signal processing where the 

researchers attempt to design efficient decimators and 

interpolators for sampling rate conversion in digital 

domain. Here the objective is to change the sampling 

rate without introducing aliasing and without going 

into the analog domain. However we allow aliasing by 

undersampling the given signal itself and still recover 

the aliased portion of the signal. To the best of our 

knowledge, we do not see such a work carried out in 

signal processing research community.  

 

 

 



 

2. BLOCK DIAGRAM DESCRIPTION 

 

The block diagram shown in Fig. 1 gives a brief 

overview of our approach. A 1-D test signal of finite 

duration ‘T’ is under-sampled after it is passed 

through an anti-alias filter using decimation thus 

giving an aliased output. Aliasing occurs because of 

overlapping of spectrum in the high frequency region. 

This aliased signal is then upsampled using 

interpolation approach so that it has the same number 

of samples as that of the properly sampled signals 

present in the database. The signal set in the database 

is also under-sampled and interpolated individually as 

the test signal. Thus we have an interpolated test 

signal for which aliasing has to be learned and a set 

consisting of interpolated versions of under-sampled 

signals and their corresponding properly sampled 

signals (non aliased). Once this is done, Discrete 

Cosine transform (DCT) of the interpolated test signal 

and the interpolated signals of the database is 

computed by dividing them into a number of 

segments. Assuming that the lower frequency values 

remain unaliased, the aliased DCT coefficients are 

decided by a threshold value (threshold is deduced 

experimentally) of the test signal and each of the 

database signals are compared using sum of the 

squared differences of their amplitudes to find a 

closest approximation for the aliased part of a 

particular segment. The corresponding DCT 

coefficients are picked up from the properly sampled 

database and are used to replace the aliased DCT 

coefficients. This is repeated for every segment in the 

test signal. In the end, the Inverse DCT is computed 

after learning all segments, which is then passed 

through a Low Pass Filter (LPF) to get the 

reconstructed analog signal.  

 

The Fig. 2 illustrates the time and frequency domain 

representations when the signal is sampled at different 

rates. Fig, 2(d)  shows the aliasing when sampled at a 

rate less than the Nyquist rate. In our approach, we 

learn the DCT coefficients in the aliased region by 

dividing the test signal as well as database signals into 

a number of segments and by picking up unaliased 

DCT coefficients in the properly sampled signals to 

reconstruct an undistorted test signal.  

 

 
Fig1: Block Diagram illustrating the proposed 

approach 
 



 
Fig 2: Diagram explaining variations in spectrum 

with different sampling rates and interpolation 

 

 

3. LEARNING THE ALIASING USING 

DISCRETE COSINE TRANSFORM (DCT) 

BASED LEARNING 

 

Here each set in the database consists of a pair of 

undersampled and properly sampled signals. After 

undersampling the signals of duration T sec., the test 

signal and the undersampled training signals in the 

database have a length of N samples. The 

corresponding properly sampled training signals have 

a size of 2*N. We first upsample the test signal and all 

the undersampled training images by a factor of α  by 

using a standard interpolation technique. For example, 

If the test signal and the undersampled training signals 

have N samples for a duration of T seconds and the 

unaliased signals in the training set have 2*N samples 

then an interpolation factor of 2 is used to match all 

the signals to have same number of samples. We now 

divide each of the signal into segments of length L. 

The motivation for dividing into number of segments 

is due to the theory of JPEG compression where an 

image is divided into 8*8 blocks and the comparison 

is achieved by quantizing the DCT coefficients such 

that high frequency components tend to 0. In our case, 

we are interested in learning the aliasing for test signal 

(i.e. estimating the non-aliased frequency components 

corresponding to the aliased ones) using a training 

data set of aliased and non-aliased signals. This is 

done by taking DCT on each segment for all the 

sampled signals. 

We learn DCT coefficients for each segment in the 

test signal by replacing the corresponding DCT 

coefficients from segments in properly sampled 

signals in the database Fig(3). It is reasonable to 

assume that the distortion caused due to interpolation 

is minimum for the low frequency. Hence, we learn 

only the DCT coefficients representing the high 

frequency.  

Let ST(i), 1≤ i ≤ L represent the DCT coefficients in 

the interpolated segment of test signal. There are K 

(where K= 2*N/L) segments for each of the signals. 

Let  
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where, m=1,2,……,p be the DCT coefficients 

undersampled and properly sampled signals 

respectively. If ‘p’ represents the total number of 

training pairs, then we have DCT segments for the 

training data set as 2*K*p. 

Now the best matching unaliased segment for the 

considered test signal segment is obtained as  









−= ∑

>

2)(

*__

))()((ˆ min iSiSm
m

Tu

L

thresholdi

T

PKallin

 

 

Here m̂ is the index of the training signal which gives 

the minimum for the segment. Now these best 

matched DCT coefficients from the corresponding 

properly sampled segment are copied into 

corresponding locations in the considered segment of 

undersampled test signal (threshold ≤  i ≤  L). The 

learned test segment can be written as,  
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This is repeated for every test signal segment. We 

conducted the experiments by using the different 

values for segment length with different thresholds. 

We finally take the inverse DCT to get the unaliased 

signal samples. This is passed through a Low Pass 

Filter (LPF) to obtain the analog signal. 



 

 

 

 

 

Fig 3: Pictorial representation of proposed learning approach 

 

 
For quantitative analysis, Mean Squared Error (MSE) 

is then computed between interpolated and 

reconstructed by taking original as a reference, where 

MSE between two signals TS  and TŜ  is 
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where, L= length of the signal  

      

If MSE of reconstructed signal is greater than 

interpolated signal, then reconstructed signal is a 

closer match to the original signal as compared to the 

interpolated one and vice versa. Another Quantitative 

analysis measure taken is Signal-to-Noise Ratio 

(SNR) calculation. The SNR is computed using the 

following formula: 
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i.e. SNR = Total energy within original signal / Total 

Energy Error 

TS = original signal; 

TŜ = reconstructed signal or interpolated signal. 

 

4. Experimental Results 

 

The experiments have been conducted on a test signal 

from one of Gandhiji’s speech. The test signal taken 

has a duration of 5 sec. and a maximum frequency of 

4 KHz. The training data in the database consist of 10 

properly sampled speech signals (Sampled at 12 KHz) 

and 10 under-sampled speech signals (Sampled at 6 

KHz) of the same duration.  

We first conducted the experiment to find an 

interpolation technique which gave us the best result 

in our case. We found that the Mean Square Error of 

Interpolated Signal and Test Signal turned out to be 

least in case of Linear Interpolation. So, we have used 



Linear Interpolation technique for interpolating test 

signal and database signals.  

 

Table 1 Comparison of Interpolation Techniques  

Interpolation 

method 
MSE Values 

Spline 0.4361 

Cubic 0.4187 

Linear 0.4163 

 
By repeatedly performing the experiment for different 

DCT points with the database consisting of speech 

signals in the voice of the same person, we obtain 

Normalized Mean Squared Error (MSE) values and 

SNR values for interpolated signal and reconstructed 

signal (Results obtained using Spline and Cubic 

Interpolation gave larger MSE values as compared to 

Linear Interpolation.).The final results for MSE and 

SNR comparisons are shown in Table 2 and 3 

respectively. Graphs plotted for different stages of the 

experiments have been shown in Fig.4. The final 

results obtained are in accordance with the conceived 

approach.  

 

Table 2 Quantitative Analysis using Mean Squared 

Error 

MSE Values DCT 

Point 

Samples  

compared 

Samples 

learned   Interpolated  Constructed 

16 7 7 0.4163 0.4117 

16 8 8 0.4163 0.4018 

16 9 9 0.4163 0.4030 

64 34 34 0.4163 0.3956 

64 37 37 0.4163 0.3939 

64 40 40 0.4163 0.3971 

128 58 58 0.4163 0.3978 

128 64 64 0.4163 0.3957 

128 70 70 0.4163 0.3938 

256 131 131 0.4163 0.3950 

256 136 136 0.4163 0.3945 

256 141 141 0.4163 0.3935 

   

 

Table 3 Quantitative analysis using SNR 

SNR values (in dB) DCT 

Point 

Samples  

compared 

Samples 

learned Interpolated Constructed 

16 7 7 10.8926 22.6686 

16 8 8 10.8926 22.7808 

16 9 9 10.8926 20.5825 

64 34 34 9.3539 18.5161 

64 37 37 9.3539 31.5404 

64 40 40 9.3539 30.6090 

128 58 58 9.3539 33.3615 

128 64 64 9.3539 33.5280 

128 70 70 9.3539 35.5787 

256 131 131 9.3539 34.8428 

256 136 136 9.3539 34.8895 

256 141 141 9.3539 38.3260 

 

 
Fig 4: Graphs plotted for various stages of the 

experiment 

 

5. CONCLUSION 

 

It is evident that learning based techniques are not 

only useful for image restoration techniques but are 

equally effectively for speech signals as well. The 

results obtained can be significantly improved by 

building sufficiently large databases. Large databases 

can be used in learning aliased samples irrespective of 

the person’s voice in test signal. However, increasing 

the database size beyond a limit may lead to an 

increase in computation time as well. 
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