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A. Introduction to ADPLL 
 

This lab is about ADPLL. Our goal is to build up an All-Digital Phase-Locked 
Loop which can lock the central frequency of 100 kHz with the use of Verilog on an 
FPGA board. 
 
I. Overall Structure 

All-Digital Phase-Locked Loop (ADPLL) is commonly used in communication 
systems, especially for the applications of synchronization and frequency synthesis. It 
consists of three parts: (i) Phase Detector (PD) (ii) Loop Filter (LF) and (iii) 
Digital-Controlled Oscillator (DCO). Fig. 1 shows the general block diagram of an 
ADPLL. 

 
Fig. 1 General block diagram of an ADPLL 

The task of a PLL is to lock the phase and the frequency of U1(t) to those of U2(t). 
The phase detector is used to detect the difference between U1(t) and U2(t). The loop 
filter is used to filter out out-of-band noise. Finally, the voltage-controlled oscillator 
(VCO) receives the output of the loop filter and adjusts the phase/frequency of the 
output signal U2(t) accordingly. 

To realize an ADPLL, all function blocks of the system must be implemented by 
purely digital circuits. The signal are digital (binary) and may be a single digital 
signal or a combination of parallel digital signals. There are some advantages: No 
off-chip components and Insensitive to technology. 
 
II. Phase Detector (PD) 

The phase detector (PD) part of the ADPLL consists of an SR (JK) flip-flop. The 
block diagram of a JK flip-flop phase detector is shown in Fig. 2. The operation of the 
phase detector is illustrated near by. The difference between U1(t) and U2(t) will be 
detected by the phase detector. This phase detector counts the number of high 
frequency clock periods between the phase difference of U1(t) and U2(t). 
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Fig. 2 Block diagram of a JK flip-flop phase detector 

 
Fig. 3 Timing diagram of the phase detector 

Fig. 3 is cut from P.E Allen’s reference. For simplicity, v1 and v2’ here are U1 
and U2 respectively. 

 
Fig. 4 Truth table of JK/SR transformation 

The JK/SR is list as in Fig. 4 In the point of view in realization of digital circuit 
design, the waveform above can be seen as a circuit detecting the raising edge of U1(t) 
and U2(t). When there is a raising edge of U1(t) set the output Q (or say Ud  in this lab 
handout) to 1. When there is a raising edge of U2(t), reset the output Q to 0. 

In real time realization, the most used design of S-R or J-K is simply use “XOR” 
to fasten the computation and reduce the error or distortion in phase caused by clock 
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sampling. 
 
III. Loop Filter (FL) 

The loop filter in this lab is the K-counter. The block diagram of the loop filter is 
shown as in Fig. 5. The DN/UP signal in the block diagram is actually the Q signal of 
the phase detector last part. The associated waveforms of the loop filter at the steady 
state are shown in Fig. 6. 

 
Fig. 5 Block diagram of the loop filter 

 
Fig. 6 Waveforms of the loop filter at steady state 

The Loop Filter (LF) can be seen as a low pass filter. Since it is a integrator with 
transfer function H(s) = 1/sTi, where Ti is the time constant of integrator. There are 
two counters in LF, Both counters count upwards. Carry equals 1 when contents of 
the UP counter>=K/2 and Borrow equals 1 when contents of the Down counter>=K/2. 
Finally, positive going edges of the Carry and Borrow control the DCO, the carry and 
borrow waveforms are then fed to the digital controlled oscillator to adjust the 
frequency and the phase of U2(t). 
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IV. Digital Control Oscillator (DCO) 
The digital version of voltage-controlled oscillator, i.e. digitally-control oscillator 

(DCO) is increment-decrement counter (ID-counter). The overview of DCO block 
diagram of the counter is shown in Fig. 7. 

 
Fig. 7 Block diagram of DCO 

The carry and borrow are from the K-counter loop filter and the ID-counter is 
sensitive to positive edges. A Toggle-FF signal is generated following to the 
following rules: 

1) No BORROW or CARRY pulses 
The toggle-FF switches on every positive edge of the ID clock if no 

CARRY or BORROW pulses are present. 

 
 

2) CARRY input applied when the toggle-FF is in the low state 
When the toggle-FF goes high on the next positive edge of the ID clock but 

stays low for the next two clock intervals, the IDout is advanced by one ID 
clock period. 

 
 

  



NTUEE Communication Lab Spring 2007 

Lab 6 Page 6 of 23 5/6/2007 

3) CARRY input applied when the toggle-FF is in the high state 
The toggle-FF is set to low for the next two clock intervals. Because the 

CARRY can only be processed when the toggle-FF is in the high state, the 
maximum frequency of the IDout signal is reached when the toggle-FF follows 
the pattern of “high-low-low-high-low-low”. Therefore, the maximum IDout 
frequency = 2/3 ID clock frequency. This will limit the hold range of the 
ADPLL. 

 
  
4) BORROW input applied when the toggle-FF is in the high 

A BORROW pulse causes the toggle-FF to be set high on the succeeding 
two positive edges of the ID clock. This causes the next IDout pulse to be 
delayed by one ID clock period. The toggle-FF has the pattern of 
“low-high-high-low-high-high” which gives the min. IDout frequency = 1/3 ID 
clock frequency. Basically, 1 CARRY pulse adds 1/2 cycle and 1 BORROW 
pulse removes 1/2 cycle. 

 
  
  



NTUEE Communication Lab Spring 2007 

Lab 6 Page 7 of 23 5/6/2007 

5) state BORROW input applied when the toggle-FF is in the low state 
A BORROW pulse causes the toggle-FF to be set high on the succeeding 

two positive edges of the ID clock. This causes the next IDout pulse to be 
delayed by one ID clock period. The toggle-FF has the pattern of 
“high-high-low-high-low-high” which gives the min. IDout frequency = 1/3 ID 
clock frequency. Basically, 1 CARRY pulse adds 1/2 cycle and 1 BORROW 
pulse removes 1/2 cycle. 

 
 
The output signal of the ID-counter is then IDout = IDclk · Toggle-FF. A general 

case waveform is shown in Fig. 8 for reference. 

 
Fig. 8 Waveform of the DCO 

  
B. Original ADPLL 

 
I. Block Diagram 

As Section A discussed, an ADPLL consists of three parts: (i) Phase Detector (PD) 
(ii) Loop Filter (LF) and (iii) Digital Control Oscillator (DCO). In this lab, our goal is 
to achieve ADPLL on FPGA using Verilog code compiled by Quartus II. In order to 
fit the lab requirement and hardware design requirements (e.g. timing and 
synchronization), we made a few changes in our Verilog design which will be 
discussed further. Fig. 10 is the overall structure of our ADPLL in Verilog design. 
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Fig. 10 Overall structure of our ADPLL 

Two signals (origin and locked one) enter the phase detector which detect the 
difference in phase of the two signals. Then the signal is enter the loop filer as a low 
pass. Then the result enters the VCO to change phase/frequency. Finally, it feed back 
to the phase detector to complete the signal circle. If all components work fine, two 
signals will be more closely in phase and frequency after one signal loop. 

U1(t) is the input signal (square wave)with frequency 100kHz, and U2(t) is our 
phase-locked result. The internal connection is shown above. Ud(t) is the output of 
phase detector (its structure is similar to J-K flip-flop). Carry and borrow is the 
counted result of the loop filter (K-counter). The final phase-locked result is at the 
output of the voltage control Oscillator. The overall I/O is listed as below. 
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II. Hardware Implementation Guideline 
This part is to set all the experiment devices and standardize the process. 

 
Fig. 11 All devices we will need in real implementation 

There are 5 components in our hardware implementation of ADPLL. 
1) FPGA 

Connecting FPGA GPIO2 pin4 for signal input U1(t), pin6 for signal output 
U2(t) and pin12 for ground. Note no lines or nodes are short. 

2) PC 
Using Quartus II 7.0 to compile *.sof and using USB-blaster to load the 
program into FPGA. 

3) Board 
Connecting 330ohm resisters in prevent for short and too many current, and 
wisely connecting all the lines. 

4) Display 
Auto adjusted display that makes sure all probe is well functioned and properly 
grounded. 

5) Signal generator 
Setting frequency to 100kHz and adjusting amplitude to Vpp=3.3V with a 
offset -075 to make Vmax is about 3~3.3V and Vmin is about 0V for FPGA to 
work properly.  
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III. Experimental Results of the Original ADPLL 

 
Fig. 12 A typical oscilloscope output for ADPLL 

Fig. 12 is a typical oscilloscope output for the original ADPLL, here the yellow 
waveform is input and the blue one is the ADPLL output. We can see the PLL indeed 
locks the phase. There are some blurs in the cutting edge, and this is due to 
non-perfect locking ability of our ADPLL. This problem can be eliminated and will 
be discussed after. 

 

Table 1 Experiment result of ADPLL with different parameters 
Table 1 showed our experimental results of the original ADPLL. The nominal 

frequency of the input signal is fu1 = 100kHz. We tried to deviate fu1 from 100kHz 
and find the lock range of the original ADPLL. If we defined ADPLL bandwidth as 
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“upper bound - lower bound.” Row 1 with K=8, K clock and ID clock remaining 
unchanged is our original parameters. In our original parameter settings we have a 
bandwidth approximately 17% of the nominal frequency. 

As we make ID clock faster, we trade bandwidth for a better locking ability so that 
the bandwidth deteriorate. If we make K clock larger and others remain unchanged, 
the bandwidth would have a large improvement but there is a larger oscillation about 
the locked phase. For the effect of K counter, the larger the K, the poorer the 
bandwidth of ADPLL, but a tradeoff between bandwidth and locking ability still 
exists. 

 
C. Full Lock-Range ADPLL 

 
In this section, we are going to discuss the factors that influence lock range of the 

original ADPLL. According to these discussions, we proposed a simple and effective 
control algorithm that extends lock range of the proposed full lock-range ADPLL to 
the theoretical bound. 

 
I. Phase Jitter 

Short-term frequency instabilities, seen in the time domain as jitter, can cause 
problems in both analog and digital signals. As system operating frequencies have 
increased, these instabilities have gained increasing importance, because their relative 
size to the total period length is larger. The instabilities can eventually cause slips or 
missed signals that result in loss of data. Fig. 13 shows a square wave with jitter 
compared to an ideal signal at the same long-term frequency. 

 
Fig. 13 The clock signal with phase jitter 
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As what we can see in the above figure, the short-term frequency varies while the 
long-term frequency remains. Besides, the duty cycle varies from period to period. 
From this point of view, if we want to analyze the cause of phase jitter in ADPLL, we 
could take a look at the duty cycle range first. 
 
II. Duty Cycle Variation 

To analyze the duty cycle varying range when the loop is locked, we have 
considered two kinds of phase detector – XOR phase detector and JKFF phase 
detector. 

1) XOR phase detector 
Assume that the loop has already been in lock, both counters count on 

negative edges of the K counter, the toggle flip-flop within the ID counter 
toggles on the positive edge of ID clock, and all flip-flop of the N÷  counter 
count on the negative edge of the corresponding clock signal. Because the loop is 
in lock, the number of CARRY rising edges will be identical to the number of 
Borrow rising edges and the phase difference between input signal and output 
signal will be 2/π  due to the evenly distributed DN/UP signal (the clock-like 
signal with duty cycle about 50%).  

 

Fig. 14 The DN/UP signal in locked loop with XOR PD 

Fig. 14 shows the snapshot of the waveform, where 1v  is the input signal 
and 2v  is the output locked signal. Because of the in-lock assumption and the 
according 2/π  phase difference, there is at least one pair of {low, high} 
waveform in {{A, B}, {C, D}} with 50% duty cycle. Without loss of generality, 
we can assume that A and B have the same duration. Since CARRY/BORROW 
could only changed when DN/UP was low/high and the frequency of 
CARRY/BORROW rising edge in the same interval would be KMf /0 , the 
number of CARRY rising edges and BORROW rising edges would be at most 
different by 1. 

 
Fig. 15 Number of points along the segment 

Hence, the number of CARRY and BORROW rising edges in A and B 
interval would be at most different by 1. In other words, the resultant half cycle 
interval of '2v  will be different by 

)2(1 0Nf . 
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 The resultant duty cycle would be 

)11(
2
1

/1
)2/(1)2/(1

0

00

Nf
Nff

±=
± . 

 Therefore, 
)/11(5.0)/11(5.0 NN +⋅≤≤−⋅ δ .  

This is independent of K and M. To minimize the phase jitter, we can choose a 
larger N. 

 
Fig. 16 Waveforms of ADPLL using XOR PD, M=16, K=8, N=8 

Besides, when 4/MK = , there is at least one of CARRY/BORROW signals 
with more than 11))2/(1()/( 00 =−⋅ fKMf  rising edge; therefore, two CARRY 
signals and two BORROW signals. It can be further showed that no phase jitter 
would show in this case. When 4/MK > , the average number of 
CARRY/BORROW is less than 1, the phase jitter will be more serious because 
of the short-term frequency error. 
2) JKFF phase detector 

Followed by the same assumption described in (1), the phase difference of 
input and output will beπ . The DN/UP signal will be act as the following figure. 
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Fig. 17 Waveforms of ADPLL using JKFF PD, M=16, K=8, N=8 

There is one of interval last more than half of input period. Therefore, there 
are KMfKMf 2/))2/(1()/( 00 =⋅  CARRY and KM 2/  BORROW. Because of 
JKFF PD, phase jitter will exist regardless of the value of parameters. The 
corresponding duty cycle is 

)
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2
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⋅±  

 Therefore, 
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2

1(5.0
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M

KN
M

+⋅≤≤−⋅ δ  

 To minimize phase jitter, we can choose 2/MK = . 
 
III. Hold range 

 The maximum output frequency occurs when the K counter is counting up and is 
KMff /0max = . Because each carry applied to the ID counter causes 1/2 cycle to be 

added to the IDout signal, the output frequency of the IDout increases by 

K
Mff IDout 2

0=Δ  

Therefore, the frequency of output signal '2v  will be 

)
2

1(/' 00 KN
MfNfff IDout ±=Δ±=  

Besides, the frequency can be never higher than 02 f  according to the procedure to 
form IDout signal. 
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Fig. 18 01 25.1 ff = , XOR PD, M=16, K=4, N=8 

 
IV. Proposed Full Lock-Range ADPLL 

According to the discussion above, we can draw some conclusions: 
1) Larger M value leads to larger hold range 
2) Smaller K value leads to larger hold range 
3) Smaller N value leads to larger hold range 
4) In XOR FD, larger N value leads to smaller jitter regardless the value of M 

and K 
5) In JKFF FD, smaller M value, larger K value, and larger N value leads to 

smaller jitter 
6) Hold range and jitter is a trade-off among all the parameters 
7) XOR FD is much cost effective and releases the conflict of M/K value 

between larger hold range and small jitter 
8) It is better to use the same clock for K counter and ID counter because of the 

synchronization problem 
We first analyze the original design of ADPLL on the lecture note. The parameter 

is: M = 16, K = 8, N = 8, JKFF phase detector. According to the theoretical analysis 
above, the hold range is 00 )8/11(~)8/11( ff +− , i.e. 00 125.1~875.0 ff  and the 
duty cycle is )8/11(5.0~)8/11(5.0 +− , i.e. 0.4375~0.5625. However, the experiment 
result shows a smaller hold range. This may be caused by the state transition DCO, 
which can not deal with the adjacent CARRY  BORROW signal because of the 
insensibility of state machine in different states. This deficiency may reduce the 
balance ability of DCO because it may ignore the following signal which may cancel 
the previous advance or delay effect to make the output frequency stable. Therefore, 
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when the input frequency approaches the hold boundaries, DCO may run too fast or 
too slow and then be out of lock. 

To deal with this problem, we have rewritten the DCO code. Instead of finite state 
machine, we use two flags to mark the delay low/high signals and apply the cancel 
policy on the “CARRY  BORROW” or “BORROW  CARRY” signal. In addition, 
we change the JKFF PD by XOR PD to release the conflict of M/K value and raise 
the N value to reduce the phase jitter. At the same time, to cancel the large N value 
effect on hold range, we raise the M value and lower the K value. The parameter of 
this new ADPLL is: M =256, K = 4, N = 128, XOR phase detector. The consequent 
hold range and duty cycle are 00 )4/11(~)4/11( ff +− , i.e. 00 25.1~75.0 ff  and the 
duty cycle is )128/11(5.0~)128/11(5.0 +− , i.e. 0.4961~0.5039. The experiment result 
shows the high coherence between the theoretical analysis and practical 
implementation. (Hold range: 00 24.1~76.0 ff ) 

In order to further improve the hold range of ADPLL, we have tried to change the 
parameter of ADPLL. However, when we increase the M value or lower the K value, 
although the hold range extend, it does not increase accordingly. To interpret this 
phenomenon, we can see that if the ID clock frequency is too low or the density of 
CARRY or BORROW is too high (K value is too small or K counter frequency is too 
high), the ID counter is unable to process all the CARRY and BORROW signals. The 
redundant CARRY or BORROW will be ignored as the original state transition DCO. 
Consequently, the hold range cannot extend to the boundaries, and here comes a 
question, “What is the minimum N value that can process all the CARRY and 
BORROW signals?” Because we have apply the cancellation policy of adjacent C B 
and B C signals, the sequence contain both CARRY and BORROW may not 
approach the limit of ID counter clock. Hence, we can focus on the sequence with 
only CARRY or BORROW. Take the CARRY sequence as an example, if a number of 
CARRY signals have to be processed in succession by the ID counter, the delay 
between any two CARRY signals, which is 0/ MfK , should be larger than 3 times of 
ID counter periods, i.e. 02/13 Nf⋅  since the maximum frequency of IDout is 2/3 of 
ID counter under this DCO. Therefore, 

K
MN

NfMf
K

2
3

2
3

00

≥⇒≥  

Besides, since M, K, and N are mostly integer powers of 2, the practical minimum is 

K
MN practical

2
=  

 According to the discussion, we can find that the N value of the second ADPLL 
implementation has already been the minimum of N (128 = 2*256/4). Once the value 
of M has been raised or the value of K has been lowered, the ID counter clock will be 
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never catch up with the CARRY signals. Fig. 19 shows the relation of ID clock and 
CARRY density. 

clk(M)
idclk(2N)

M = 2N  K=8

toggle

carry

carry margin = 8clk = 8idclk

carry margin threshold = 4clk = 4idclk

toggle

carry

 

 

Fig. 19 Relation between ID clock and CARRY density 

 Let’s retrace the previous analysis. The reason why N value must be larger than 
2M/K is that under this DCO, the maximum frequency of IDout is at most 2/3 of ID 
clock. If we could raise the maximum frequency of IDout, we could then further 
improve the process efficiency. The limitation of IDout frequency is caused by the 
“high-low-low-high-low-low” pattern of toggle, so why not changes another pattern 
that could lead to a larger range. For example, the “high-low-low-low-high-low-low- 
low” pattern can raise the maximum frequency up to 4/3)44/()33( =++  of ID 
counter frequency, so the ID counter clock can handle the CARRY sequence when M 
= 8N, K = 8. ( KMNNfMfK /4/14/ 00 ≥⇒⋅≥ ) 



NTUEE Communication Lab Spring 2007 

Lab 6 Page 18 of 23 5/6/2007 

 
Fig. 20 Extended toggle pattern 

Using this special pattern, the hold range can then extend to the theoretical boundaries, 
i.e. 00 5.1~5.0 ff . 

 If the method really work, how about trying to approach the design limit? To 
approach the design limit, the IDout frequency must approach the ID counter 
frequency and the corresponding pattern will be “low-low-…-low”, i.e. there can be 
arbitrary number of lows after high. From a different angle, one more CARRY stands 
for one more low in toggle. The magic pattern that can handle the n-CARRY sequence 
is the one which has n lows more than highs. Therefore, to design an optimal ADPLL, 
we must generate the “magic pattern” right when we receive a CARRY, i.e. we have 
to make sure that the toggle satisfies the “n-more” law all the time, and we have 
proposed the algorithm to generate toggle signal. 

delay_one, delay_zero are two 2-bit flag 
always @ (posedge reset or posedge clk) 

  if (reset) 
   reset toggle, delay_one, delay_zero to zero 
  else 

if (only CARRY rising) 
    if (toggle is high, i.e. toggle should fall if no “delay_one”)  
     if (delay_one is equal to 2) 
      one delay_one has been cancelled by rising CARRY 
      therefore, there seems to be only one delay_one and no  

CARRY rising 
the other delay_one will be deflag because of the  
passing of time 
=> delay_one is assigned to be 0 and toggle remains 

unchanged because of the deflagged delay_one 
     else if (delay_one is equal to 1) 
      one delay_one has been cancelled by rising CARRY 
      therefore, there seems to be only no delay_one and  



NTUEE Communication Lab Spring 2007 

Lab 6 Page 19 of 23 5/6/2007 

CARRY rising 
=> delay_one is assigned to be 0 and toggle is flipped as  

usual 
     else 
      there is no delay_one to cancel the rising CARRY 
      there is no delay_zero to delay the flip of toggle 
      => flip toggle and add delay_zero by 1 
    else if (toggle is low, i.e. toggle should rise if no “delay_zero”) 
     if (delay_zero is equals to 2) 
      toggle remain unchanged by deflag one of “delay_zero” 

the rising CARRY flag a new “delay_zero” 
=> delay_zero and toggle remain unchanged 

else if (delay_zero is equal to 1) 
      the rising CARRY will be treated as the second  

“delay_zero” 
=> delay_zero is set to be 2 and toggle remain 

unchanged 
     else 
      the rising CARRY will be treated as the first  

“delay_zero” 
the delay action will be start at the next low 
=> delay_zero is set to be 1 and flip the toggle 

   else if (only BORROW rising) 
    the procedure is symmetric to the above case 
   else 
    if (toggle is high, i.e. toggle should fall if no “delay_one”) 
     if (delay_one is more than 0, i.e. high must be delay)  
      => remain toggle unchanged and subtract 1 from  

delay_one 
     else 
      => flip toggle 
    else begin 
     if (delay_zero is more than 0, i.e. low must be delay)  
      => remain toggle unchanged and subtract 1 from  

delay_zero 
     else 
      => flip toggle 
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V. Simulation Results 
To verify the algorithm, we can see the waveforms in simulation. (test1: CARRY, 

test2: BORROW, test3: IDout, test4: toggle) 

 
Fig. 21 Simulation result for 01 ff = , M=256, N=128, K=1 

 
Fig. 22 Simulation result for 01 2 ff = , M=256, N=128, K=1 

 
Fig. 23 Simulation result for 01 5.1 ff = , M=256, N=128, K=1 
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Fig. 24 Simulation result for 01 =f , M=256, N=128, K=1 

 
Fig. 25 Simulation result for 01 5.0 ff = , M=256, N=128, K=1 

 
D. Experimental Results 

In this experiment, we use an XOR gate as a phase detector and an ID-counter as a 
digital-control oscillator. The center frequency ( 0f ) is 100 kHz. The important 
parameters using in this lab is listed below. 

 Exp6_original Exp6_new Exp6_improved 
FD JK-FF XOR XOR 

DCO ID counter ID counter Modified ID counter 
K 8 4 1 
M 16 

 (Kclk = 1.6 MHz) 
256 

(Kclk = 25.6 MHz) 
256 

(Kclk = 25.6 MHz) 
N 8 

(IDclk = 1.6 MHz) 
128 

(IDclk = 25.6 MHz)
128 

(IDclk = 25.6 MHz) 
Table. 2 ADPLL parameter table 

In addition to the according simulation result, the practical implementation 
supports the algorithm, too. The hold range of the modified ADPLL can lock the 
phase from 1Hz to 196 kHz. The slightly small upper bound may be caused by gate 
delay of the FPGA, and we can further approach the bound by increasing the values of 
M and N. 
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 Finally, can we go beyond the limitation? The answer is “yes.” All we have to do 
is add a frequency detector which counts the number of zero crossing over a 
reasonable period of time. For example, if the ADPLL has found that the number of 
zero crossing exceeded a certain threshold, say 190 KHz, the final frequency divider 
in DCO module would be change from 128 to 64, i.e. 642/' == NN , and the clock 
of both K counter and ID counter remained unchanged. Therefore, 

KHzffNffNfMMHz 200''128'''2''6.25 00000 =⇒====  
We have now changed the center frequency from 100 KHz to 200 KHz while 

maintain the ratio of M ( 128'=M ) and N ( 64'=N ). Hence, the hold range changes 
from KHzHz 200~0  to KHzHz 400~0  theoretically. However, because of the 
smaller N value, the phase jitter will be increase. In the other words, the quantization 
error will be increase. To make this jitter smaller, we need a still large N, or an even 
larger center clock, which is the limitation of practical implementation. 

 
E. Report Problems  
1. When the frequency of the input signal is fixed, the frequency of the output 

signal from the ADPLL still oscillates around the frequency of the input signal. 
Please explain why this happens. 

Ans. 
Please see section F-I, F-II-(1), F-II-(2) 

 
2. Please list the pros and cons of ADPLL comparing to that of analog PLL. 
Ans. 

Pros: 
(1) Easy to design because of the only three parameters 
(2) Center frequency can be determined merely by M and N 
(3) Unlike analog PLL, under-damping transient response is less probable in 

ADPLL (the frequency domain model shows that the ADPLL is a first order 
digital filter, which is free from second order damping) 

(4) Hold range can be simply determined by M, K, and N, while analog PLL can 
only improve the performance by new technology or fabrication 

(5) Unlike analog PLL, ADPLL has almost the same hold range and lock range 
 Cons: 

(1) The locked frequency is discrete and jitter would be increase when 
quantization level is small 

 
F. Appendix 

This report includes the following as appendix: 
 The report itself: Group6_Lab6.pdf 
 Our first version of ADPLL implemented in verilog code: original folder 
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 Our second version of ADPLL which can lock frequency up to 25% deviation 
from the central frequency: fc±25% folder 

 Our final version of ADPLL which can lock frequency up to 100% deviation 
from the central frequency, that is, 0 ~ 2 f : final folder 

 Verilog code for our frequency detection module: freq_detect.v 
 A sample movie of our first version ADPLL on oscilloscope: original.MOV 

 
G. References 

I. Best, Roland E, “Phase Lock Loop, 4th ed.,” McGraw-Hall, 1999 
II. Lecture note from the course “Frequency Synthesizers,” summer 2003, 

Georgia Institute of Technology[1] 

                                                 
[1] http://users.ece.gatech.edu/~pallen/Academic/ECE_6440/Summer_2003/ece_6440_su2003.htm 


