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HIGHLIGHTS

e Modeling at the battery pack level (vs. cell level) for automotive applications.

e Using one simple model rather than aggregating hundreds for pack representation.

e Building model based on the bandwidth of the stimulus by assigning time constants.

e Model robustness is proved on four Ultralife 14.4 V, 6.8 Ah lithium-ion battery modules.
o High fidelity is proved on an A123 360 V, 21.3 kWh lithium-ion battery pack.
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This paper describes an advanced battery pack modeling method for automotive applications. In contrast
to the common approach of aggregating hundreds of battery cell models in series and parallel for battery
pack representation, a simple yet accurate electrical analogue battery model with constant parameters is
used to represent the whole battery pack. The modeling process involves only the external characteristics
of the battery pack, thus detailed knowledge of the physical construction of the battery pack or the
physical parameters of the battery cells are avoided. Battery experimental tests include an independent
pulse charging/discharging cycle test and several performance estimates acquired from the anticipated
battery application. This modeling approach is achieved by anticipating the bandwidth of the battery
application and then optimizing the bandwidth of the battery pack model with this knowledge. The
reported work enables a fast dynamic battery pack simulation with a new level of high fidelity. Although
the scope of this work does not include temperature and lifetime effects, it is shown that the form of the
model and the parameter extraction procedure can encompass these important improvements. This
approach was experimentally verified on a 360 V, 21.3 kWh lithium-ion battery pack operated in a plug-

in hybrid electric vehicle.

© 2013 Elsevier B.V. All rights reserved.

1. Background

An accurate battery pack model is of significant importance for
electric drive vehicle drivetrain design and simulation. It is not
uncommon to see simple resistance battery models used in vehicle
simulations or energy storage system simulations [1,2] even
involving fast dynamics in vehicle power delivery. In contrast to the
view that vehicle system level simulation does not require highly
accurate battery models [3], a high fidelity battery pack model is
critical for the vehicle simulation because the drivetrain power
management, the motor/generator control, AC/DC & DC/DC con-
verter design and control, the battery pack state of power (SOP)
management, etc. are highly dependent on the accurate prediction
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of the battery power and battery state of charge (SOC). This is true
largely because of the fast dynamics of the battery current when
the battery pack is used in a real-world electric drive vehicle, e.g.,
electric vehicle (EV), hybrid electric vehicle (HEV), and plug-in
hybrid electric vehicle (PHEV). As a result, simple models with
existing modeling methods are not capable of predicting the dy-
namic responses of the battery pack, which can limit the validity of
the entire simulation.

Battery packs usually consist of hundreds of battery cells con-
nected in series and parallel, including battery packs made up of
several battery modules, with each battery module containing
multiple battery cells in series, parallel, or series—parallel config-
uration. Much battery modeling work has been reported at the
battery cell level [4—9], with little work reported in the literature
discussing battery models at the battery pack level, leaving the
work of integrating cell models into pack models to the system
level designer or power electronics designer who do not have
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expertise in batteries. Going from battery cell model to battery pack
model is not simply aggregating cell models to make a pack model,
because in this way not only will it introduce unnecessary
computational requirements for system simulation, but also
because some phenomena that can only be observed in the battery
pack are ignored [10]. Significant fidelity loss will occur if inade-
quate attention is paid to the battery pack behavior, as opposed to
cell-level modeling. Thus it is worth investigating the construction
of a battery pack model separately from the cell model.

2. Introduction

Three approaches for battery pack modeling are available in the
literature. The first approach is aggregating cell models in series
and parallel to represent the battery pack model [11,12]. This
approach requires the least effort going from the cell model to
pack model, as the only information needed is the cell configu-
ration in the battery pack. However, serious loss of fidelity can
occur in the resulting battery pack model as a result of ignoring
the cell variations, thermal unbalancing in the battery pack, etc. At
the same time, in reality not all battery cells used in battery packs
are even available to the actual system designers for battery cell
modeling.

The second approach is to scale the cell model into a battery
pack model with one simplified model representing the battery
pack [13,14]. In this case, the cell discrepancy issues related only to
the battery pack are investigated and included in the pack model.
Compared with the first approach, the second approach is
comprehensive and fast in simulation, which is more suitable for
system level design and simulation. Nonetheless, the investigation
of cell discrepancy and thermal distribution in a battery pack re-
quires extensive time and effort, and sometimes the battery cells
are not readily available to the system designers.

The third approach is building a battery pack model directly on
a well-built battery pack with a single battery model capturing the
totality of the pack behavior [15—17]. In this case, the character-
istics of the battery cells and thermal influences on them are
naturally included into the battery pack model, as a result of cu-
mulative effects of cell averaging, and at the same time the battery
model will be fast in simulation requiring comparatively little
computational power. Another advantage of this procedure is that
non-idealities known to exist in battery packs, such as weak cells
and interconnection impedances, is captured self-consistently at
the time the battery pack model is built. This approach requires no
cell-level details or pack configurations, and some modeling al-
gorithms at this level are even independent of battery chemistry.
For commercially available battery packs, this approach may be the
only possible approach, as in this case battery tests need only be
conducted at the battery pack level. Prerequisites for this approach
include 1) the battery cells are reasonably well balanced with
means for regular cell balancing, and 2) the battery pack should be
effectively cooled/heated so that the battery pack does not
encounter uncontrolled temperature variations. In other words,
only when a well-designed battery system is available can one
confidently model the battery pack as a single battery model. The
issue of battery cells variation has been discussed in many papers
and communications [13,18], and a two-step screening process has
been proposed in Ref. [13] to ensure a stable configuration of a
battery pack. And many cell equalization approaches have been
proposed [1] as well.

Comparing the three battery pack modeling approaches dis-
cussed above, the third approach which builds a battery pack
model directly on battery pack terminal measurements seems to be
the most promising for system level designer. However, large
modeling errors up to 3.1% for this battery pack modeling approach

even with moderate real-world test regimes were reported in the
literature [15—17], which needs to be improved for stringent high
fidelity system level simulations. An advanced direct battery pack
modeling approach is the subject of this paper.

The focus of this paper is introducing an accurate battery pack
modeling approach using an electrical analogue battery model. A
high level of model accuracy (less than 1.11% error) for a 360 V,
21.3 kWh lithium-ion battery pack is achieved by correlating the
bandwidth of the battery model with the bandwidth of the battery
application [19]. Since a real-world battery is a continuous
nonlinear system which involves complex reactions between anode
and cathode, if exponential terms are used to approximate the
battery behavior, no natural exponential moments should be ex-
pected because of the nonlinearity of the underlying processes. The
electrical analogue battery model, which has been the subject of
many modeling papers addressing different formats and different
chemistries, is actually a truncated multi-term exponential
approximation. Thus there are no natural time constants in these
models arising from a physical or chemical analysis. Instead, we
argue that the limited number of time constants available in the
battery model should be based on the users’ simulation objectives
[20]. This relationship between achievable model bandwidth and
application need is ignored in most scenarios. Instead, much work
has been done seeking natural moments for the exponential terms
[15,16,21], where the model parameters including the time con-
stants that define the bandwidth of the battery model are esti-
mated to give the “best fit” of an arbitrary load stimulus during the
battery test. Large modeling errors are reported in these papers
compared to that reported in this paper. The alternative advocated
here is to base the bandwidth of the model on the bandwidth of the
battery application; and when this is done significantly higher fi-
delity can be achieved for an electrical analogue battery model of
the same order of dynamic approximation. In short, the bandwidth
of the battery pack model is chosen as the bandwidth of the actual
battery pack application in this work [20].

The work reported here starts by modeling a 14.4 V, 6.8 Ah
lithium-ion battery module with detailed parameter estimation,
then the robustness of the modeling approach is investigated by
applying the extracted module model on four different battery
modules of the same type using a different test profile than that
used to extract the parameters (albeit with similar bandwidth).
Finally, a model of a 360 V, 21.3 kWh lithium-ion battery pack using
the same approach is extracted and verified. Results show less than
1.11% modeling error of the lithium-ion battery pack in a drive cycle
test when installed on a PHEV.

This paper is organized as follows. Section 1 presents the
background of battery pack modeling. Section 2 discusses different
pack level battery modeling approaches and the one selected in this
work. Section 3 introduces the electrical analogue battery model
and its limited bandwidth characteristics. Section 4 describes the
parameter estimation algorithm in detail. Section 5 shows the
experimental results on an Ultralife UBBL10 lithium-ion battery,
with the completed model verified on four battery modules of the
same kind. Section 6 shows the experimental results on an A123
360V, 21.3 kWh lithium-ion battery pack in real-world application.
The completed model was verified with vehicle drive cycle test.
Section 7 concludes this paper.

3. The battery model
3.1. A review of battery models
There are two general types of battery models available in the

literature: the electrochemical battery model and the behavioral
battery model, of which the latter comes in both mathematical
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formulations and electrical circuit formulations [4,5,12]. The elec-
trochemical battery models [22,23] are comprehensive and inten-
ded for battery structure and material design, which usually require
intense computation and thus are not suitable for system level
simulation. Models of the mathematical form generally consist of
formulas derived from curve fitting and are fast in simulation, but
they are less accurate compared with other types of battery models
[24]. The electrical circuit formulations based on electrical analogue
battery models [4,5,7,8] use ideal electric circuit elements such as
voltage sources, current sources, resistors, capacitors and inductors
to model battery behavior. The complexity and accuracy of the
electrical analogue battery models lie between the electrochemical
models and the mathematical formulations [4,12]. Since the elec-
trical models are based on electric circuit elements, they are
inherently suitable for solution by simulation software with the
capability for circuit analysis, such as MATLAB/Simulink and SPICE,
and can be easily implemented into larger simulation environ-
ments for system level design and simulation.

Various electrical analogue battery models that could give ac-
curate voltage and SOC estimations have been reported in the
literature [4,5,12]. Nonetheless, there is little work detailing the
bandwidth dependency of the electrical analogue battery model,
which is critical to properly understanding and using this model.
Due to the way the parameters of most models are estimated, the
model itself is a convolution of both the battery characteristics and
the user defined model bandwidth. In other words, the parameters
of the electrical analogue battery model are directly tied to the
design of the dynamic response of the model. An understanding of
this principal is critical to properly derive a behavioral approxi-
mation for a real-world battery.

3.2. On-line vs. off-line

Battery models can be used in two ways: on-line (i.e., “realtime”,
primarily for battery SOC estimation, and off-line, mainly aimed at
system level design or simulation, e.g., assisting the development or
design of a PHEV. Unlike filter based (e.g., Kalman filter) parameter
estimation approaches [25—27] which usually work as part of on-
line SOC estimation systems, the proposed approach is aimed at
battery modeling for off-line system level design and simulation,
where accuracy in open-loop simulation is very important.

3.3. The electrical analogue battery model

The electrical analogue battery model [4] is an electric circuit
representation of a real-world battery designed to functionally
predict battery performance (Fig. 1). Although this model was
originally developed for and tested on small format batteries in
Refs. [4], this model has proven to be robust when applied to larger
format batteries as detailed in this work. Furthermore, it is also
shown to be capable of accurately modeling multiple chemistries

SOC-OCV
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such as lithium-ion, Nickel-Metal-Hydride (NiMH), and lead-acid
batteries [4]. The term “electrical analogue battery model” is
introduced to emphasize the fact that although electric circuit
components are used in the battery model, they do not represent
the internal electrical components of a real-world battery, but
instead form an electrical analogue of a state-variable representa-
tion of the behavior of the battery as observed at the battery ter-
minals. An electrical analogue model is convenient to use in the
typical electrical simulation environment.

This model contains two parts: a state of charge calculator (left)
and the electric circuit representation (right). The state of charge is
calculated from coulomb-counting with measured terminal current

as its input:
t
/ i(t)dt

SOC = SOC(0) +°T (1)
where C is battery capacity in A*sec, and i(t) is battery terminal
current in A.

The electric circuit representation consists of a controlled
voltage source, a series resistor and N sets of RC networks. This
portion of the model comprises the electrical part that represents
the battery dynamic characteristics. The series resistor is respon-
sible for the instantaneous voltage drop [4,7] during charging/
discharging as tied to the time based resolution of the data, and the
RC networks approximate non-linear transient responses with the
equivalent of a truncated exponential series. The number of RC
networks determines the resolution of the model dynamic re-
sponses. These two parts are connected by a State of Charge—Open
Circuit Voltage (OCV) mapping, which is represented by a poly-
nomial equation. In Eq. (1), the positive direction for current has
been taken to be when the battery is charging (negative sign for
discharging). Although electrical components are used in the
electrical analogue battery model, they do not represent the in-
ternal electrical construction of a real-world battery, but rather
form a behavioral approximation of the terminal characteristics.

3.4. The limited bandwidth of the electrical analogue battery model

A real-world battery is a continuous non-linear system [4,6,9],
involving complex electrochemical reactions between anode and
cathode. Since a finite number of RC networks are used in the circuit
part of the battery model, the RC networks are actually a truncated
series exponential representation of a non-linear real-world battery
system. There are no natural exponential moments associated with
the real-world battery as a result of the non-linearity. Thus the
exponential moments should be chosen to give the best approxi-
mation of the battery responses based on the user defined load
stimulus. When loads with different spectrums are used for curve fit
based parameter estimation with exponential basis functions there

N Sets of RC Networks

R, i
. s . P+
C; Cy |
7, =R,C, 7, =R,.C, | Battery
Terminal

Fig. 1. The electrical analogue battery model [19].
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Fig. 2. The work flow of the modeling procedure.

exists a dependency of the resulting moments on the load stimulus.
This dependency is usually ignored in the literature, in which case
the battery model is considered applicable to any load once the
model is built even though it is based on a certain load stimulus.
However, significant fidelity loss will result if the battery is used in
an environment where the load is significantly different from the
load stimulus used to build the battery model.

Alternately, this phenomenon can be explained from the
bandwidth aspect of the model. The bandwidth of the battery
model is determined by the time constants of the RC networks in
the electric circuit representation. When a finite number of RC
networks approximate the dynamic response of the battery, the
model is discrete in simulation with limited bandwidth. It is com-
mon to identify the bandwidth of a physical system for modeling
and control purposes; nonetheless, the limited bandwidth char-
acteristic of the electrical analogue battery model — a finite
approximation of a real-world battery with potentially much wider
bandwidth — is ignored in most scenarios.

Take the first RC network in the battery model as an example.
The natural response of the RC networKk is:

Vit = vy (@exp(—%) )

where 1 is the time constant of the RC network.

The voltage V;(t) on the RC network will decrease to 5% of the
initial value in 37;. Transient responses longer than several times of
71 will not be adequately approximated by this RC network. In
general, the bandwidth of the electrical analogue battery model is
limited to [1/Tmax; 1/Tmin), Where Ti,is the smallest time constant
among the included RC networks and tmax is the largest time
constant among the included RC networks.

Realizing the bandwidth limitation characteristic of the elec-
trical analogue battery model, the time constants of the RC net-
works should be selected based on the desired frequency range of
the battery application, rather than an arbitrary battery experi-
mental test. As a consequence, the load stimulus of the battery
experimental test should be designed to accommodate the battery
application frequency range for high fidelity battery modeling.

Another frequency related factor of the model is the sampling
frequency of the battery experimental test. The sampling frequency
should be chosen based on the frequency of the battery application
and the model fidelity requirements. For example, if the sampling
frequency of the experimental battery test is 1 Hz, then battery
dynamics faster than 0.5 Hz will not be accurately modeled. In
other words, a battery model built on a particular sampling fre-
quency is not supposed to be used in a simulation with shorter
computational time steps because of the possibility of aliasing.

4. Model parameter extraction
4.1. Overview

The proposed work flow of the modeling procedure is summa-
rized as Fig. 2. The parameter estimation algorithm should be
designed to accommodate the limited bandwidth characteristic of
the electrical analogue battery model. It is necessary to investigate
the battery application prior to constructing the model. The
bandwidth of the battery application will determine the bandwidth
of the battery model, which in turn determines the time constants
of the RC networks. Two battery tests, which we call “behavioral”
tests, should be conducted for the modeling purpose, one is for the

Battery Test Current
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=

T
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2 1 min rest 4
-4 I 1 I I 1 I
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17 < T T T T T T
battery battery
16 discharge charge _
2
215 |
=
=
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Fig. 3. The battery pulse charging/discharging cycle for the SOC—OCV profile extraction [19].
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SOC—OCV profile extraction, and the other is for the circuit
parameter estimation. After the battery tests, the SOC—OCV profile
and circuit parameters can be estimated with the proposed algo-
rithm. The last step is model verification, where the completed
battery model will be tested with different loads, a process we call
“performance” testing.

4.2. Model bandwidth and the number of RC networks

If the bandwidth of battery application is [fiow, fhign], then the
smallest and the largest time constants of the RC networks in the
battery model should be selected as Ty, = 1/fhign and
Tmax = 1/fiow- The number of RC networks with time constants
between [T, Tmax] should be determined based on the fidelity
requirement of the model. If a simple model with the least
computational burden is desired, the number of RC networks can
be two. If fidelity of the model is the first concern, the number of RC
networks can be 3, 4...N.

4.3. SOC—O0CV profile extraction

A battery pulse charging/discharging cycle is required for the
SOC—O0CV profile extraction. As illustrated in Fig. 3, the battery was
pulse discharged from full SOC to about 10% SOC and then pulse
charged back to full to extract the SOC—OCV profile [9]. The
charging pattern was determined based on the battery datasheet.
Particularly, for the charging test illustrated in Fig. 3, the turn from
constant current charging to constant voltage charging happened
when the battery terminal voltage reached 16.6 V, as defined in the
battery datasheet [28]. The SOC test range of [10%, 100%] is selected
to embrace the normal battery operating ranges without the risk of
causing irreversible changes to battery physical structures by overly
deep discharging. The pulse length is chosen to discharge or charge
the battery by 10% SOC, while allowing the battery to rest for 1 min
between each pulse to observe the battery dynamics during
relaxation. The battery was allowed to rest for 24 h between dis-
charging and charging.

In Fig. 4, battery terminal voltage during the test is plotted
versus SOC. The extracted SOC—OCV profile is shown as the red line
in Fig. 4. This line is achieved by averaging the dotted green line and
the dotted blue line, which are the voltage settling points in the rest
periods during battery charging and battery discharging, respec-
tively [9]. Further, for a more accurate SOC—OCV profile, the battery
can be pulse discharged and charged with a 24 h rest period be-
tween two succeeding pulses within the desired SOC operating

15.5F
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o
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‘ | Battery charge
P i Battery discharge ]
Upper bound
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OCV-OCV profile
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SOC (%)

Fig. 4. Battery SOC—OCV profile extraction [19].
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Fig. 5. Correction of the extracted SOC—OCV profile [19].

range to allow the battery voltage to reach its true OCV (Fig. 5), in
which way the initially extracted SOC—OCV profile was corrected
for additional accuracy in the desired SOC operating range by tak-
ing advantage of the improved estimate of the open-circuit voltage
observable at the battery terminal after 24 h [9].

4.4. Circuit parameter estimation

4.4.1. Behavior battery test

To estimate the circuit component parameters, a behavior bat-
tery test with frequencies close to [fiow, fhign] should be conducted
for parameter estimation. Sampling the terminal variables of a
battery while it is used in an application is an attractive alternative
for batteries in commercial use. The choice of load stimulus is
arbitrary as long as it has sufficient frequency components that
correlate with the anticipated bandwidth of the simulation using
the resulting model. The term “behavior test” was defined here as
when the measured battery terminal current and terminal voltage
are known to the battery model for the purpose of parameter
estimation. Later, the term “performance test” will be introduced
when only the measured terminal current is known to the battery
model but the measured terminal voltage is unknown to judge the
model accuracy by comparing the measured terminal voltage and
the model output.

4.4.2. Mathematical description of the model

A two-RC network representation of the battery model is the
level of approximation commonly found in similar advanced work
and was thus also selected for this work as illustrated in Fig. 6. The
mathematical equations for the two-RC network are derived as Eqs.
(3) and (4):

1
‘1 N
3 - O C
Vcl R1C] VC] 11
v, | = 0o 1 {VQ}JF ol (3)
K RCS SOC 2
SOC R2Go 1
0 0 o -
C
Vi = Voer(SOC) + Ryit + Vg + Vi (4)

where V., V., SOC are capacitor C;, C, voltages and battery SOC,
respectively. The parameters which need to be estimated are
Rs, R1, C1, Ry, and C,. Battery capacity Cin Eq. (3) is assumed to be
a constant. Battery open circuit voltage Vocy (SOC) is an eighth-order
polynomial equation in SOC representing the SOC—OCV mapping.
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Fig. 6. The two-RC network representation of the battery model.

4.4.3. Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is used for parameter
estimation. The objective function is formed as the error between
the measured battery terminal voltage from the behavior test
and the model terminal voltage output with the behavior battery
test current as load stimulus. And then SQP is used to minimize
the objective function by varying the circuit parameters
Rs, R], C1, Rz, and Cz.

Define:

Z=RRGCGR G (5)

The minimization problem is summarized as:
Minimize:

n

f@) = Z(Vg—mea - Vg—sim)2 (6)

i=1
Subject to:

hi(Z) = RiCi =11 =0
hy(Z) = RG -1 =0 (7)
RSv R17 C]7 R27 C2 > 0

where Vi__.., Vg—sim are the measured battery terminal voltage and
model output voltage, respectively.
The Lagrange function is formed as

2
LZ) = f@)+ Y dmhm(@) (8)
m=1

where 1, is the Lagrange multiplier associated with equality con-
stant hp,.

Let d¢ = AZK be a five-dimensional search direction vector, the
quadratic programming sub-problem at a specific design point is
formulated [29,30] as,

Minimize:

Q(d.2) = vf(zk)Tdk + O.S(d")TB"dk 9)
Subject to:

hm (2¥) +th(Z")Tdk 0 m=12 (10)

where B¥ is a positive definite matrix used to approximate the
Hessian of the Lagrange function L(Z).

This is a typical SQP problem that could be solved using the
standard SQP algorithm [29,30]. The optimum solution to this SQP
problem is the optimum Z, which represents the optimum circuit
parameters.

Measured Voltage

Fig. 7. The block diagram of the battery test apparatus.

The main advantage of the proposed algorithm over other
parameter estimation algorithms is that during the parameter
estimation process the time constants of the RC networks are kept
constant, because they are the preferred approximation that fits the
bandwidth of the battery application.

5. Experimental results on 14.4 V, 6.8 Ah lithium-ion battery
modules

In this section, four Ultralife UBBL10 lithium-ion battery mod-
ules of the same age were used for tests, as numbered #1, #2, #3,
and #4. These four batteries were in the same condition after
having been left on the shelf for 2.5 years with good maintenance.
The battery model was built on #1 based on behavior tests, and
then the completed model was verified on #1, #2, #3, and #4 with
the same performance tests. All the tests were conducted at room
temperature. Results verified that the battery model built on bat-
tery module #1 was accurate when tested with the performance
test, and it was robust enough to be used to represent other battery
modules of the same kind. It was also shown that the module-to-
module variation is less than the cell-to-cell variation, presum-
ably a result of cell averaging.

5.1. Test apparatus

A block diagram of the battery test apparatus is shown in Fig. 7
and an image of the physical system is given in Fig. 8. The power
source is a Sorensen SGI 60-V/500-A programmable power supply.
The load is a Sorensen M540071-01 SLM 60-V/60-A 300-W DC
Electronic Load. The shunt is a 5-mQ resistor rated for 10 A. The
current is calculated from the shunt voltage divided by the shunt
resistance; the battery voltage is measured from the battery ter-
minals. The data logger is an Agilent 34970A Data Acquisition/Data
Switch Unit.

Fig. 8. Battery test apparatus.
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Fig. 9. The 6.8 Ah Ultralife UBBL10 lithium-ion battery module.
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Fig. 10. The behavior battery test profile conducted on battery #1.

5.2. The Ultralife UBBL10 lithium-ion battery modules

The proposed approach was experimentally verified on a 6.8 Ah
Ultralife UBBL10 lithium-ion battery module as shown in Fig. 9. It
has two sections, which can be configured in series or parallel. In
this test one section is used with a nominal voltage of 14.4 V [28].
The voltage range for each section is 10 V—16.5 V. In each section,
there are three battery cells in parallel and four cells in series.
Altogether in each section there are 12 cells. The battery cell is a

Table 1

Estimated circuit parameters for the Ultralife battery module.
Rs (@) R (Q) Cy (KF) Rz (@) G, (KF)
0.1472 0.0338 1.7778 0.0446 47.1010

17 ; — . ;
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Fig. 11. Terminal voltage estimation results with the estimated parameters.

Panasonic CGR18650 with a nominal voltage of 3.6 V and a standard
capacity of 2450 mAh [31]. The cathode is made with lithium cobalt
oxide; the anode is made with carbon [32]. A smart circuit is
included in the battery module for cell-equilibration and protec-
tion. The battery module came with a display on top of the battery
module with four levels of SOC indication.

5.3. Parameter extraction

Battery module #1 among the four modules was used for
parameter extraction.

5.3.1. Model bandwidth and number of RC networks

Since two RC networks represent the current level of complexity
commonly used in comparable work, two RC networks are used
here. For illustration purposes, the time constants are pre-
determined as 1; = 60s and 1, = 2100 s, which are assumed to
have been determined to accommodate the bandwidth of a
notional battery application. In practice, a spectral analysis of the
battery application might be used to arrive at the time constant
selection. An example of this approach is covered in Section 6 for
the case of a 21 kWh lithium-ion battery used in a PHEV.
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Fig. 12. The designed performance battery test profile for battery #1, #2, #3 and #4.
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Fig. 14. The performance test voltage response on battery #1, #2, #3 and #4.

5.3.2. SOC—0CV praofile extraction

The battery SOC—OCV profile was extracted from a battery
experimental test as discussed in Section 4.3. The result is an 8th
order polynomial equation correlating battery SOC and OCV.

5.3.3. Circuit parameter estimation

A behavior battery test was conducted on battery #1 for circuit
parameter identification, as shown in Fig. 10. As the name
“behavior” indicates, the battery test was designed to sufficiently
excite the battery with different working conditions, which in-
cludes five parts. In the first part, the battery was discharged from
full SOC to 70% SOC with 3 A constant current for 40 min. This al-
lows the pulse charging/discharging tests to range between 50%

Table 2

Model verification results of the four battery modules.
UBBL10 battery # 1 2 3 4
MSE (1E-4 V?) 5.04 6.748 4.464 5.243
Mean error (mV) —8.269 -12.15 —5.131 —5.075
Max error (mV) 63.9 60 53.7 52.4
Rated error (%) 0.44 0.42 0.37 0.36
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Fig. 15. Terminal voltage estimation results on battery #1.

Fig. 16. The A123 lithium-ion battery pack installed in the Mississippi State University
EcoCAR.

Fig. 17. The A123 battery module.
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Fig. 18. The A123 prismatic battery cells.

and 70% SOC, which represents the desired battery normal oper-
ating range. This desired SOC operating range should be accom-
modated according to each specific application. In the second part,
the battery was pulse discharged and charged with 1 A, 1.5A,2 A

and 2.5 A currents. The length of the pulse was 12 min and the rest
period was 1 min. The length of the pulse should be chosen based
on the bandwidth of the application. Rest periods of 1 min were
used to characterize the battery natural behavior while there was
no external current excitation. In this part, the battery was dis-
charged from 70% to 50% SOC and then charged back to 70% SOC. In
the third part, the pulse discharging and charging currents were
interleaved with 5 min pulse lengths without rest period. The
currents used were 1 A, 1.5 A, 2 A and 2.5 A. This part represents
faster dynamics than the dynamics in part 2. The pulse length
should also be altered to accommodate the actual battery applica-
tion bandwidth. In the fourth part, gradually increasing current
from 1 A to 3 A followed by a constant 3 A current were used to
charge the battery until the terminal voltage reached the voltage
limit of 16.6 V, as defined in the datasheet. This step represents a
different battery usage condition than part 2 & 3. After the battery
terminal voltage reaches this voltage, the battery charging went to
voltage controlled mode. In the fifth part, the battery was charged
with controlled voltage of 16.6 V, until the current tapers to
300 mA, which defines 100% SOC in the datasheet. This represents a
voltage float mode of the notional battery application.

Using the proposed parameter estimation algorithm, the pa-
rameters were estimated as shown in Table 1. The sheer size of the
capacitor values illustrates the behavioral, rather than physics
based nature of the model. With the estimated parameters, the
model output voltage was compared with the measured battery
terminal voltage, as shown in Fig. 11. Although the battery terminal
voltage estimation looks accurate, this comparison will not be
taken as model verification, as the measured terminal voltage was
used to curve fit during the parameter estimation process. An in-
dependent performance battery test is used for model verification.
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Fig. 19. The battery terminal current, terminal voltage and battery SOC during the on-vehicle battery test (behavior test).
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As common criteria for battery model accuracy is the rated error,
which is calculated as the max error between the measured and
modeled battery voltage divided by the battery nominal voltage.
The rated error is 0.41% in this case.

5.4. Model verification

To verify the robustness of the battery model with parameters
estimated using battery #1, a different test profile was designed as
shown in Fig. 12 and imposed on other battery modules from the
same batch. The performance test current includes five current
rates: 1A, 1.5A,2 A, 2.5 A and 3 A, with pulse lengths of 5 min and
16 min. This performance test current has similar bandwidth with
the behavior test current, which is the key to conserve the accu-
racy from the behavior test to the performance test. As illustrated
in Section 4, in a real application the performance test profile,
which usually is the actual working environment for the battery, is
determined first, and then a behavior battery test is designed to
sufficiently excite the battery with a bandwidth similar to the
working environment. The current in Fig. 12 is actually the
measured current from battery #1 during the performance test.
Fig. 13 includes all the test currents on battery #1, #2, #3 and #4.
In most parts, the current from the four batteries overlapped each
other. Although it was intended to control the test stimulus to
have exactly the same current, there were minor differences in the
current because of the manual nature of the experimental test set
up. The current variations at the end of the performance test,
while charging the batteries to the full state of charge, reflect the
battery module variations. Fig. 14 shows the measured battery
terminal voltage during the battery performance test with a max
voltage difference of 0.17 V (1.2% rated) among the four battery
modules.

The statistical errors from open loop battery terminal voltage
estimation with the electrical analogue battery model with the
parameters estimated using battery #1 are shown in Table 2. The
rated error on battery #1 is 0.44%, while the rated errors on
battery #2, #3 and #4 are 0.42%, 0.37% and 0.36%, respectively.
The statistical errors indicate that the model accuracy (0.41% er-
ror from behavior test) was conserved when the battery model
was used with a different test profile, or even on other batteries
from the same batch. As an example of the open loop battery
terminal voltage estimation results, Fig. 15 shows the results from
battery #1. The terminal voltage estimation results from battery
#2, #3, and #4 are not plotted here, because they are so similar to
Fig. 15.

5.5. Discussion

From the model verification, we can conclude that the proposed
battery modeling approach can be successfully applied to module-
level batteries. The completed electrical analogue battery model
proved to be accurate (less than 0.44% error) and robust when
tested against four battery modules of the same kind in similar
performance battery tests.

6. Experimental results on a 360 V 21.3 kWh lithium-ion
battery pack

In this section, the proposed battery modeling approach was
applied to a large battery pack—an A123 360 V, 21.3 kWh lithium-
ion battery pack, which was installed on the Mississippi State
University EcoCAR (PHEV) [33]. A complete modeling of the A123
battery pack, illustrating the modeling process, is explained in this
section as an example of a real-world application of the proposed
battery modeling approach. Three sets of battery data were

acquired for the modeling purpose. One set of data came from a
pulse discharging—charging cycle on the battery pack (off-vehicle)
for the purpose of battery pack SOC—OCV profile extraction. The
other two sets of data were collected in the vehicle on a chassis
dynamometer. One of them was used as behavior test data for
model circuit parameter estimation; the other one was used as
performance test data for battery pack model verification. The A123
“behavior” and “performance” data came from custom drive cycles
for plug-in hybrid electric vehicle evaluation used by the EcoCAR
competition program.

6.1. The A123 lithium-ion battery pack

The A123 lithium-ion battery pack representing the cutting-
edge lithium-ion battery technology is shown in Fig. 16, where
the battery pack is installed in the Mississippi State University
EcoCAR. This battery pack includes five A123 battery modules
(Fig. 17) connected in series. In each battery module, there are 22
prismatic battery cells (Fig. 18) in series and three in parallel. So
altogether there are 66 battery cells in each battery module. Each
battery cell has a capacity of 20 Ah and a nominal voltage of 3.2 V. A
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Fig. 20. The single-sided amplitude spectrum of battery terminal current (a) overview
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Fig. 21. The off-vehicle battery pack test for SOC—OCV extraction.

well-designed battery control module is included in the battery
module to ensure safe operation of the battery pack. The detailed
configuration of the battery module is provided here for reference
only. The proposed modeling approach focuses on the battery
external characteristics at the system level and neither requires nor
uses such internal detail.

6.2. Parameter extraction

6.2.1. Model bandwidth and number of RC networks

With the data of the battery pack acquired from vehicle drive
cycle testing while the battery pack was operated on-vehicle, it is
possible to analyze the frequency of the battery application by
doing a Fourier analysis of the battery terminal current. The battery
terminal current, terminal voltage and battery SOC during the on-
vehicle battery test were shown in Fig. 19. A single-sided ampli-
tude spectrum of battery terminal current is shown in Fig. 20(a) and
(b). From the spectral analysis of the battery current stimulus, the
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Fig. 22. The extracted SOC—OCV profile for the A123 battery pack.

Table 3
Estimated circuit parameters for the A123 battery pack.

Rs (Q) R1(Q) G (kF) Ry (Q) Gz (kF)
0.0764 0.0776 0.6053 0.0779 14.5982

major frequency components range from 0.0008799 Hz to
0.02134 Hz.

With the major frequencies of the battery application identi-
fied, the bandwidth of the battery model should be in the same
range. Thus the range for the time constants of the RC networks
should be chosen as [1/0.02134 s, 1/0.0008799 s], which is [47 s,
1137 s].

The number of RC networks is chosen as two; however, this
number should increase as the model fidelity requirement increase.
In this case, the time constants of the RC networks in the battery
model are determined as: 7y = 47sand 1, = 1137s. For example, if
a more accurate battery pack model is desired with three RC
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Fig. 23. The battery pack terminal voltage estimation results with the estimated pa-
rameters (behavior test).
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Fig. 24. The battery pack terminal voltage estimation errors (behavior test).

networks, the third time constant could be chosen as
13 = 1/0.00154s = 649.4s, which is located between 7; and 7,.

6.2.2. SOC—O0CV profile extraction

To extract the SOC—OCV profile, an off-vehicle battery pack test
was performed in the laboratory as shown in Fig. 21. In this test, the
battery pack was discharged from full SOC with pulse discharging,
left to rest for 24 h, and then charged back to full SOC with pulse
charging. The discharging and charging pulse length was chosen as
15 min, which in each interval charged or discharged the battery
pack by about 10% SOC. At the end of each charging/discharging
pulse, the battery was allowed to rest for 1 min for relaxation. With
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Fig. 26. The battery pack terminal voltage estimation results (performance test).

the SOC—OCV profile extraction method described in Section 4.3,
the extracted profile was shown in Fig. 22.

6.2.3. Circuit parameter estimation

The on-vehicle battery pack test data used for bandwidth
analysis was used for circuit parameter estimation. During this
step, the time constants of the circuit parameters are pre-
determined as [47 s, 1137 s]. The estimated parameters are
shown in Table 3. Fig. 23 shows the battery pack terminal voltage
estimation results with the estimated parameters, with the errors
shown in Fig. 24. The mean error for the terminal voltage esti-
mation is 0.52 V.
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Fig. 25. The battery terminal current, terminal voltage and battery SOC during the on-vehicle battery test (performance test).
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Fig. 27. The battery pack terminal voltage estimation errors (performance test).

Table 4

Estimated circuit parameters with arbitrary model bandwidth for comparison.
Rs (@) Ry (Q) Gy (kF) Ry (Q) G (kF)
0.0223 0.0029 68.9508 0.1203 16.6238

6.3. Model verification

The completed battery pack model with the extracted SOC—
OCV profile and circuit parameters was verified with a different
on-vehicle test profile as shown in Fig. 25. A spectral analysis of
this test current stimulus shows that the new test current has
similar bandwidth of [0.0004957 Hz, 0.01702 Hz] with the battery
model ([0.0008799 Hz, 0.02134 Hz]). With the measured battery
pack terminal current as the input to the battery pack model, the
battery terminal voltage estimation results were plotted in Fig. 26,
with the errors shown in Fig. 27. For the estimation results, the
mean terminal voltage estimation error is 0.4112 V. 99.87% of the
calculated errors were bounded within 4 V, which is remarkably
accurate considering the battery nominal voltage of 360 V. The
rated error can be calculated as 1.11% of the nominal battery pack
voltage, although this particular model did not include the benefit

Model Error (V)

.20 L L L 1 1 L 1 L 1 s
0 10 20 30 40 50 60 70 80 90 100
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Fig. 28. The battery pack terminal voltage estimation errors (performance test) with
an arbitrary selection of model bandwidth for comparison.

Table 5
Model accuracy comparison with different model bandwidth.

Bandwidth Time Mean MSE (V?)  Rated
selection method constants (s) error (V) error
Proposed spectral analysis [47, 1137] 0.4112 0.9649 1.11%
Arbitrary selection [0.2, 2] 1.274 8.786 4.17%

of the SOC—OCV profile correction procedure; if it had, it can be
expected that less than 1% error would have been observed.

6.4. Results comparison with an arbitrary selected model
bandwidth

For comparison, an arbitrary selected model bandwidth was
used with the same parameter estimation method and test data.
The selected bandwidth is [0.5 Hz, 5 Hz], where 7y = 0.2 sand 1, =
2s (compared with 11 = 47s and 1, = 1137 s). The estimated
circuit parameters are shown in Table 4.

With the same model verification procedure detailed in Section
6.3, the estimation errors are shown in Fig. 28. Much increased
terminal voltage estimation errors are observed from this figure.
The mean terminal voltage estimation error is 1.274 V (compared
with 0.4112 V). Since 99.83% of the calculated error could be
bounded within +15 V, the rated error can be calculated as 4.17%
(compare with 1.11%) of the nominal battery pack voltage. The
comparison results are summarized in Table 5.

6.5. Discussion

The use of the direct battery pack modeling approach towards a
Lithium-ion battery pack used in an actual PHEV systematically
illustrates the way the proposed approach can be used in real-
world automotive applications. We can conclude that the pro-
posed battery modeling approach is clearly suitable for battery
packs, while maintaining the model accuracy (less than 1.11% error
for a 360 V battery pack). We also observed that constant model
parameters (not current dependent or SOC dependent) could be
used in the electrical analog battery model without compromising
the high fidelity even with aggressive current cycling up to 237 A.
Although some researchers argue that the parameters should be
current dependent or SOC dependent [4,5,12,15], it is shown here
that satisfactory results can be achieved with constant parameters;
a feature that has significant practical benefits over physical
representations.

7. Conclusions

A direct battery pack modeling approach aimed at automotive
applications is reported in this paper. A simple electrical analogue
battery model is used for the battery pack behavioral representa-
tion with high accuracy. The focus of the reported work is the
modeling of the external characteristics of the battery pack, and
thus detailed materials and interconnection information about the
battery pack are not required. A new level of fast dynamic battery
pack simulation with high fidelity is enabled by embedding the
bandwidth of the battery application into the bandwidth of the
battery pack model. The reported approach was firstly verified on
four Ultralife UBBL10 14.4 V, 6.8 Ah lithium-ion battery modules,
with less than 0.44% modeling error and with good robustness over
similar battery modules. And then this approach was used to model
an A123 360 V, 21.3 kWh lithium-ion battery pack installed on a
PHEV, with less than 1.11% modeling error shown during vehicle
drive cycle tests. Since electrical circuit components are used in the
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battery pack model, it is ideal for use in Matlab/Simulink and circuit
simulation software. The reported battery pack modeling approach
is independent of battery chemistries, thus applicable to lithium-
ion, NiMH, and lead-acid batteries, among others. Temperature
and lifetime effects, while not addressed in this work, can be
included without changing the form of the model. These are two
important practical issues that should be investigated in future
work.
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