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The signal-to-noise ratio (SNR) is one of the most significant measures of performance of the sigma-delta modulators. An
approximate formula for calculation of signal-to-noise ratio of an arbitrary sigma-delta modulator (SDM) has been proposed.
Our approach for signal-to-noise ratio computation does not require modulator modeling and simulation. The proposed formula
is compared with SNR calculations based on output bitstream obtained by simulations, and the reasons for small discrepancies
are explained. The proposed approach is suitable for fast and precise signal-to-noise ratio computation. It is very useful in the
modulator design stage, where multiple performance estimates are required.

1. Introduction

Sigma-delta modulation belongs to the group of pulse
density modulation techniques, which exploits oversampling
and sophisticated filter design in order to employ a low-
bit quantizer with high effective resolution. Sigma-delta
modulation is perhaps best understood by comparison with
traditional pulse code modulation (PCM). A PCM converter
typically samples an input signal at the Nyquist frequency
and produces an N-bit representation of the original signal.
This technique, however, requires quantization to 2N lev-
els. Whether implemented using successive approximation
registers, pipelined converters, or other techniques, high
resolution is difficult to obtain in PCM conversion due
to the need to accurately represent many quantization
levels and the subsequent circuit complexity [1–7]. This
obstacle is overcome with sigma-delta modulation, a form
of pulse density modulation, which exploits oversampling
and sophisticated filter design in order to employ a low-bit
quantizer with high effective resolution. Due to this property,
they are appropriate and are one of the main tools for analog-
to-digital (A/D) signal conversion.

The most important parameter of all the A/D and
D/A converters is the signal-to-noise ratio, which gives an
estimate of modulator performance [6–8]. In the sigma-
delta modulation, the SNR is one of the main parameters,
but the calculation is always based on modulator output
bitstream obtained by simulations. These simulations are
usually time- and computational resource-consuming tasks.
Some authors [4, 5, 8] have made an approximation of the
expected SNR of ideal low-order SDM. On that basis, an
extension can be made in order to approximate the SNR of
a realistic SDM. For the engineering practice, where multiple
parameter adjustments are made in order to obtain the best
possible modulator, it is obviously better to use equations
for fast SNR estimation. This is our motivations to derive a
formula for approximate calculation of SNR for an arbitrary
SDM.

In this paper, we consider common designs of sigma-
delta modulators used for analog-to-digital conversion. The
basic principle is the same for SDMs employed in D/A or
sample rate conversion.

The paper is organized as follows. In the next section
we present some basics of sigma-delta modulation and
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Figure 1: Basic structure of the sigma-delta modulator.

quantization noise. We also review the linear model, which
assists in understanding filter design and noise shaping
principles. In Section 3 we derive the SNR approximation
formula. In Section 4 we give comparison of SNR results
calculated with the derived approximation formula and SNR
result calculations based on modulator output bitstream
obtained by simulations. Finally, the conclusion remarks are
given in the last section.

2. Sigma-Delta Modulation and
Quantization Noise

The structure of a basic SDM is shown in Figure 1 and
consists of a filter with transfer function H(z) followed by
a one-bit quantizer in a feedback loop. The system operates
in discrete time.

The input to the loop is a discrete-time sequence x(n) ∈
[−1, 1], which is to appear in quantized form at the output.
The discrete-time sequence u(n) is the output of the filter
and the input to the quantizer. The output of the quantizer
is the output bitstream of the modulator. The feedback loop
acts in such a way that the quantization noise is shifted away
from a certain frequency band. If an input signal within
this frequency band is applied to the loop, most of the
noise imposed by the quantization process lie, outside the
frequency band of interest and can subsequently be filtered
out, leaving a good approximation to the input signal [1–5].

The theory of quantization and the corresponding noise
is well established (see [9] and references therein). The
distance between 2 successive quantization levels is called the
quantization step size, Q. For a quantizer with a specified
number of bits covering the range from +1 to −1 there are
2bits quantization levels, and the width of each quantization
step is

Q = 2
(2bits − 1)

. (1)

The quantizer assigns each input sample u(n) to the nearest
quantization level, as shown on Figure 2. The quantization
error is simply the difference between the input and output
to the quantizer, eq = y(u)− u, and is bounded by

−Q

2
≤ eq(n) ≤ Q

2
. (2)

Since quantization is a highly nonlinear process, several
assumptions are often made [7, 10].

(i) The error sequence, eq(n), is a stationary random
process.

y(n)

u(n)

Figure 2: Quantization model.
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Figure 3: The quantizer under the linear model.

(ii) The error sequence is uncorrelated with itself and
with the input sequence of the quantizer u(n).

(iii) The probability density function of the error is
uniform over the range of quantization error.

Such assumptions are a reasonable approximation for
large amplitude time-varying input signals when number
of quantizer bits is large and successive quantization error
values are not highly correlated.

The assumption that the quantization error is uniformly
distributed over a quantization step gives

P
(
eq
)
=

⎧⎪⎪⎨
⎪⎪⎩

1
Q

∣∣∣eq
∣∣∣ ≤ Q

2
,

0
∣∣∣eq

∣∣∣ > Q

2
.

(3)

The quantization noise power is given by

σ2
e =

1
Q

∫ Q/2

−Q/2
e2
qdeq =

Q2

12
= 1

3(2bits − 1)2 . (4)

Many authors [5, 10] propose σ2
e to be approximated to be

σ2
e ≈

1
3 · 22bits

. (5)

This quantization error is on the order of one least-
significant-bit in amplitude and it is quite small compared
to full-amplitude signals.

The average power of a sinusoidal signal of amplitude
A, x(t) = A cos(2πt/T), is

σ2
x =

1
T

∫ T

0

(
A cos

(
2πt
T

))2

dt = A2

2
. (6)
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Figure 4: Representation of a sigma-delta modulator using the
linear model.

Let us now assume that the signal is oversampled and the
signal bandwidth is fB. Rather than acquiring the signal at the
Nyquist rate, 2 fB, the actual sampling rate is fs = 2r+1 fB, with
oversampling ratio OSR = 2r = fs/2 fB. The quantization
noise is spread over a larger frequency range, yet we are
still primarily concerned with the noise below the Nyquist
frequency.

Most of the noise power for SDM is located outside the
signal band. The quantization noise power within the band
of interest has decreased by a factor OSR. The signal power
occurs over the signal band only, so it remains unchanged
and is given by (6).

Many authors used the linear SDM model for analysis.
The linear model is the most used model for modelling
and analysis of the SDM effects. The essence of this model
is the use of linearized model for the quantizer with
quantizer substitution with error sequence e(n), based on
the assumption that the quantization error is uniformly
distributed stationary random process, as shown in Figure 3.

The linear model contains two inputs: the input signal
X(z) and the quantization error E(z). As the basic model
shown in Figure 1, a filter is placed in front of the quantizer,
known as the “loop filter” and the output of quantization is
fed back and subtracted from the input signal, as shown in
Figure 4.

This may be represented by transfer functions applied
to both the input signal and the quantization noise. The Z-
domain output may be represented as

Y(z) = STF(z)X(z) + NTF(z)E(z), (7)

where the STF is the signal transfer function and the NTF
is the noise transfer function. The input to the loop filter
is X(z) − E(z) so that Y(z) = H(z)[X(z) − Y(z)] + E(z).
Rearranging terms, we have [4, 5]

STF(z) = H(z)
1 + H(z)

, NTF(z) = 1
1 + H(z)

. (8)

3. Derivation of Approximation Formula

For our derivations we utilize the linear model of the SDM.
The noise shaping in the SDM implies a nonconstant noise
power in the baseband [4, 5],

σ2
n =

∫ fB

− fB
S2
e

(
f
)∣∣NTF

(
f
)∣∣2

df , (9)

where S2
e( f ) = σ2

e / fs is the power spectral density of the
unshaped quantization noise. The total noise power, σ2

e ,
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Figure 5: Estimates of the SNR as a function of input signal
amplitude for a 1-bit, 3rd-order SDM with 64 times OSR for SDM
with (18) NTF.

remains unchanged, but appropriate choice of the NTF(z)
pushes the noise up to the high frequencies.

By definition, the SNR is calculated on basis of

SNR(dB) = 10 log10
σ2
x

σ2
n
. (10)

From (4), (6), and (9), we can take the σ2
e , σ2

x , and σ2
n terms

to substitute them in (10) to get the general formula for the
SNR of any sigma-delta modulator:

SNR(dB) = 10 log10
σ2
x

σ2
n

= 10 log10
A2/2

∫ fB
− fB

S2
e

(
f
)∣∣NTF

(
f
)∣∣2

df

= 10 log10
A2/2

(
σ2
e / fs

) ∫ fB
− fB

∣∣NTF
(
f
)∣∣2

df

= 10 log10

A2 · fs
2σ2

e

∫ fB
− fB

∣∣NTF
(
f
)∣∣2

df
.

(11)

Applying approximation of σ2
e from (5) into (11) we get

the formula

SNR(dB) ≈ 10 log10

3 · 22bits · A2 · fs
2
∫ fB
− fB

∣∣NTF
(
f
)∣∣2

df

≈ 10 log103 · 22bitsA2 fs

− 10 log102
∫ fB

− fB

∣∣NTF
(
f
)∣∣2

df .

(12)
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Figure 6: Estimates of the SNR as a function of input signal
amplitude for a 1-bit, 3rd-order SDM with 64 times OSR for SDM
with (19) NTF.

Using numerical integration, (12) may now be solved for a
SDM with arbitrary noise transfer function, oversampling
rate and bit length.

In order to verify the formula correctness, we made a
comparison with other authors’ formulae for approximation
on maximal SNR, when using ideal NTFs. The archetypal
ideal Nth-order SDMs are with NTF = (1− z−1)N and they
are highly unstable for N > 2.

For modulator with first-order loopfilter with ideal NTF,
the approximate SNR estimate is [5]

SNR(dB) ≈ 20 log10A + 6.02bits + 9.03r − 3.41. (13)

In order to apply our approximate formula (12), the integral∫ fB
− fB
|NTF( f )|2df must be solved for NTF = (1− z−1).
Taking into account that

∣∣NTF
(
f
)∣∣2 =

(
1− e− j2π f / f s

)
·
(

1− e− j2π f / f s
)

= 4 sin2

(
π f

f s

) (14)

and substituting (14) into
∫ fB
− fB
|NTF( f )|2df , we get

∫ fB

− fB

∣∣NTF
(
f
)∣∣2

df =
∫ fB

− fB
4 sin2

(
π f

f s

)
df

= 4 fB − 2 f s
π

sin

(
2π fB
f s

)

= 2
OSR

− 2
π

sin
(

π

OSR

)
.

(15)

Finally, substituting (15) into (12), we obtain

SNR(dB) ≈ 10 log10

3 · 22bits · A2 · fs
2
∫ fB
− fB

∣∣NTF
(
f
)∣∣2

df

≈ 10 log10

3 · 22bits · A2 · fs
2
[
4 fB −

(
2 fs/π

)
sin
(
2π fB/ fs

)]

≈ 10 log10
3 · 22bits · A2

2/ fs
[
4 fB −

(
2 fs/π

)
sin
(
2π fB/ fs

)]

≈ 10 log10
3 · 22bits · A2

2(π2/3 ·OSR)

≈ 10 log10
3 · 22bits · A2

2(π2/3 · 23r)

≈ 10 log10
A2 · 32 · 22bits · 23r

2π2
.

(16)

Expanding (16) leads to the following result:

SNR(dB) ≈ 10 log10
A2 · 32 · 22bits · 23r

2π2

≈ 20 log10A + 9.5424

+ 6.02bits + 9.03r − 3.0103− 9.9430

≈ 20 log10A + 6.02bits + 9.03r − 3.411.

(17)

Equations (13) and (17) obtained by other authors for the
ideal NTFs turn out to be a particular case of the proposed
formula (12), which actually shows its correctness.

Although various approximations to this formula for
ideal low-order designs have been provided in the literature
([4, 5] and references therein), to the authors’ knowledge
formulae for approximate SNR estimates have not yet been
provided for practical, higher-order designs. The second
term of (12) can be calculated very fast using numerical
integration, and thus an approximate solution for the SDM
SNR can be obtained.

4. Simulations and Comparison

In order to verify that the formula gives correct SNR results,
we made a comparison with SNR calculations based on
modulator output bitstream obtained by simulations. The
first presented example includes two single-bit SDMs with
realistic NTFs. For the SNR result approximation based
on output bitstream obtained by simulations, we used
MATLAB [11] and DSToolbox CalculateSNR function [12].
Figures 5 and 6 depict the SNR as a function of input
signal amplitude for (12) and, based on output bitstream
obtained by simulations SNR approximation estimates for
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Figure 7: Estimates of the SNR as a function of input signal
amplitude for a 3-bit, 3rd-order SDM with 64 times OSR for SDM
with (18) NTF.

realistic SDMs. The compared realistic SDMs are of third-
order, 1-bit lowpass implementation, intended for 64 times
oversampling, with

NTF(z) = z3 − 3.049z2 + 3.098949z − 1.049999
z3 − 2.2492z2 + 1.747525z − 0.49783

, (18)

NTF(z) = z3 − 2.999z2 + 2.999z − 1
z3 − 2.1992z2 + 1.6876z − 0.4441

. (19)

The approximated SNR calculated from (12) is directly
computed from the signal power and in-band noise power.
In-band noise power is found from numerical integration
of (12) using adaptive Simpson’s quadrature, a standard
technique. The approximated SNR calculated based on
output bitstream obtained by simulations is done using 218

bitstream datapoints. Sometimes on some amplitude steps
the difference between the two graphs is as high as 0.5 dB.

The practical design that uses the NTF from (18) has
an SNR almost 40 dB less than that of the ideal design,
and simulation shows a dramatic drop in performance for
input amplitude greater than 0.9. The sharp drop in the
simulated SNR is also explained by instability. For sinusoidal
inputs with magnitude above 0.9, the input to the quantizer
grows exponentially and the output bitstream bears little
relationship to the input signal (unstable).

The same type of modulator behaviour can be observed
for SDM when using NTF from (19), with the exception of
having higher performance and instability for lesser input
signal amplitude levels. When the modulators are in the
stable region of operation we observe a close match of
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Figure 8: SNR result convergence rate of the DSToolbox function,
according to the number of bitstream datapoints used.
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Figure 9: SNR result computational time passed for certain number
of datpoints for simulations used.

the approximated SNR result between calculations based on
(12) and calculations based on output bitstream obtained by
simulations.

Figure 7 depicts the SNR as a function of input signal
amplitude for both (12) and simulated SNR approximation
estimates for (18) NTF realistic SDM third order, using 3-bit
quantizer with 64 times OSR. The approximated SNR
calculated based on output bitstream obtained by simula-
tions for this example is done using 217 bitstream datapoints.
In this example the modulator is stable for the whole range
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Figure 10: Estimates of the SNR as a function of OSR for a 1-bit,
3rd-order SDM (19).

of input signal amplitude, thanks to the higher bit quantizer.
For this higher bit quantizer example, we have again, as for
the single bit quantizer examples, a close relation between
approximate SNR result calculation based on (12) and SNR
calculation based on modulator output bitstream obtained
by simulations.

The most important advantage of SNR calculation with
(12) is the lack of a need to produce SDM model simulations.
In order to obtain a really precise SNR calculation that is
based on output bitstream obtained by simulations, first
we must generate simulation output data from the model
and then calculate the SNR. When using simulated data, a
high number of data points must be used for accurate SNR
estimation. For example, we used the CalculateSNR function
that is part of the MATLAB DSToolbox [12] in order to verify
the SNR result convergence when using higher number of
datapoints in comparison with result from (12). An example
for the SNR result convergence as a function of the number
of data points for single-bit quantizer with third-order NTF
(19) is shown in Figure 8. In this example the oversampling
ratio is 64 and amplitude is A = 0.5.

(12) based SNR calculation is not dependent on the
number of datapoints as the approximated from simulation
SNR calculation is. The discrepancies of the calculated
via simulation SNR exist thanks to the used fast Fourier
transform. Because the quantization noise is not with
perfect uniform distribution for low-order quantizers [13]
sometimes the predicted result with formula (9) is not
that precise. The regular SNR result deviation between
proposed (12) calculation and calculation based on output
bitstream obtained by simulations is usually no more than
0.3 dB, assuming the modulator is stable. We made our own
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Figure 11: Estimates of the SNR as a function of number of bits for
a 3rd-order SDM (19) with 64 times OSR.

function for SNR calculation based on modulator output
bitstream obtained by simulations in order to verify the result
we get from the DSToolbox function, and we can state safely,
that for both of the implementations it is preferable to take at
least 223 modulator output bitstream simulation datapoints
for SNR calculations. The SNR calculation based on output
bitstream obtained by simulations does not fully converge
until at least 223 data points are used. At two million output
bitstream datapoints taken from simulations and used for the
SNR calculation, the formula derived results and the results,
calculated by simulations are matched.

In Figure 9, the computational time taken on Intel
Core2Duo T8300 processor to obtain the output bitstream
from simulations for a certain number of datapoints includ-
ing SNR calculation is presented. This result is obtained from
simulating SDMs with DSToolbox simulateDSM function
[12] as author-built SDM models are simulated for larger
periods of time. Computational time needed to obtain SNR
result with (12) is only a minimal fraction of the second.
For comparison, SNR calculations with 223 modulator
output bitstream simulation datapoints at least 15 second
per SNR result estimation is required. In the engineering
practice, multiple parameter adjustments are made in the
modulator design process. In these cases multiple modulator
simulations are required on every design step in order to
verify the modulator performance. For this, cases where
multiple simulations are needed to get SNR result estimation,
SNR calculation with (12) can be a viable tool, speeding the
design process. This fast approach for the SNR calculation
brings the possibility to design SDMs loopfilters with usage
of standard optimization techniques. Finally, in Figures 10
and 11 are presented results for different values of the OSR
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and the quantizer bits number. Both curves in Figure 11 are
almost indistinguishable.

5. Conclusion

In this paper, we derive approximate formula for calculating
the signal-to-noise ratio of sigma-delta modulators and com-
pare the result with SNR computation based on modulator
output bitstream obtained by simulations.

The calculation of the formula is very fast, because it only
needs a simple numerical integration. The novelty of this
approach is that in order to have a precise SNR calculation,
there is no need of modulator simulations, thus leading to
instantaneous SNR estimate. The main advantage of this
approach is that it removes the need for computationally
intensive simulation to estimate performance (output bit-
stream), and it can also be used to validate simulations.
Furthermore, with the usage of this fast approach for the
SNR calculation, it may be possible to design SDMs when
using standard optimization techniques.
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