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Comparative Analysis of Simulation-Based Methods
for Deriving the Phase- and Gain-Margins of

Feedback Circuits With Op-Amps
Marius Neag, Member, IEEE, Raul Oneţ, István Kovács, and Paul Mărtari

Abstract—Ten methods for finding through simulations the
small-signal phase and gain margins of feedback circuits based on
op-amps are described and analyzed in this mostly tutorial paper.
The testbenches employed by these methods are presented and
the corresponding analytical expressions of the return ratio are
derived and compared against their “ideal” counterpart, obtained
with standard circuit analysis; the requirement that the return
ratio should not depend on the point it was measured at is also
verified. These analyses are performed on a fairly general case: a
generic reciprocal two-port network that closes a feedback loop
around an op-amp acting as the forward amplifier. The four main
types of op-amps were considered. The limitations of some of
the tested methods are then highlighted by simulations. Besides
the detailed analysis of previously reported methods, the paper
proposes a novel method for deriving the return ratio of feedback
circuits, that employs only current stimuli; it is demonstrated
analytically that this method can be used for bilateral circuits, not
only for op-amp-based (unilateral) ones. Also, a recent method
for deriving directly the phase margin of a circuit is extended to
estimating the gain margin, too. Conclusions on the accuracy and
suitability of the analyzed methods for practical circuit cases are
drawn. These results are then extended to other circuit topologies.
Index Terms—Phase and gain margins, return ratio, stability.

I. INTRODUCTION

N EGATIVE feedback is a key concept in circuit design,
widely used to obtain reliable transfer functions by min-

imizing the effects of parameter variations and external pertur-
bations, to reduce nonlinearities and to improve the input/output
impedances [1]–[4]. Feedback systems can be unstable, so en-
suring their stability is a major design concern.
The Rosenstark theorem shows that the small-signal closed-

loop gain of a feedback system depends on its return ratio [2]:

(1)

where is the return ratio of the circuit, is the closed
loop small-signal gain, is called the direct transmission term,

and is the ideal closed-
loop gain [3].

yields a mathematical singularity that indicates the
instability of a physical circuit. As the return ratio is a fre-
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quency-dependent function, two scalar conditions must be met
simultaneously for this condition to occur:

(2)

Thus, the stability of a feedback circuit operating at a given
DC operating point can be assessed by calculating its phase-
and gain (module)-margins; these metrics indicate how close
the circuit is from meeting the conditions above [3].
The classical feedback theory is based on two-port analysis of

the forward amplifier—with the unilateral gain —and its feed-
back network—with the unilateral reverse transmission factor
. The closed-loop gain of the circuit is given by:

(3)

Thus, the critical condition for instability is ,
where the product of and is called the loop gain [3], [4]. This
approach is relatively easy to follow in analytical analyses and
provides the expressions of the input and output impedances.
However, it does not cover all feedback topologies and can yield
different loop gain values for a given circuit, when the type and
location of signal sources applied to the circuit changes, even
if the source-free circuit does not change [5]. Moreover, it is
difficult to use for finding the loop gain through simulations
performed on real-life circuits, which are usually far from the
unilateral model described above [6].
The return ratio associated with a dependent source [1] and

(1) are better suited for analyzing feedback circuits: they are in-
dependent on the feedback topology and do not depend on the
type and location of the input sources. In fact, the forward am-
plifier does not need to be identified, and it is not assumed to be
unilateral. Most importantly, the return ratio can be measured
accurately experimentally and by simulations [7]–[9]. Difficul-
ties can arise when this concept is employed for circuits com-
prising more than one controlled source [10] but this is not the
case for the circuits discussed in this paper.
In general, the return-ratio differs from the loop gain [5] but

both can be used to check the stability of feedback circuits based
on the phase- and gain (module)-margins [1], [3]: it was demon-
strated analytically that, although the return ratio and the loop
gain of an op-amp-based circuit similar to the ones analyzed
here have different expressions, they reach the value of 1, crit-
ical for stability, for exactly the same conditions [10].
This paper analyzes several methods for finding the return

ratio, , of feedback circuits based on voltage- and current-
mode op-amps through the small signal SPICE-type simula-
tions, AC, and S-parameter. The loop gain is no further dis-
cussed in this paper so there should be no confusion.
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Fig. 1. (a) Circuit with a generic op-amp as the basic amplifier and a reciprocal
network closing a classical series-shunt feedback loop; (b) the same circuit, with
the feedback and load replaced by an equivalent network.

Section II describes the methodology used to analyze the
methods considered here. It comprises the analysis of both the
analytical expressions of yielded by these methods and of
simulations run on particular circuits. A fairly general case
is considered: a generic reciprocal two-port network (a class
which includes all passive networks) that closes a feedback
loop around an op-amp, as shown on Fig. 1(a). Four main types
of op-amps are considered for the forward amplifier: the tradi-
tional (V-V) op-amp, the current-feedback op-amp (CFBOA),
the transconductance op-amp (OTA), and the current-current
op-amp with asymmetric inputs, a particular case of which is
the second-order current conveyor (CCII).
Sections III and IV present briefly the methods for finding
of unilateral, respectively bilateral, feedback circuits through

measurements or simulations introduced by Middlebrook [7],
[11], Rosenstark [8], Tian [12], and Ochoa [13], as well as a
method based on the S-parameters analysis popular with RF de-
signers. A novel method inspired by Ochoa's approach is also
presented: it employs only current stimuli and its validity for
bilateral feedback circuits was demonstrated analytically. A re-
cently proposed method that yields directly the phase margin of
a feedback circuit [14] is also described in Section IV, along
with a proposed extension to gain-margin derivation. Section V
presents two approximate methods for finding popular within
the industry due to their simplicity.
Section VI analyses comparatively the methods described

before when applied to circuits derived from the general one
shown in Fig. 1(a), considering each of the four op-amp types
mentioned above as the basic amplifier. Employing these
methods to the analysis of other circuit classes, which have
multiple inputs and differential inputs and outputs, is discussed
in Section VII. Section VIII summarizes the results and draws
conclusions based on analytical analyses and simulations.

II. METHODOLOGY FOR COMPARING THE METHODS FOR
FINDING THE SMALL-SIGNAL RETURN-RATIO OF OA-BASED

CIRCUITS THROUGH AC SIMS ANALYZED HERE

The methods for finding discussed here are analyzed con-
sidering both the analytical analysis performed on a fairly gen-
eral circuit and simulations run on a particular circuit. First, the
analytical expressions of yielded by these methods for the cir-
cuit shown in Fig. 1(b)—derived from the one shown in Fig. 1(a)
by replacing the feedback network with its equivalent net-
work and including the load into —are derived, considering
the standard op-amp models presented in Fig. 2. These expres-
sions are compared against the ideal ones yielded by the proce-
dure introduced in [1], called hereafter :
— One of the controlled sources (usually used to model active

elements) is chosen; its output is disconnected from the
circuit and an independent test source of the same type and
sign is used to drive that circuit node or loop instead. The

Fig. 2. Simple models of the four types of op-amps, used to derive the re-
turn ratio expressions analytically: (a) V-V op-amp; (b) CFB-OA; (c) OTA
(transconductance OA); (d) current-current op-amp with asymmetric inputs.

controlled source maintains its coupling to the controlling
element.

— results as the ratio between the signal that appears at the
output of the controlled source and the test signal, gener-
ated by the independent source that replaced it in the circuit
[3].

The compliance with the requirement that should not
depend on the point it was measured at is also verified: each
method for deriving is applied twice, once at the input and
once at the output of the op-amp. Another general requirement
is that the DC operating point (OP) of the circuit is preserved
during all the tests/simulations required. The limitations and
shortcomings of some of the methods compared here are
demonstrated through simulations for a show-case circuit.
III. GENERAL METHODS FOR FINDING THE RETURN RATIO OF
UNILATERAL FEEDBACK CIRCUITS THROUGH SIMULATIONS

This section presents briefly three general methods for finding
the return ratio of feedback circuits through measurements or
simulations, introduced in [7] and [8]. They share two key fea-
tures: i) they are independent of the test point and ii) if used to
derive the analytical expression of the return ratio they yield the
accurate expression, .

A. Middlebrook's Method for Finding the Return Ratio
Of the four methods for measuring the return ratio of feed-

back circuits through measurements proposed in [7] the third
has been used the most for finding through small-signal sim-
ulations. It consists of successively injecting voltage and current
test signals into an arbitrary-chosen point of the loop.
Fig. 3 illustrates this method: the Norton model shown within

the dotted-line rectangle represents, without loss of generality,
any circuit with unilateral feedback [7], [12]; the voltage injec-
tion shown in Fig. 3(a) is used to compute the voltage return
ratio, , while Fig. 3(b) presents the current injection which
yields the current return ratio, . The two return ratios are de-
rived by using the following formulae:

(4)

The return ratio of the circuit results by combining and :

(5)

Fig. 4 presents the test configurations for finding the return ratio
of the circuit in Fig. 1(b) through AC simulations [7].
Using the model shown in Fig. 3, in [7] it was demonstrated

that this method—called here the Middlebrook's method—is
valid for circuits with unilateral feedback networks and that it is
not dependent on the chosen test point (for example, it yields ex-
actly the same result if the loop is broken between points marked
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Fig. 3. Test configurations for Middlebrook's method applied to a general
model of circuits with unilateral feedback: (a) voltage injection and (b) current
injection—for deriving the voltage and current return ratios defined by equation
(4).

Fig. 4. Test configurations for applying Middlebrook's method to the circuit
shown in Fig. 1: (a) circuit for deriving and (b) circuit for deriving .

Fig. 5. Test configurations required by Rosenstark's method [15], [16]: (a) Cir-
cuit for deriving ; (b) Circuit for deriving . Breaking the loop at other
points, e.g., 1–2, will yield—after applying Equation (7)—exactly the same .

1–2 or the points marked 3–4). The injection of test signals does
not change the node impedances of the circuit but the post-pro-
cessing required to derive from the return ratios obtained
through simulations or measurements ( and ) demands the
addition/subtraction of units, making this method susceptible to
numerical inaccuracies [7], [8].

B. Rosenstark's Method for Finding the Return Ratio
This problem is avoided by the method for measuring the re-

turn ratio introduced in [8], called here the Rosenstark's method.
It can be easily adapted to the task of finding of the Fig.
1(b) circuit through AC simulations [15], [16]: the current- and
voltage-ratios defined in [8] are determined by using the config-
urations shown in Fig. 5(a) and Fig. 5(b)., respectively:

(6)

These transfer ratios are different from the ones defined by
the Middlebrook's method; consequently, the return ratio of the
circuit results from an expression different from (5):

(7)

The inductor and the capacitor have values large
enough to act as open-circuit, respectively short-circuit in small-
signal simulations, over the entire frequency range of interest;
thus the loop is broken in AC. In DC they operate as short-
respectively open-circuits so the OP of the circuit is preserved.
It was demonstrated in [8] that this method yields theoretically
accurate results for circuits with unilateral feedback networks,
irrespective of the chosen test point.

Fig. 6. Test configuration for finding by using the S-parameters method.

C. Finding T by Using S-Parameters Simulations
A method for finding that circulates within the community

of RF designers is presented in Fig. 6. The loop is broken by
inserting an inductor with very large value, ; the stimulus
is provided by a port and another port is used to measure the
resulting signal—ports and in Fig. 6, respectively.
These ports are connected to the terminals through very
large capacitors, . is then derived by combining the
parameters provided by an S-parameter simulation, as follows:

(8)

The usual - to -parameters relationships are to be used:

(9)

The main advantage of this method—called hereafter the
“S-params” method—is that the impedances of the two ports
can be set by the user as to best fit the circuit. This way, one can
accommodate amplifiers designed to operate with well defined
loads, as it is often the case in RF systems. Also, only one
simulation is needed for deriving the return ratio of the circuit.
One can prove analytically that this method is independent on

the point the feedback loop is broken and that it is accurate for
circuits with unilateral feedback networks, represented by the
unilateral model shown in Fig. 3, irrespective of the impedance
set by the user for the ports and .

IV. GENERAL METHODS FOR FINDING THE RETURN RATIO OF
BILATERAL FEEDBACK CIRCUITS THROUGH SIMULATIONS

A. Tian's Method for Finding the Return Ratio of Bilateral
Feedback Circuits—The Basis of Cadence's STB Analysis
Cadence's Virtuoso Analog Design Environment comprises

a dedicated tool for finding the return ratio of single-loop feed-
back circuits, called the Stability Analysis (STB) [17]. The user
is only asked to break the feedback loop by inserting an inde-
pendent voltage source with and .
The STB analysis is independent on the point within the loop

the voltage source is inserted. It provides the return ratio mag-
nitude and phase characteristics without any (visible to user)
post-processing. It can be applied to fully differential circuits as
well; in that case the differential feedback loops are broken by
using a dedicated cell, called diffstbprobe.
Reference [17] gives no theoretical background for the STB

analysis but it very likely employs the loop-based two-port and
the device-based gain-nulling algorithms presented in [12]. The
later deals with a case not discussed here: local feedback loops
not directly accessible to the designer, such as those formed
around a MOS transistor by its own parasitic elements.
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Fig. 7. The general bilateral model of a feedback circuit is shown within the
dotted-line rectangle; the sources and are activated successively to
derive the terms employed in Equation (10) to obtain the return ratio of the
circuit.

Fig. 8. The equivalent block diagram of a bilateral circuit used by the GFT.

The loop-based two-port algorithm deals with single-loop
feedback circuits as those analyzed here. It is similar with the
Middlebrook's method presented in Section III-A as it, too,
requires that a voltage and a current test signals are injected
successively at arbitrary chosen points of the loop. However, it
does not rely on voltage- and current- return ratios but makes
use of both the voltages and currents yielded by each test.
This method is accurate for general feedback circuit, with

bilateral transmissions, that can be modeled as shown in Fig. 7,
within the dotted-line rectangle. Two AC simulations are run,
each with only one of the small-signal and test sources
active. The current and voltage resulting from each simulation,
denoted and in Fig. 7, are used to obtain
:

(10)

B. Middlebrook's General Feedback Theorem
The General Feedback Theorem (GFT) introduced in [11] is

based on the dissection theorem, that allows it to model a bilat-
eral feedback circuit as shown in Fig. 8. The closed-loop gain
of the circuit results by combining “second-level” transfer func-
tions obtained by injecting test signals in such a way that par-
ticular signals within the circuit are nulled:

(11)

If the test signal is applied at the error summing point of the
feedback topology—denoted in Fig. 8—the “second-level”
transfer functions have useful physical meaning: e.g., is the

Fig. 9. Test configurations for finding , associated with the GFT concept.

Fig. 10. Test configurations for Ochoa's method, that yield the terms used by
Equation (13): (a) circuit for deriving currents and and (b) circuit for
and .

ideal closed-loop gain, which results when the error signal is
nulled (equivalent to the loop having infinite gain). The critical
condition for instability is , and the usual phase-
and gain-margin stability metrics can be employed in respect to
it.
Despite the obvious similarity between (1) and (11) the

in (11) is not necessarily equal to the return ratio of the circuit;
in fact, its expression depends on the injection point of the test
signal. However, the conditions for which are pre-
cisely the ones for which ; thus one obtains the same
phase- and gain-margin values when using as if using .
The GFT concept was further developed in [11] by using a

voltage and a current source to inject simultaneously two test
signals in the circuit in such a way that pairs of resulting signals
are nulled. This complicates the procedure but provides in-depth
analysis of the closed-loop gain of the circuit, highlighting the
factors that degrade its ideal form, . A user-friendly imple-
mentation was integrated into Intusoft's ICAP/4.
Simpler analysis methods based on the GFT approach were

developed for various SPICE-compatible simulators [18]. For
example, one can use the same test configuration as for the Mid-
dlebrook's method presented in Fig. 4 but monitor (then use to
derive ) more of the resulting currents and voltages. This
method is defined by Fig. 9 and (12).

(12)

C. Ochoa's Method for Finding the Return Ratio
Recently, another accurate method for finding was devel-

oped by using the Driving Point approach [13]. Fig. 10 presents
a version of the test configurations required by this methodwhen
applied to the circuit shown in Fig. 1; each one yields a pair of
currents, which are then combined to obtain :

(13)

Note that the op-amp output is effectively shorted to ground
for the test shown in Fig. 10(a), while for the test shown in
Fig. 10(b) it is driven directly by the test source. If this is not
convenient one can break the loop in another place, such as
at points 1–2. However, in this case the inverting input of the
op-amp will be shorted to ground or driven by the test source.
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Fig. 11. Test configurations for deriving the terms used by Equation (14) to
obtain : The current-only stimuli can be applied at the op-amp output (a) or
input (b).

D. Finding the Return Ratio by Using Only Current Stimuli
Fig. 11 shows the testbenches required by a novel method for

deriving the return ratio of the circuit shown in Fig. 1, inspired
by Ochoa's approach [13] discussed in Section IV-C. Similar to
Ochoa's method, the feedback loop is broken by inserting a large
inductor, , and results by combining signals obtained
by applying test sources successively to each terminal of .
The main difference is that the proposed method employs only
current stimuli—the current sources with ,
shown in Fig. 11—and measures the resulting voltages at the

terminals. The expression, independent on the point the
feedback loop is broken at, is given by:

(14)

By comparing Figs. 10 and 11 one notices that the proposed
method employs simpler testbenches than Ochoa and does not
require the op-amp output or inverting input to be grounded.
Let us demonstrate analytically that this method yields the

correct expression for the return ratio of a general feedback
circuit—that is, without the restriction of having an unilateral
feedback network that limits Middlebrooks's and Rosenstark's
methods—irrespective of the chosen test point. The general cir-
cuit can be represented by the bilateral model shown in Fig.
12 within the dotted-line rectangle [12]. First, the AC current
source is applied to node 3, as shown in Fig. 12(a), and the
resulting voltages and are recorded. Next, the AC cur-
rent source is applied to node 4, as shown in Fig. 12(b), and
the resulting currents and are recorded. The inductors

have values large enough to act as effective open-circuits
in small-circuit analysis. Thus, the expressions of the currents
mentioned above can be written as follows:

(15)

The expression is obtained by applying (14):

(16)

Fig. 12. Applying the proposed method for finding T to a general feedback
circuit represented by the bilateral model shown within the dotted rectangles.

Fig. 13. Test configuration for von Wangenheim's method. The block in-
troduces an additional phase shift in the loop, with the value set by the user. The
controlled current source restores the loading of the op-amp output.

As this is exactly the “ideal” expression obtained by direct
circuit analysis, the demonstration is complete.
By using this approach one can demonstrate that Ochoa's

method yields the correct expression for the return ratio of any
feedback circuit that can be modeled as shown in Fig. 7.

E. Von Wangenheim's Method for Determining the Phase
Margin Without Breaking the Feedback Loop
Reference [14] proposes a novel method for finding the

phase margin of a feedback amplifier, without determining the
return ratio of the feedback loop. It is based on the fact that
the closed-loop phase-frequency characteristic exhibits a phase
step of 180 if the phase margin drops below zero.
The phase margin of the system is forced to cross the zero

point by injecting additional phase shifts into the feedback
loop. This is achieved by inserting an analog behavioral block,

, with the transfer function . The output
impedance of the block is nil. In order to maintain the cur-
rent loading at the op-amp output, the test configuration shown
in Fig. 13 also comprises the current source ; this replicates
the output current of (sensed through the voltage source

) but with the phase shift introduced by reverted:
. This way, although the insertion of

the block breaks the feedback loop, the controlled source
restores the loadings at the op-amp output not only in DC,

but over the entire frequency range.
First, the designer needs to estimate (through experience, or

hand calculations, etc.) the range of the phase margin and find
two values for the phase shift to be introduced by —called
here and —that will result in a positive and a negative
value for the phase margin, both close to zero. AC simulations
are run for these phase shifts and the resulting phase characteris-
tics of the closed-loop response are monitored. In both cases, the
slope of each phase characteristic will assume extreme values in
the vicinity of the loop-gain cross-over frequency. The resulting
peak values of the group delay, called hereafter and

, have opposite signs and are reliable measures of the
“distance” between the respective injected phase shifts,
and , and the critical angle (equal to the phase margin) that
defines the stability limit. The phase margin (PM) is obtained
through interpolation, as follows:

(17)



630 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 3, MARCH 2015

Fig. 14. Test configuration for the method for calculating the module margin
derived from von Wangenheim's method. The VCVS allows the user to change
the loop gain by ; restores the loading of the feedback network.

Fig. 15. Test configurations for the method: the loop is broken by in-
serting an independent voltage source, , with , , either at
the input (points 1–2) or at the output (points 3–4) of the op-amp. .

The usefulness of this method is limited, as it provides no
information on the gain margin. This can be overcome by using
the following procedure: first, the block is replaced by an
ideal voltage-to-voltage amplifier with the programmable gain

and the current is set to .
Next, the designer chooses two values for the gain, called here

and , for which the circuit goes from a positive to a
negative gain margin. AC simulations are run for these gains
and the resulting peak values of the group delay, called here

and , are recorded. They indicate how close
the gain of the loop gets to the critical value (i.e., the inverse
of the gain margin [3]) that defines the stability limit. The gain
margin results from an interpolation similar to (17), but the er-
rors can be significant if the gains and are far apart.
Both the method for calculating the phase margin ((17)) and

its extension for deriving the gain margin can be applied by in-
serting the block , respectively the voltage-voltage amplifier,
at the input of the op-amp, as shown in Fig. 14.
The precision of this method for calculating the phase and

the gain margin depends on the designer choosing properly
the values for the phase shifts and , respectively for
the voltage gains and . In general, the chosen values
should be as close to each other as possible, while forcing
the corresponding phase/module margin to jump between a
positive and a negative value. If the test values are far apart, the
errors increase significantly, especially if the gain/phase margin
goes negative while forcing a phase/module shift.
In practice, one has to run sets of AC simulations, iteratively

reducing the width of the search range while adjusting its center
value based on the phase and gain margin values obtained in the
previous run. This method is not based on particular assump-
tions regarding the topology of the analyzed circuit, therefore it
can be applied to any feedback circuit.

V. APPROXIMATE METHODS USED IN INDUSTRY FOR FINDING
THE RETURN RATIO OF OP-AMP-BASED FEEDBACK CIRCUITS
A. The Simplified Method For finding T Through AC Sims
The first two methods for measuring the return ratio proposed

in [7] show that, in certain conditions, each of the two return
ratios defined by (4) can provide on its own an approximation of
the overall . The most popular version is illustrated in Fig. 15,
and will be called here the method.

Fig. 16. Test configuration for the method: the loop is broken at
the inverting input of the op-amp by inserting a large inductor, , then that
input is shorted to ground by . results as the ratio .

The feedback loop is broken by inserting an independent
voltage source, , with and , and
is derived as the ratio between the voltages developed at the
terminals of this source. In order to increase the accuracy of this
approximate method the loop has to be broken at such a point
that the impedance seen at the terminal looking forward
around the loop is much greater than the impedance seen from
the other terminal looking backwards to the loop [7]:

(18)

Depending on the op-amp type, the loop can be broken at the
op-amp input or output, as indicated in Fig. 15 by points 1–2
and 3–4, respectively. The DC operating point of the circuit is
not modified by the insertion of the independent voltage source,
as in DC this source is equivalent to a short-circuit.

B. The Method for Finding T Through AC
Simulations
Fig. 16 presents the test configuration of another simple, but

approximate, method for finding that requires only one AC
simulation. The feedback is broken without impacting the DC
operating point by simply inserting an inductor with a very
large inductance, , in series with the inverting input of the
op-amp. That input is then shorted to ground (for small-signal
simulations) by a large capacitor, , placed there. Finally,
an independent voltage source, , with and the
appropriate DC level, —the same DC level as the test
signal source—is used to drive the noninverting input of the
op-amp, disconnected from ground for this purpose. is then
simply read as the voltage that appears at the terminal not
connected to the op-amp—denoted in Fig. 16:

(19)

An important shortcoming of the method is that
the common-mode inverting input impedance of the op-amp,
between its inverting input and ground, is short-circuited in AC
sims by , therefore its influence on will be ignored. Also,
it cannot be applied to fully-differential circuits with topologies
derived from the op-amp-based inverting amplifier.

VI. COMPARING THE METHODS FOR FINDING PRESENTED
HERE THROUGH ANALYTICAL ANALYSIS AND SIMULATIONS

Let us start with the derivation of the accurate expression of
the return ratio, , by applying the standard procedure de-
scribed in Section II to the circuit presented in Fig. 1(b), with
the generic op-amp there replaced by the four models shown in
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Fig. 2. The resulting expressions of the return ratios for the four
op-amp types, respectively , , , , are:

(20)

Details on the derivation of these expressions and their ex-
panded form can be found in a previous work of ours, [19].
Direct circuit analysis of the test configurations employed

by the three methods described in Section III, shown in Figs.
4–6, yields precisely the return ratio expressions given by (20).
Moreover, the same result is obtained whether the loop is broken
at the input or output of the op-amp—between points 1–2 or
3–4 in Figs. 4–6, respectively. This is due to the fact that the
circuits analyzed here are unilateral; in fact, this is the case for
most practical cases of op-amp-based feedback circuits, where
the large forward gain of the op-amp diminishes the effects other
transmission factors may have.
The same results were obtained for the first four methods pre-

sented in Section IV, which can deal with bilateral feedback cir-
cuits, as well. The gain- and phase-margin values obtained by
applying these methods to various feedback circuits were al-
ways matched (within the interpolation error) by those obtained
by using vonWangenheim's method and its extension described
in Section IV-E. Therefore, all methods presented in Sections III
and IV will be called “accurate.”
Direct circuit analysis performed on the test circuits required

by the shown in Fig. 15 yield expressions quite different
from the accurate ones given by (20). Also, this method yields
different expressions for the return ratio if the loop is broken at
the op-amp input or output. However, the expressions yielded
by the method converge towards the accurate ones if the
impedances and shown in Fig. 15 meet the condition

, as required by (18).
If the method is applied at the op-amp input (points 1–2

in Fig. 15) the expressions of impedances and are:

(21)

If method is applied at the op-amp output one obtains:

(22)

The situation for the is very similar: the return
ratio expressions obtained for the test circuit shown in Fig. 16
are generally different from the accurate ones given by (20).
It can be demonstrated analytically that they converge towards
the same expressions as if the circuit meets a condition
similar to the method case: , where impedances

and are defined as shown in Fig. 16. The similarity with
the method applied at the op-amp input results in and

having the same expressions as in that case, i.e., (21).
Thus, one can decide if one of these “approximate” methods

is suited to analyze a given circuit by simply assessing the de-
gree the condition is met by that circuit. This in-
equality must be maintained at least up to the highest of the
frequency at which the module of equals 1 and the
frequency at which the phase of equals 180 .

In general, the return ratio characteristics provided by these
“approximate” methods are reasonably close to the accurate
ones if the feedback network is purely resistive and the input
impedance of the op-amp is very large (for the
and the method applied at the op-amp input) or very small
(for the method applied at the op-amp output). However,
the differences can become dramatic if the feedback network in-
cludes frequency-dependent impedances, as is the case for most
real-life circuits: for certain cases these methods can predict in-
stability for circuits proven stable by the accurate methods while
for other cases things go the other way around.
In the following section the limitations of the and

methods are demonstrated through simulations
run on a show-case circuit based on the V-V op-amp.

A. Feedback Circuits Based on Voltage-Voltage Op-Amps
1) Analytical Analysis: The return ratio expression obtained

for the test circuit required by the method shown
in Fig. 16 considering the V-V op-amp model from Fig. 2(a), is
different from :

(23)

They converge to the same expressions if the impedances
and shown in Fig. 16 meet the condition :

(24)

Equations (21) and (24) suggest that the method
can provide acceptable results only if the input impedance of the
V-V OA is large enough over the required frequency range.
The analytical analysis of the test circuits required by the

method, shown in Fig. 15, considering the V-V op-amp
model from Fig. 2(a), yields different expressions for the re-
turn ratio if the loop is broken at the input or at the output of
the op-amp—denoted here by and . One can
easily demonstrate that and converge towards
the same expression if the condition is met:

(25)

converges to the same expression if .
Note that the and expressions are different for the two
cases, therefore the condition implies different con-
straints. In general this condition is met if the V-V op-amp
input/output impedance has a very large/small value and the
loop is broken at the input/output of the op-amp, respectively.
2) Simulation Results—Show-Case for Comparing the

Methods: Let us analyze the circuit shown in Fig. 17, where the
op-ampmain open-loop parameters are: DC voltage gain 80 dB,
main poles located at 550 Hz and 5 MHz, the output impedance

and the input impedance .
The frequency characteristics of the return ratios obtained by

using the methods discussed here are shown in Fig. 18 along
with the ratio of the impedances and . The
method provides the return ratio closest to the accurate one,



632 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 3, MARCH 2015

Fig. 17. Feedback circuit based on a standard V-V op-amp, used here to high-
light the shortcomings of the approximate methods for finding .

Fig. 18. Simulation results for the circuit shown in Fig. 17. Top and middle:
module and phase characteristics of the return ratios yielded by the accurate
methods (continuous line), the method applied at the OA input (dotted
line) and output (dashed line) and the method (dot-dashed line).
Bottom: module of the ratio when the feedback loop is broken at the
op-amp input (continuous line) and output (dotted line).

yielded by the STB analysis, followed by the method ap-
plied at the OA input. Both the module and phase characteris-
tics provided by the later diverge from the accurate ones, but
only at frequencies above and . Note that the ratio

remains large up to these frequencies, too. When the
feedback loop is broken at the OA output the ratio starts
decreasing at a few kHz; the phase characteristic provided by

method when applied at the OA output starts diverging
significantly from the accurate one as soon as the ratio
decreases below 20 dB. These results are in good agreement
with the analytical analysis above.
Table I summarizes the phase- and gain- margin values

yielded by the methods discussed here. Fig. 19 presents the step
response of the same circuit, with slowly damped oscillations.
This shape agrees with the phase margin yielded by the accurate
methods (6.84 ) and disagrees with the larger value given
by the method applied at the op-amp output (60.24 ).
Note that the step response is determined solely by , as the
direct transmission—from the input to the output of the circuit,
outside the feedback loop—is negligible in this case.

B. Feedback Circuits Based on CFB-OAs

The analytical analysis of the test circuits required by the
and methods, shown in Figs. 15 and 16, after

TABLE I
THE UNITY-RETURN RATIO FREQUENCY, THE PHASE AND GAIN MARGINS

OBTAINED FOR THE CIRCUIT SHOWN IN FIG. 17 BY USING THE METHODS FOR
FINDING THE RETURN RATIO THROUGH SIMULATIONS ANALYZED HERE

Fig. 19. Step response of the circuit shown in Fig. 17: the output voltage is
drawn with continuous line, the input step voltage is drawn with dashed line.

replacing the generic op-amp there with the standard CFB-OA
model shown in Fig. 2(b), yields three distinct return ratio ex-
pressions, , and , all different
from the accurate one given by (20). As discussed above, they
converge mathematically towards the same expression as
if . However, considering the and expressions
corresponding to the and the method ap-
plied at the op-amp input as given by (21), and the low input
impedance of the CFB-OA, it results that the condition

is practically impossible to meet for real-life cases. Thus,
large errors are to be expected when using these methods for
feedback circuits based on CFB-OA. By analyzing the and

expressions corresponding to the method applied at
the op-amp output given by (22) one can see that meeting the
condition is possible if the output impedance of the
CFB-OA remains low enough over the required frequency range
(up to and above the largest of the and ). Only in
these situations the method can be expected to be reason-
ably accurate.

C. Feedback Circuits Based on OTAs
For real-life circuits, with OTAs having large input and output

impedances, the condition can be met only for the
and expressions given by (21) and not by (22). Therefore,
only the and the method applied at the OTA
input can possibly yield valid results.

D. Feedback Circuits Based on Current-Current Op-Amps
In this case, the condition is practically impossible

to meet for real-life op-amps, which have low input impedances
and high output impedances:

(26)

E. Summary of Main Comparison Points
Table II summarizes the conditions for which the and

methods can yield reasonable approximations,
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TABLE II
CONDITIONS FOR WHICH AND METHODS MAY YIELD

PRECISE

TABLE III
COMPARISON BETWEEN THE ANALYZED METHODS

Fig. 20. An extension of the circuit shown in Fig. 1(b), that has two voltage
inputs ( and ) and a current input . Its small-signal equivalent
with the signal sources turned passive is the same as for the Fig. 1(b) circuit.

while Table III presents the main comparison points for all
methods.

VII. EXTENSION TO OTHER CLASSES OF FEEDBACK CIRCUITS

A. Circuits With Multiple Inputs, Both Voltage and Current

The circuit presented in Fig. 20 was derived from the circuit
analyzed so far, shown in Fig. 1(b), by adding to it a current
input, , and a second voltage input, . This way, both
the noninverting and inverting configurations of the op-amp are
represented, as well as the simple current-to-voltage converter.
Obviously, the small-signal equivalent of this circuit when

all signal sources are turned passive is exactly the same as the
one obtained for the circuit shown in Fig. 1(b), for the same
conditions. Thus, these circuits will have the same return ratio.
It follows that the results obtained and the conclusions drawn

so far by analyzing circuits based on the one shown in Fig. 1(b),
can be extended to the circuit presented in Fig. 20.

B. Differential Return Ratio of Fully Differential Circuits

The analysis can be further extended to fully differential (dif-
ferential-input, differential output) op-amp-based circuits with
reciprocal feedback networks, as their small-signal equivalent
half-circuits for differential- and common-mode operation [3],
[4], [9], with passivated signal sources, can be reduced to the
topology shown in Fig. 1(b). All the methods described in Sec-
tions III and IV, except the method, can be applied
directly to such fully differential circuits by following the proce-
dure introduced in [9]: choose two symmetrical points at which
both the differential- and common-mode feedback loops can be
broken, then apply purely differential/common-mode test sig-
nals and derive the differential/common-mode return ratios by
using the expressions corresponding to the method employed.
Examples and testbenches for deriving through AC sim-

ulations by using Middlebrook's and methods for can be
found in [9].

VIII. SUMMARY AND CONCLUSIONS

Ten methods for deriving through simulations the phase and
module margins of feedback circuits have been compared: the
classical ones introduced by Middlebrook, Rosenstark, Tian;
more recent proposals from von Wangenheim and Ochoa; three
methods popular within the industry: S-parameters, the ,
and methods; and a novel method that employs
only current stimuli. They were split into three categories, con-
sidering the type of circuits their validity was proven for: accu-
rate for bilateral or unilateral circuits and approximate.
The discussion was focused on, but not limited to,

op-amp-based circuits with reciprocal feedback networks. All
four op-amp types currently available commercially have been
considered. The test setups and the related equations employed
by each method were presented. The compliance with the
requirement that the return ratio of a circuit should not depend
on the point it was measured (the point the feedback loop was
broken at and/or test stimuli were applied to) was assessed.
For the approximate methods, and , the

analysis included the conditions for which they could be ex-
pected to provide reasonably accurate results. It was proven an-
alytically that the return ratios yielded by them and their “ideal”
counterpart converge mathematically towards the same expres-
sion, if an inequality between the impedances seen from the test
points along the loop is maintained up to a frequency higher than
the largest of and . The situations this condition
can be met by real-life circuits were discussed. The limitations
indicated by the analytical analysis were highlighted by simu-
lations run on a show-case circuit.
The main points for comparing the accurate methods were:
— The number of simulation runs or circuit instantiations

and the subsequent data processing they require: the S-pa-
rameter method requires only one run, while most of the
other methods require two; however, post-sim processing
is quite substantial. Von Wangenheim's method requires
sets of simulations in order to reduce the interpolation
error.

— Loading of the test points: Rosenstark's and Ochoa's
methods require the test points to be left open-circuit
and/or shorted to ground; the S-parameter method allows
the user to set the impedances seen at the test point,



634 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 3, MARCH 2015

after breaking the feedback loop; the other methods min-
imize the impact their test stimuli have on the circuit
impedances. The later can be extended to large-signal
analysis—for example, Tian's method was used by Ca-
dence to develop the STB (small-signal) and the P-STB
(periodic-steady state) analyses.

The novel method presented in Section IV-Dwas devised fol-
lowing Ochoa's approach but requires simpler test setups that
Ochoa and reduces the loading of the test points. It was demon-
strated that this method is valid for bilateral circuits.
As von Wangenheim's method deals only with the phase-

margin an extension was proposed for finding the gain-margin.
Finally, the analysis was extended to circuits with multiple

voltage and current inputs and fully-differential circuits.

REFERENCES
[1] H.W. Bode, “Network Analysis and Feedback Amplifier Design,” Bell

Teleph. Lab. Ser., Jul. 1945.
[2] S. Rosenstark, “A simplified method of feedback amplifier analysis,”

IEEE Trans. Educ., vol. E-17, no. 4, pp. 192–198, 1974.
[3] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and De-

sign of Analog Integrated Circuits. Hoboken, NJ, USA: Wiley, 2001,
ch. 8, 9.

[4] A. Sedra and K. Smith, Microelectronic Circuits. New York: Holt,
Rinehart and Winston, 1987.

[5] P. J. Hurst, “A comparison of two approaches to feedback circuit anal-
ysis,” IEEE Trans. Educ., vol. 35, no. 3, pp. 253–261, 1992.

[6] H. T. Russell, “A loop-breaking method for the analysis and simulation
of feedback amplifiers,” IEEE Trans. Circuits Syst. I, Fundam. Theory
Appl., vol. 49, no. 8, pp. 1045–1061, Aug. 2002.

[7] R. Middlebrook, “Measurement of loop gain in feedback systems,” Int.
J. Electron. Theory, vol. 38, no. 4, pp. 485–512, 1975.

[8] S. Rosenstark, “Loop gain measurement in feedback amplifiers,” Int.
J. Electron., vol. 57, no. 3, pp. 415–421, 1984.

[9] P. Hurst and S. Lewis, “Determination of stability using return ratios
in balanced fully differential feedback circuits,” IEEE Trans. Circuits
Syst. II, Analog Digit. Signal Process., vol. 42, no. 12, pp. 805–817,
1995.

[10] Y. Chiu, “Demystifying bilateral feedback analysis,” in Proc. IEEE
11th Int. Conf. Solid-State Integr. Circuit Technol., Oct. 2012, pp. 1–4.

[11] R. Middlebrook, “The general feedback theorem: A final solution for
feedback systems,” IEEE Microw. Mag, vol. 7, no. 2, pp. 50–63, 2006.

[12] M. Tian, V. Visvanathan, J. Hantgan, and K. Kundert, “Striving for
small-signal stability,” IEEE Circuits Devices Mag., vol. 17, no. 1, pp.
31–41, 2001.

[13] A. Ochoa, “Loop gain in analog design—A new and complete
approach,” in Proc. IEEE 55th Int. Midwest Symp. Circuits Syst.
(MWSCAS), 2012, pp. 742–745.

[14] L. von Wangenheim, “Phase margin determination in a closed-loop
configuration,” Circuits Syst. Signal Process., vol. 31, no. 6, pp.
1917–1926, Jun. 2012.

[15] S. Franco, Design With Operational Amplifiers and Analog Integrated
Circuits. Boston, MA, USA: McGraw-Hill, 2002.

[16] G. Roberts and A. Sedra, SPICE. Oxford, U.K.: Oxford Univ. Press,
1996.

[17] Cadence Designs Systems Inc., Virtuoso Analog Design Environment
L IC 6.1.4—User Guide 2009.

[18] F. Wiedmann, Loop Gain Simulation [Online]. Available: https://sites.
google.com/site/frankwiedmann/loopgain

[19] M. Neag, R. Onet, and M. D. Topa, “Analysing the stability of cir-
cuits based on operational amplifiers by using frequency-domain sim-
ulations,” Acta Tech. Napocensis, Electron. Telecommun., vol. 51, no.
2, pp. 46–54, 2010.

Marius Neag received the Electronic Engi-
neer Diploma from the Technical University of
Cluj-Napoca, Romania, in 1991 and was awarded the
Ph.D. degree by the University of Limerick, Ireland,
in 1999. After working several years in Ireland
and the U.S. as a Senior Designer of RF, analog
and mixed-signal ICs he returned to the Technical
University of Cluj-Napoca, where he lectures on the
design of RF, analog, and mixed-signal ICs.

RaulOneţ received the Electronic Engineer Diploma
and the Ph.D. degree from the Technical University
of Cluj-Napoca, Romania, in 2008 and 2011, respec-
tively. Since 2011 he has been an Associate Lecturer
at the Technical University of Cluj-Napoca. His re-
search areas include circuit theory and the design of
integrated transceivers.

István Kovács received the M.Sc. degree in elec-
trical engineering from the Technical University of
Cluj-Napoca, Romania, in 2011. Since then he has
been a Ph.D. student with the Digitally Enhanced RF
and Analog IC Design Research Group at the same
university. His research focuses on RF circuits for in-
tegrated transceivers.

Paul Mărtari received the M.Sc. degree in electrical
engineering from the Technical University of Cluj-
Napoca, Romania, in 2013, then started a Ph.D. pro-
gram with the Digitally Enhanced RF and Analog IC
Design Research Group at the same university. His
research areas include the analysis and design of in-
tegrated circuits for power management and systems
for energy conversion.


