
NTUEE Communication Lab Spring 2007

Lab 6 Page 1 of 23 5/6/2007

Lab 6
All Digital Phase-Locked Loop

指導教授 葉丙成
助教 朱峰森
Group 6

B92901035 柯浩賢
B92901038 粘 紘
B92901049 黃柏堯

Index
A. Introduction to ADPLL ……………………………….. 2

I. Overall Structure ………………………………………….. 2
II. Phase Detector ………………………………………….. 2
III. Loop Filter ……………………………………………….. 4
IV. Digital Control Oscillator ……………………………….. 5

B. Original ADPLL ………………………………………… 7
I. Block Diagram …………………………………………… 7
II. Hardware Implementation Guideline ……………………… 9
III. Experimental Results of the Original ADPLL …………… 10

C. Full Lock-Range ADPLL ………………………………… 11
I. Phase jitter …………………………………………………. 11
II. Duty Cycle Variation ………………………………………. 12
III. Hold Range …………………………………………………. 14
IV. Proposed Full Lock-Range ADPLL ………………………. 15
V. Simulation Results ……………………………………………. 20

D. Experimental Results ……………………………………… 21
E. Report Problems ………………………………………….. 22
F. Appendix ………………………………………………. 22
G. References ………………………………………………. 23

NTUEE Communication Lab Spring 2007

Lab 6 Page 2 of 23 5/6/2007

A. Introduction to ADPLL

This lab is about ADPLL. Our goal is to build up an All-Digital Phase-Locked
Loop which can lock the central frequency of 100 kHz with the use of Verilog on an
FPGA board.

I. Overall Structure

All-Digital Phase-Locked Loop (ADPLL) is commonly used in communication
systems, especially for the applications of synchronization and frequency synthesis. It
consists of three parts: (i) Phase Detector (PD) (ii) Loop Filter (LF) and (iii)
Digital-Controlled Oscillator (DCO). Fig. 1 shows the general block diagram of an
ADPLL.

Fig. 1 General block diagram of an ADPLL

The task of a PLL is to lock the phase and the frequency of U1(t) to those of U2(t).
The phase detector is used to detect the difference between U1(t) and U2(t). The loop
filter is used to filter out out-of-band noise. Finally, the voltage-controlled oscillator
(VCO) receives the output of the loop filter and adjusts the phase/frequency of the
output signal U2(t) accordingly.

To realize an ADPLL, all function blocks of the system must be implemented by
purely digital circuits. The signal are digital (binary) and may be a single digital
signal or a combination of parallel digital signals. There are some advantages: No
off-chip components and Insensitive to technology.

II. Phase Detector (PD)

The phase detector (PD) part of the ADPLL consists of an SR (JK) flip-flop. The
block diagram of a JK flip-flop phase detector is shown in Fig. 2. The operation of the
phase detector is illustrated near by. The difference between U1(t) and U2(t) will be
detected by the phase detector. This phase detector counts the number of high
frequency clock periods between the phase difference of U1(t) and U2(t).

NTUEE Communication Lab Spring 2007

Lab 6 Page 3 of 23 5/6/2007

Fig. 2 Block diagram of a JK flip-flop phase detector

Fig. 3 Timing diagram of the phase detector

Fig. 3 is cut from P.E Allen’s reference. For simplicity, v1 and v2’ here are U1
and U2 respectively.

Fig. 4 Truth table of JK/SR transformation

The JK/SR is list as in Fig. 4 In the point of view in realization of digital circuit
design, the waveform above can be seen as a circuit detecting the raising edge of U1(t)
and U2(t). When there is a raising edge of U1(t) set the output Q (or say Ud in this lab
handout) to 1. When there is a raising edge of U2(t), reset the output Q to 0.

In real time realization, the most used design of S-R or J-K is simply use “XOR”
to fasten the computation and reduce the error or distortion in phase caused by clock

NTUEE Communication Lab Spring 2007

Lab 6 Page 4 of 23 5/6/2007

sampling.

III. Loop Filter (FL)

The loop filter in this lab is the K-counter. The block diagram of the loop filter is
shown as in Fig. 5. The DN/UP signal in the block diagram is actually the Q signal of
the phase detector last part. The associated waveforms of the loop filter at the steady
state are shown in Fig. 6.

Fig. 5 Block diagram of the loop filter

Fig. 6 Waveforms of the loop filter at steady state

The Loop Filter (LF) can be seen as a low pass filter. Since it is a integrator with
transfer function H(s) = 1/sTi, where Ti is the time constant of integrator. There are
two counters in LF, Both counters count upwards. Carry equals 1 when contents of
the UP counter>=K/2 and Borrow equals 1 when contents of the Down counter>=K/2.
Finally, positive going edges of the Carry and Borrow control the DCO, the carry and
borrow waveforms are then fed to the digital controlled oscillator to adjust the
frequency and the phase of U2(t).

NTUEE Communication Lab Spring 2007

Lab 6 Page 5 of 23 5/6/2007

IV. Digital Control Oscillator (DCO)
The digital version of voltage-controlled oscillator, i.e. digitally-control oscillator

(DCO) is increment-decrement counter (ID-counter). The overview of DCO block
diagram of the counter is shown in Fig. 7.

Fig. 7 Block diagram of DCO

The carry and borrow are from the K-counter loop filter and the ID-counter is
sensitive to positive edges. A Toggle-FF signal is generated following to the
following rules:

1) No BORROW or CARRY pulses
The toggle-FF switches on every positive edge of the ID clock if no

CARRY or BORROW pulses are present.

2) CARRY input applied when the toggle-FF is in the low state
When the toggle-FF goes high on the next positive edge of the ID clock but

stays low for the next two clock intervals, the IDout is advanced by one ID
clock period.

NTUEE Communication Lab Spring 2007

Lab 6 Page 6 of 23 5/6/2007

3) CARRY input applied when the toggle-FF is in the high state
The toggle-FF is set to low for the next two clock intervals. Because the

CARRY can only be processed when the toggle-FF is in the high state, the
maximum frequency of the IDout signal is reached when the toggle-FF follows
the pattern of “high-low-low-high-low-low”. Therefore, the maximum IDout
frequency = 2/3 ID clock frequency. This will limit the hold range of the
ADPLL.

4) BORROW input applied when the toggle-FF is in the high

A BORROW pulse causes the toggle-FF to be set high on the succeeding
two positive edges of the ID clock. This causes the next IDout pulse to be
delayed by one ID clock period. The toggle-FF has the pattern of
“low-high-high-low-high-high” which gives the min. IDout frequency = 1/3 ID
clock frequency. Basically, 1 CARRY pulse adds 1/2 cycle and 1 BORROW
pulse removes 1/2 cycle.

NTUEE Communication Lab Spring 2007

Lab 6 Page 7 of 23 5/6/2007

5) state BORROW input applied when the toggle-FF is in the low state
A BORROW pulse causes the toggle-FF to be set high on the succeeding

two positive edges of the ID clock. This causes the next IDout pulse to be
delayed by one ID clock period. The toggle-FF has the pattern of
“high-high-low-high-low-high” which gives the min. IDout frequency = 1/3 ID
clock frequency. Basically, 1 CARRY pulse adds 1/2 cycle and 1 BORROW
pulse removes 1/2 cycle.

The output signal of the ID-counter is then IDout = IDclk · Toggle-FF. A general

case waveform is shown in Fig. 8 for reference.

Fig. 8 Waveform of the DCO

B. Original ADPLL

I. Block Diagram

As Section A discussed, an ADPLL consists of three parts: (i) Phase Detector (PD)
(ii) Loop Filter (LF) and (iii) Digital Control Oscillator (DCO). In this lab, our goal is
to achieve ADPLL on FPGA using Verilog code compiled by Quartus II. In order to
fit the lab requirement and hardware design requirements (e.g. timing and
synchronization), we made a few changes in our Verilog design which will be
discussed further. Fig. 10 is the overall structure of our ADPLL in Verilog design.

NTUEE Communication Lab Spring 2007

Lab 6 Page 8 of 23 5/6/2007

Fig. 10 Overall structure of our ADPLL

Two signals (origin and locked one) enter the phase detector which detect the
difference in phase of the two signals. Then the signal is enter the loop filer as a low
pass. Then the result enters the VCO to change phase/frequency. Finally, it feed back
to the phase detector to complete the signal circle. If all components work fine, two
signals will be more closely in phase and frequency after one signal loop.

U1(t) is the input signal (square wave)with frequency 100kHz, and U2(t) is our
phase-locked result. The internal connection is shown above. Ud(t) is the output of
phase detector (its structure is similar to J-K flip-flop). Carry and borrow is the
counted result of the loop filter (K-counter). The final phase-locked result is at the
output of the voltage control Oscillator. The overall I/O is listed as below.

NTUEE Communication Lab Spring 2007

Lab 6 Page 9 of 23 5/6/2007

II. Hardware Implementation Guideline
This part is to set all the experiment devices and standardize the process.

Fig. 11 All devices we will need in real implementation

There are 5 components in our hardware implementation of ADPLL.
1) FPGA

Connecting FPGA GPIO2 pin4 for signal input U1(t), pin6 for signal output
U2(t) and pin12 for ground. Note no lines or nodes are short.

2) PC
Using Quartus II 7.0 to compile *.sof and using USB-blaster to load the
program into FPGA.

3) Board
Connecting 330ohm resisters in prevent for short and too many current, and
wisely connecting all the lines.

4) Display
Auto adjusted display that makes sure all probe is well functioned and properly
grounded.

5) Signal generator
Setting frequency to 100kHz and adjusting amplitude to Vpp=3.3V with a
offset -075 to make Vmax is about 3~3.3V and Vmin is about 0V for FPGA to
work properly.

NTUEE Communication Lab Spring 2007

Lab 6 Page 10 of 23 5/6/2007

III. Experimental Results of the Original ADPLL

Fig. 12 A typical oscilloscope output for ADPLL

Fig. 12 is a typical oscilloscope output for the original ADPLL, here the yellow
waveform is input and the blue one is the ADPLL output. We can see the PLL indeed
locks the phase. There are some blurs in the cutting edge, and this is due to
non-perfect locking ability of our ADPLL. This problem can be eliminated and will
be discussed after.

Table 1 Experiment result of ADPLL with different parameters
Table 1 showed our experimental results of the original ADPLL. The nominal

frequency of the input signal is fu1 = 100kHz. We tried to deviate fu1 from 100kHz
and find the lock range of the original ADPLL. If we defined ADPLL bandwidth as

NTUEE Communication Lab Spring 2007

Lab 6 Page 11 of 23 5/6/2007

“upper bound - lower bound.” Row 1 with K=8, K clock and ID clock remaining
unchanged is our original parameters. In our original parameter settings we have a
bandwidth approximately 17% of the nominal frequency.

As we make ID clock faster, we trade bandwidth for a better locking ability so that
the bandwidth deteriorate. If we make K clock larger and others remain unchanged,
the bandwidth would have a large improvement but there is a larger oscillation about
the locked phase. For the effect of K counter, the larger the K, the poorer the
bandwidth of ADPLL, but a tradeoff between bandwidth and locking ability still
exists.

C. Full Lock-Range ADPLL

In this section, we are going to discuss the factors that influence lock range of the

original ADPLL. According to these discussions, we proposed a simple and effective
control algorithm that extends lock range of the proposed full lock-range ADPLL to
the theoretical bound.

I. Phase Jitter

Short-term frequency instabilities, seen in the time domain as jitter, can cause
problems in both analog and digital signals. As system operating frequencies have
increased, these instabilities have gained increasing importance, because their relative
size to the total period length is larger. The instabilities can eventually cause slips or
missed signals that result in loss of data. Fig. 13 shows a square wave with jitter
compared to an ideal signal at the same long-term frequency.

Fig. 13 The clock signal with phase jitter

NTUEE Communication Lab Spring 2007

Lab 6 Page 12 of 23 5/6/2007

As what we can see in the above figure, the short-term frequency varies while the
long-term frequency remains. Besides, the duty cycle varies from period to period.
From this point of view, if we want to analyze the cause of phase jitter in ADPLL, we
could take a look at the duty cycle range first.

II. Duty Cycle Variation

To analyze the duty cycle varying range when the loop is locked, we have
considered two kinds of phase detector – XOR phase detector and JKFF phase
detector.

1) XOR phase detector
Assume that the loop has already been in lock, both counters count on

negative edges of the K counter, the toggle flip-flop within the ID counter
toggles on the positive edge of ID clock, and all flip-flop of the N÷ counter
count on the negative edge of the corresponding clock signal. Because the loop is
in lock, the number of CARRY rising edges will be identical to the number of
Borrow rising edges and the phase difference between input signal and output
signal will be 2/π due to the evenly distributed DN/UP signal (the clock-like
signal with duty cycle about 50%).

Fig. 14 The DN/UP signal in locked loop with XOR PD

Fig. 14 shows the snapshot of the waveform, where 1v is the input signal
and 2v is the output locked signal. Because of the in-lock assumption and the
according 2/π phase difference, there is at least one pair of {low, high}
waveform in {{A, B}, {C, D}} with 50% duty cycle. Without loss of generality,
we can assume that A and B have the same duration. Since CARRY/BORROW
could only changed when DN/UP was low/high and the frequency of
CARRY/BORROW rising edge in the same interval would be KMf /0 , the
number of CARRY rising edges and BORROW rising edges would be at most
different by 1.

Fig. 15 Number of points along the segment

Hence, the number of CARRY and BORROW rising edges in A and B
interval would be at most different by 1. In other words, the resultant half cycle
interval of '2v will be different by

)2(1 0Nf .

NTUEE Communication Lab Spring 2007

Lab 6 Page 13 of 23 5/6/2007

 The resultant duty cycle would be

)11(
2
1

/1
)2/(1)2/(1

0

00

Nf
Nff

±=
± .

 Therefore,
)/11(5.0)/11(5.0 NN +⋅≤≤−⋅ δ .

This is independent of K and M. To minimize the phase jitter, we can choose a
larger N.

Fig. 16 Waveforms of ADPLL using XOR PD, M=16, K=8, N=8

Besides, when 4/MK = , there is at least one of CARRY/BORROW signals
with more than 11))2/(1()/(00 =−⋅ fKMf rising edge; therefore, two CARRY
signals and two BORROW signals. It can be further showed that no phase jitter
would show in this case. When 4/MK > , the average number of
CARRY/BORROW is less than 1, the phase jitter will be more serious because
of the short-term frequency error.
2) JKFF phase detector

Followed by the same assumption described in (1), the phase difference of
input and output will beπ . The DN/UP signal will be act as the following figure.

NTUEE Communication Lab Spring 2007

Lab 6 Page 14 of 23 5/6/2007

Fig. 17 Waveforms of ADPLL using JKFF PD, M=16, K=8, N=8

There is one of interval last more than half of input period. Therefore, there
are KMfKMf 2/))2/(1()/(00 =⋅ CARRY and KM 2/ BORROW. Because of
JKFF PD, phase jitter will exist regardless of the value of parameters. The
corresponding duty cycle is

)
2

1(
2
1

/1
)2/1()2/()2/(1

0

00

KN
M

f
NfKMf

±⋅=
⋅±

 Therefore,

)
2

1(5.0)
2

1(5.0
KN
M

KN
M

+⋅≤≤−⋅ δ

 To minimize phase jitter, we can choose 2/MK = .

III. Hold range

 The maximum output frequency occurs when the K counter is counting up and is
KMff /0max = . Because each carry applied to the ID counter causes 1/2 cycle to be

added to the IDout signal, the output frequency of the IDout increases by

K
Mff IDout 2

0=Δ

Therefore, the frequency of output signal '2v will be

)
2

1(/' 00 KN
MfNfff IDout ±=Δ±=

Besides, the frequency can be never higher than 02 f according to the procedure to
form IDout signal.

NTUEE Communication Lab Spring 2007

Lab 6 Page 15 of 23 5/6/2007

Fig. 18 01 25.1 ff = , XOR PD, M=16, K=4, N=8

IV. Proposed Full Lock-Range ADPLL

According to the discussion above, we can draw some conclusions:
1) Larger M value leads to larger hold range
2) Smaller K value leads to larger hold range
3) Smaller N value leads to larger hold range
4) In XOR FD, larger N value leads to smaller jitter regardless the value of M

and K
5) In JKFF FD, smaller M value, larger K value, and larger N value leads to

smaller jitter
6) Hold range and jitter is a trade-off among all the parameters
7) XOR FD is much cost effective and releases the conflict of M/K value

between larger hold range and small jitter
8) It is better to use the same clock for K counter and ID counter because of the

synchronization problem
We first analyze the original design of ADPLL on the lecture note. The parameter

is: M = 16, K = 8, N = 8, JKFF phase detector. According to the theoretical analysis
above, the hold range is 00)8/11(~)8/11(ff +− , i.e. 00 125.1~875.0 ff and the
duty cycle is)8/11(5.0~)8/11(5.0 +− , i.e. 0.4375~0.5625. However, the experiment
result shows a smaller hold range. This may be caused by the state transition DCO,
which can not deal with the adjacent CARRY BORROW signal because of the
insensibility of state machine in different states. This deficiency may reduce the
balance ability of DCO because it may ignore the following signal which may cancel
the previous advance or delay effect to make the output frequency stable. Therefore,

NTUEE Communication Lab Spring 2007

Lab 6 Page 16 of 23 5/6/2007

when the input frequency approaches the hold boundaries, DCO may run too fast or
too slow and then be out of lock.

To deal with this problem, we have rewritten the DCO code. Instead of finite state
machine, we use two flags to mark the delay low/high signals and apply the cancel
policy on the “CARRY BORROW” or “BORROW CARRY” signal. In addition,
we change the JKFF PD by XOR PD to release the conflict of M/K value and raise
the N value to reduce the phase jitter. At the same time, to cancel the large N value
effect on hold range, we raise the M value and lower the K value. The parameter of
this new ADPLL is: M =256, K = 4, N = 128, XOR phase detector. The consequent
hold range and duty cycle are 00)4/11(~)4/11(ff +− , i.e. 00 25.1~75.0 ff and the
duty cycle is)128/11(5.0~)128/11(5.0 +− , i.e. 0.4961~0.5039. The experiment result
shows the high coherence between the theoretical analysis and practical
implementation. (Hold range: 00 24.1~76.0 ff)

In order to further improve the hold range of ADPLL, we have tried to change the
parameter of ADPLL. However, when we increase the M value or lower the K value,
although the hold range extend, it does not increase accordingly. To interpret this
phenomenon, we can see that if the ID clock frequency is too low or the density of
CARRY or BORROW is too high (K value is too small or K counter frequency is too
high), the ID counter is unable to process all the CARRY and BORROW signals. The
redundant CARRY or BORROW will be ignored as the original state transition DCO.
Consequently, the hold range cannot extend to the boundaries, and here comes a
question, “What is the minimum N value that can process all the CARRY and
BORROW signals?” Because we have apply the cancellation policy of adjacent C B
and B C signals, the sequence contain both CARRY and BORROW may not
approach the limit of ID counter clock. Hence, we can focus on the sequence with
only CARRY or BORROW. Take the CARRY sequence as an example, if a number of
CARRY signals have to be processed in succession by the ID counter, the delay
between any two CARRY signals, which is 0/ MfK , should be larger than 3 times of
ID counter periods, i.e. 02/13 Nf⋅ since the maximum frequency of IDout is 2/3 of
ID counter under this DCO. Therefore,

K
MN

NfMf
K

2
3

2
3

00

≥⇒≥

Besides, since M, K, and N are mostly integer powers of 2, the practical minimum is

K
MN practical

2
=

 According to the discussion, we can find that the N value of the second ADPLL
implementation has already been the minimum of N (128 = 2*256/4). Once the value
of M has been raised or the value of K has been lowered, the ID counter clock will be

NTUEE Communication Lab Spring 2007

Lab 6 Page 17 of 23 5/6/2007

never catch up with the CARRY signals. Fig. 19 shows the relation of ID clock and
CARRY density.

clk(M)
idclk(2N)

M = 2N K=8

toggle

carry

carry margin = 8clk = 8idclk

carry margin threshold = 4clk = 4idclk

toggle

carry

Fig. 19 Relation between ID clock and CARRY density

 Let’s retrace the previous analysis. The reason why N value must be larger than
2M/K is that under this DCO, the maximum frequency of IDout is at most 2/3 of ID
clock. If we could raise the maximum frequency of IDout, we could then further
improve the process efficiency. The limitation of IDout frequency is caused by the
“high-low-low-high-low-low” pattern of toggle, so why not changes another pattern
that could lead to a larger range. For example, the “high-low-low-low-high-low-low-
low” pattern can raise the maximum frequency up to 4/3)44/()33(=++ of ID
counter frequency, so the ID counter clock can handle the CARRY sequence when M
= 8N, K = 8. (KMNNfMfK /4/14/ 00 ≥⇒⋅≥)

NTUEE Communication Lab Spring 2007

Lab 6 Page 18 of 23 5/6/2007

Fig. 20 Extended toggle pattern

Using this special pattern, the hold range can then extend to the theoretical boundaries,
i.e. 00 5.1~5.0 ff .

 If the method really work, how about trying to approach the design limit? To
approach the design limit, the IDout frequency must approach the ID counter
frequency and the corresponding pattern will be “low-low-…-low”, i.e. there can be
arbitrary number of lows after high. From a different angle, one more CARRY stands
for one more low in toggle. The magic pattern that can handle the n-CARRY sequence
is the one which has n lows more than highs. Therefore, to design an optimal ADPLL,
we must generate the “magic pattern” right when we receive a CARRY, i.e. we have
to make sure that the toggle satisfies the “n-more” law all the time, and we have
proposed the algorithm to generate toggle signal.

delay_one, delay_zero are two 2-bit flag
always @ (posedge reset or posedge clk)

 if (reset)
 reset toggle, delay_one, delay_zero to zero
 else

if (only CARRY rising)
 if (toggle is high, i.e. toggle should fall if no “delay_one”)
 if (delay_one is equal to 2)
 one delay_one has been cancelled by rising CARRY
 therefore, there seems to be only one delay_one and no

CARRY rising
the other delay_one will be deflag because of the
passing of time
=> delay_one is assigned to be 0 and toggle remains

unchanged because of the deflagged delay_one
 else if (delay_one is equal to 1)
 one delay_one has been cancelled by rising CARRY
 therefore, there seems to be only no delay_one and

NTUEE Communication Lab Spring 2007

Lab 6 Page 19 of 23 5/6/2007

CARRY rising
=> delay_one is assigned to be 0 and toggle is flipped as

usual
 else
 there is no delay_one to cancel the rising CARRY
 there is no delay_zero to delay the flip of toggle
 => flip toggle and add delay_zero by 1
 else if (toggle is low, i.e. toggle should rise if no “delay_zero”)
 if (delay_zero is equals to 2)
 toggle remain unchanged by deflag one of “delay_zero”

the rising CARRY flag a new “delay_zero”
=> delay_zero and toggle remain unchanged

else if (delay_zero is equal to 1)
 the rising CARRY will be treated as the second

“delay_zero”
=> delay_zero is set to be 2 and toggle remain

unchanged
 else
 the rising CARRY will be treated as the first

“delay_zero”
the delay action will be start at the next low
=> delay_zero is set to be 1 and flip the toggle

 else if (only BORROW rising)
 the procedure is symmetric to the above case
 else
 if (toggle is high, i.e. toggle should fall if no “delay_one”)
 if (delay_one is more than 0, i.e. high must be delay)
 => remain toggle unchanged and subtract 1 from

delay_one
 else
 => flip toggle
 else begin
 if (delay_zero is more than 0, i.e. low must be delay)
 => remain toggle unchanged and subtract 1 from

delay_zero
 else
 => flip toggle

NTUEE Communication Lab Spring 2007

Lab 6 Page 20 of 23 5/6/2007

V. Simulation Results
To verify the algorithm, we can see the waveforms in simulation. (test1: CARRY,

test2: BORROW, test3: IDout, test4: toggle)

Fig. 21 Simulation result for 01 ff = , M=256, N=128, K=1

Fig. 22 Simulation result for 01 2 ff = , M=256, N=128, K=1

Fig. 23 Simulation result for 01 5.1 ff = , M=256, N=128, K=1

NTUEE Communication Lab Spring 2007

Lab 6 Page 21 of 23 5/6/2007

Fig. 24 Simulation result for 01 =f , M=256, N=128, K=1

Fig. 25 Simulation result for 01 5.0 ff = , M=256, N=128, K=1

D. Experimental Results

In this experiment, we use an XOR gate as a phase detector and an ID-counter as a
digital-control oscillator. The center frequency (0f) is 100 kHz. The important
parameters using in this lab is listed below.

 Exp6_original Exp6_new Exp6_improved
FD JK-FF XOR XOR

DCO ID counter ID counter Modified ID counter
K 8 4 1
M 16

 (Kclk = 1.6 MHz)
256

(Kclk = 25.6 MHz)
256

(Kclk = 25.6 MHz)
N 8

(IDclk = 1.6 MHz)
128

(IDclk = 25.6 MHz)
128

(IDclk = 25.6 MHz)
Table. 2 ADPLL parameter table

In addition to the according simulation result, the practical implementation
supports the algorithm, too. The hold range of the modified ADPLL can lock the
phase from 1Hz to 196 kHz. The slightly small upper bound may be caused by gate
delay of the FPGA, and we can further approach the bound by increasing the values of
M and N.

NTUEE Communication Lab Spring 2007

Lab 6 Page 22 of 23 5/6/2007

 Finally, can we go beyond the limitation? The answer is “yes.” All we have to do
is add a frequency detector which counts the number of zero crossing over a
reasonable period of time. For example, if the ADPLL has found that the number of
zero crossing exceeded a certain threshold, say 190 KHz, the final frequency divider
in DCO module would be change from 128 to 64, i.e. 642/' == NN , and the clock
of both K counter and ID counter remained unchanged. Therefore,

KHzffNffNfMMHz 200''128'''2''6.25 00000 =⇒====
We have now changed the center frequency from 100 KHz to 200 KHz while

maintain the ratio of M (128'=M) and N (64'=N). Hence, the hold range changes
from KHzHz 200~0 to KHzHz 400~0 theoretically. However, because of the
smaller N value, the phase jitter will be increase. In the other words, the quantization
error will be increase. To make this jitter smaller, we need a still large N, or an even
larger center clock, which is the limitation of practical implementation.

E. Report Problems
1. When the frequency of the input signal is fixed, the frequency of the output

signal from the ADPLL still oscillates around the frequency of the input signal.
Please explain why this happens.

Ans.
Please see section F-I, F-II-(1), F-II-(2)

2. Please list the pros and cons of ADPLL comparing to that of analog PLL.
Ans.

Pros:
(1) Easy to design because of the only three parameters
(2) Center frequency can be determined merely by M and N
(3) Unlike analog PLL, under-damping transient response is less probable in

ADPLL (the frequency domain model shows that the ADPLL is a first order
digital filter, which is free from second order damping)

(4) Hold range can be simply determined by M, K, and N, while analog PLL can
only improve the performance by new technology or fabrication

(5) Unlike analog PLL, ADPLL has almost the same hold range and lock range
 Cons:

(1) The locked frequency is discrete and jitter would be increase when
quantization level is small

F. Appendix

This report includes the following as appendix:
 The report itself: Group6_Lab6.pdf
 Our first version of ADPLL implemented in verilog code: original folder

NTUEE Communication Lab Spring 2007

Lab 6 Page 23 of 23 5/6/2007

 Our second version of ADPLL which can lock frequency up to 25% deviation
from the central frequency: fc±25% folder

 Our final version of ADPLL which can lock frequency up to 100% deviation
from the central frequency, that is, 0 ~ 2 f : final folder

 Verilog code for our frequency detection module: freq_detect.v
 A sample movie of our first version ADPLL on oscilloscope: original.MOV

G. References

I. Best, Roland E, “Phase Lock Loop, 4th ed.,” McGraw-Hall, 1999
II. Lecture note from the course “Frequency Synthesizers,” summer 2003,

Georgia Institute of Technology[1]

[1] http://users.ece.gatech.edu/~pallen/Academic/ECE_6440/Summer_2003/ece_6440_su2003.htm

