
1

Before you start…

Here are some terms used in programming:

Program. A program is a set of instructions which the computer follows in processing data.

Text Editor. This is an application used to type or encode your program

Source Code. A source code is your program written in a programming language like C

Object Code. This is your program in a language that machines can read and understand

Compiler. A compiler translates your source code into an object code.

Compiler Directives. This are instructions to the compiler made at the start of the code.

Function. A function is a set of instructions that are often used in a program.

Library. Several functions commonly used in C are included in libraries.

2

Exercise 1: C Programming Basics

In this exercise, you will create your first C program. You will learn the basic structure of
a C code as well as how to save, compile and run a program.

1. Type the code below in the text editor.

2. Save the code using the filename main.c.

3. This program does not do anything but it should compile. To compile, type # gcc

main.c –o main in the command line. Be sure that the filename and object file is

correct (main.c is the filename and main is the object file).

4. Now, add the line printf(“Hello World!\n”); to the main function. The new code

should look like this:

5. Save and compile the code.

6. Run the code by typing # ./main in the command line. What is displayed on the

screen?

7. The printf function is used to display text on the screen. Modify the program to display

your name.

Notes: Take note that each line in the code, except for the compiler directives, is terminated with a semicolon.
Also, make sure that all parentheses, braces, brackets and quotation marks are paired. Lines starting
with “//” or enclosed by “/*” and “*/” are considered as comments and are disregarded by the

compiler.

#include <stdio.h>

int main(void){
}

/****** Hello World Program ******/

#include <stdio.h>

int main(void){
 printf(“Hello World!\n”);
 return 0;
}

3

Exercise 2: Variables and Constants

 In this exercise, you will learn how to use variables and constants. We will use a
program that computes the area and circumference of a circle as an example.

1. Compute the area and circumference of a circle with a radius of 2. We will use these
values to check the program.

2. Type the code below in the text editor.

3. Save and compile the code. You may use any filename.

4. Run the program.

5. What is the area and circumference displayed by the program? Do these match your
computed values?

6. Try changing the value of the variable radius.

7. Try changing the value of the constant PI.

Notes: It is good practice to write a pseudocode of your program first. This way you have an outline to follow
while creating your code. This is particularly helpful in making long and complicated codes.

/**************************** Pi Program *****************************/
/* Computes the area and circumference of a circle given the radius. */

#include <stdio.h>
#define PI 3.14159

int main (void){
int radius = 2;
float area;
float circ;

 // Calculate the area and circumference
area = PI*radius*radius;
circ = 2.0 * PI * radius;

// Display the results
printf(“Radius = %d\n”,radius);
printf(“Area = %f\n”, area);
printf(“Circumference = %f\n”, circ);

return 0;
}

4

Exercise 3: Getting User Input

 Accepting user input is important in creating user interfaces. In this exercise, you will

use the scanf function to get different types of input.

1. Type the code below in the text editor.

2. Save and compile the code.

3. Run the program.

4. Modify the Pi Program to compute the area and circumference of a circle with a radius
given by the user.

Notes: Variables used as parameters of the scanf function are preceded with the address operator, “&”.

#include <stdio.h>
#define CURRENT_YEAR 2008

int main(void){
int age;
int year;

printf(“Enter your age: ”);
scanf(“%d”, &age);

year = CURRENT_YEAR – age;
printf(“You were born in %d!”,year);

return 0;
}

5

Exercise 4: Control Structures

1. Run a program containing the piece of code below.

What is the output?

2. Run a program containing the piece of code below.

What is the output?

3. Change the initial value of i to 0 in the code from #1. What is the output?

4. Change the initial value of i to 0 in the code from #2. What is the output?

5. Run a program containing the piece of code below.

 What is the output?

6. Modify the Pi Program to display the area and circumference of circles with radii from 1
to 10.

int i;

for(i = 10; i > 0; i--){
printf(“%d\n”, i);

}

int i = 10;

do{
printf(“%d\n”, i);
i++;

}while (i > 0);

int i = 10;

while(i > 0){
printf(“%d\n”, i);
i--;

}

6

Exercise 5: Logical Test Operations

1. Run a program containing the code snippet below.

2. Modify your code in #1. Use a switch statement instead of if-then-else statements.

Exercise 6: Arrays and Strings

1. Run a program containing the code snippet below.

2. Use the code in #1 to create a program that accepts 5 integers then displays the
numbers in reverse order.

int i, n[5];

for (i = 0; i < 5; i++){
 printf(“Enter number %d”, i);
 scanf(“%d”, &n[i]);
}

if (a < 10){
 printf(“a is less than 10”);
}
else if (a < 100){
 printf(“a is greater than 10 but less than 100”);
}
else {
 printf(“a is greater than 100”);
}

7

Exercise 7: Functions

1. In your main() function, declare an array of 5 integers.

2. Create a function getnum() that accepts 5 integers from the user.

3. Call the getnum() function in your main() function.

4. Create a printnum() function that prints the 5 integers.

Exercise 8: Resistance Calculator

Create a program that computes the value of parallel resistances. It should:

1. Ask the user how many parallel resistances are there

2. Ask the user to input the value of the resistances as integer one by one

3. Display the resulting resistance value

8

Exercise 9: Slimboard Getting Started

Before you can use the Slimboard, you have to check if you have the following:

1. PC/Laptop installed with Zilog Development Studio II. Look for the icon on the

desktop or look for ZDS II – Z8 Encore! on the Start Menu.

2. Slimboard with microcontroller. Below is a picture of the Slimboard. At the center of

the board is the Z8 Encore! microcontroller chip.

3. AC/DC Adapter. The adapter is used to power up the Slimboard. It converts the 220V

ac from the outlet to 9V dc. Be sure to check the rating of the adapter and the outlet.

9

4. Serial Cable or USB-to-Serial Cable. If you are using a pc, you have a serial port and
you will need a serial cable to connect the Slimboard to the pc. If you don’t have a serial
port, you will need a USB-to-Serial cable to connect the Slimboard’s serial port to a USB
port.

 Serial Cable USB-to-Serial Cable

10

Exercise 10: Slimboard Beginner’s Guide

In this exercise, you will be familiarized with using the Slimboard. You will be guided

on how to set-up and program the microcontroller.

Preparing the Slimboard

1. Power up the Slimboard using the ac/dc adapter. The Power LED should light up.

2. Connect the Slimboard to the serial port of the pc using the serial cable.

3. The serial port on the Slimboard is used in two ways – (1) DEBUG mode for

programming the microcontroller and (2) UART mode for communication. Check the
toggle switch near the serial port on the Slimboard. This should be high for DEBUG
mode and low for UART mode.

Toggle Switch

Power LED

11

Programming the Microcontroller

1. Open ZDS II

2. A project contains all the files required to create the firmware for your microcontroller.

Create a new project by selecting

File > New Project

3. You should see a window similar to the one shown below. Browse for the project
location then enter the project name. It is advisable to create a new folder to contain the
files in your project. In the figure below, “sample” is the project folder and sample project
is the “project name”.

 Fill-in the following data:
Project type: Standard

CPU Family: Z8Encore_64K_series

CPU: Z8F6421

Build Type: Executable

Browse

12

 Click the Finish Button.

4. From the main menu select

Project > Settings

Click the Debugger tab. On the Debug Tool box, select Serial Smart Cable from
the dropdown menu. Then click the Setup button.

5. A dialog box similar to the one below should appear. For the Baud Rate, choose 57600

then select the Port connected to your Slimboard. Click the OK button on the Setup
Serial Communication box. Click the OK button on the Project Settings
window.

13

6. You are now ready to write your code. From the main menu, select

File > New File

ZDS II Developer’s Environment

Edit Window

Output Window

Project
Workspace

Window

14

7. A text editor should appear. This is the Edit Window where you type your C code. For
now, just copy the Blinker Code given below.

8. At this point your code is not yet part of the project. Click on the Standard Project
Files folder in the project workspace window. Select Add Files To Project.

An Add Files To Project window should appear. Browse for and select the C files
that you want to include in your project.

/*********************** Blinker Code ***********************/
/* This code makes the LEDs connected to PD0 and PD1 blink. */

#include <ez8.h>
#define GPIO_PORT 0x03

void initGPIO(void){
PDDD &= ~GPIO_PORT; // data direction: output
PDAF &= ~GPIO_PORT; // alternate function: off

}

void delay(void){
unsigned char i,j;

for(i = 0; i < 0xFF; i++)
for(j = 0; j < 0xFF; j++);

}

int main(void){
initGPIO();

while(1){
 PDOUT ^= GPIO_PORT;
 delay();
}

}

15

Notes: This exercise will serve as your guide in programming the Z8 Encore! microcontroller. Everything is
pretty much the same. All you have to change is the C code. Your project may contain several C
files. Save the file containing the main function as main.c.

16

The added files should appear under the Standard Project Files folder.

9. Compile individual codes by clicking on the Compile/Assemble File button.

The results should be displayed on the output window at the bottom of ZDS.

If the code does not compile successfully, the errors should also be shown in this
window. Double-click on the error to move the text editor cursor to the line with error.

10. Build the project by clicking the Build button.

17

Again, the results should be displayed on the output window.

11. You may check if your pc can connect properly to the Slimboard by clicking the Connect
To Target button.

The result will be displayed on the output window.

12. After building your program, you can now download it to the microcontroller by clicking
on the Download Code button.

The output window should display the status after attempting to download.

18

Some errors may occur during downloading.

If there are errors you may check the following:

a. The Slimboard is connected properly to the serial port of the pc.
b. The correct COM port or serial port is selected.
c. The toggle switch on the Slimboard is in high position, indicating DEBUG mode.
d. No other application is using the serial port connected to the Slimboard.

13. Press the Reset Button on the Slimboard to check if your program works!

Reset Button

19

Exercise 11: GPIO

 Electricity flows in a diode if the voltage on the positive side is greater than the
voltage on the negative side. This is the ON state of the diode. The other case is of course
the OFF state in which the diode is “open”. An LED or Light Emitting Diode becomes a light
source when it is in the ON state. Shown below are LEDs and the LED symbol. Always take
note of the polarity of diodes when you use them in your circuit.

 You have already downloaded the Blinker Code that makes the on-board LEDs of
the Slimboard to blink. This time, you will learn the basic LED circuit and how to connect it to
your Slimboard. You will also learn the different ways to use the GPIO pins of the Slimboard.

1. Setup the circuit below on your protoboard.

2. Modify the Blinker Code to

a. enable high-drive mode on PA0, PA1 and PA2, and
b. make the red, yellow and green LEDs blink simultaneously

3. Download the modified code to your microcontroller. Exercise #10 may serve as your

guide in programming the microcontroller.

LED LED Symbol

+
-

+

-

20

4. Using the pushbutton connected to PD2 of the Slimboard, make a program that toggles

the state (on/off) of the LEDs with each press. Pressing once should turn on the LEDs,
pressing again should turn off the LEDs, and so on.

5. Create a stoplight system that works in the following manner

a. default state: RED

b. on pushbutton press

i. green light for 10 delays
ii. orange light for 2 delays
iii. back to red default

21

Exercise 12: UART

UART stands for Universal Asynchronous Receiver/Transmitter. It is one way
electronic devices, such as your computer and microcontroller, communicate with each
other. This exercise demonstrates how to create a program that enables you to send
characters to your computer. It also shows how to use the HyperTerminal which is an
application that can read and display data from the serial port.

1. Download the code below to your microcontroller.

2. Open the HyperTerminal from the Start Menu of your computer. Select

 All Programs > Accessories > Communications > HyperTerminal

UART

/************************ Hello World! *************************/
/* This program displays a line of text on the HyperTerminal. */

#include <ez8.h>
#include <stdio.h>
#include <sio.h>

int main(void){
init_uart(_UART1, _DEFFREQ, _DEFBAUD); // initialize UART0

while(1){
 printf("Hello World!\n"); // display
}

}

22

3. A Connection Description window should appear. Enter any name for the session.
Click the OK button.

4. The Connect To window should appear. Choose the correct serial port on the
Connect using dropdown menu. Then click the OK button.

23

5. A window containing the properties of the selected port should appear. Fill in the
following data:

 Bits per second: 57600
 Data bits: 8
 Parity: None
 Stop bits: 1
 Flow control: None

 Click the OK button.

6. Check if the toggle switch on the Slimboard is in High Position indicating UART Mode.

Press the Reset button on the board.

7. What is displayed on the HyperTerminal?

24

Exercise 14: Timers – Blinker

 You have already created a Blinker Program in the GPIO Exercises. However, the
specified delay did not directly translate to time as we know it – in seconds! This time, you
will create a blinker program in which you can set the delay using timers.

1. Download the code below to your microcontroller.

/************************ Blinker Using Timers ***********************/

#include <ez8.h>
#include <sio.h>

int counter=0;

#pragma interrupt // routine function
void isr_timer0(void){
 if (counter==4){
 counter=0;
 PDOUT ^= 0x01;
 }
 else counter++;
}

void init_timer0 (void){
 DI();

T0CTL = 0x79; // initialize timer 0111 1001, continuous
// mode with 128 prescaler

 T0H = 0x00; T0L = 0x01;
 T0RH = 0x8C; T0RL = 0xA0; // the reload value

 SET_VECTOR(TIMER0,isr_timer0);
 IRQ0ENH |= 0x20;
 IRQ0ENL |= 0x20;
 IRQ0 &= ~0x20;

 EI();
}

void main (void){
 PDDD &= ~0x01;
 PDAF &= ~0x01;
 PDOC &= ~0x01;
 PDHDE |= 0x01;

 init_timer0();
 T0CTL |= 0x80; // turn on timer
 while(1);
}

25

3. What happens?

4. Change the lines in red into

 T0RH = 0x46

 T0RL = 0x50

5. What happens?

26

Exercise 15: Timers – Servo Motors

1. Setup the servo motor by connecting
 a. the RED wire to the positive pole of the battery,
 b. the ORANGE wire to PA1 of the Slimboard,
 c. the BROWN wire to GND, and
 d. the negative pole of the battery to GND.

2. Download the code below to your microcontroller.

3. What happens?

4. Change the lines in red into

 T0PWMH = 0x02

 T0PWML = 0xD0

5. What happens?

/********************* Servo Motor Control *********************/

#include <ez8.h>
#include <sio.h>

void init_timer0 (void){
 PAAF |= 0x02; // turn on alternate function

T0CTL = 0x7B; // initialize timer 0111 1011, PWM
// mode with 128 prescaler

 T0H = 0x00; T0L = 0x01;
 T0RH = 0x06; T0RL = 0xC0; // reload value of the period
 T0PWMH = 0x00; T0PWML = 0x48; // reload value of the on-time period
}

void main (void){
 init_timer0();

 T0CTL |= 0x80; // turn on timer
 while(1);
}

27

Exercise 16: Timers

1. Modify the Blinker Using Timers Code to make the LEDs on the Slimboard blink
every 1 second.

2. Setup the circuit below on your protoboard.

3. Modify the code in #1 to change the intensity of the LED when the push button
connected to PD2 is pressed.

4. Setup your servo motor again.

5. Make a program that will make the servo motor

a. rotate 45 degrees clockwise if you press the push button connected PD2 and

b. rotate 45 degrees counter clockwise if you press the push button connected to
PD3

28

Exercise 17: Light Sensors

There are several kinds of light sensors. In this exercise, you will be using Light
Dependent Resistors (LDR). An LDR is a sensor that changes its resistance with
respect to the amount of light that strikes its surface. As the intensity of light
increases, the resistance decreases

As you go along in this exercise, fill-in the table below.

Light LDR
resistance

Ambient

No Light

Superbright Light

Red

Green

Blue

1. Expose the LDR to ambient light. Measure the LDR resistance.

2. Cover the LDR such that it can not sense light. Measure the LDR resistance.

3. Set up the circuit below on your protoboard. Use a Superbright White LED.

4. Expose the LDR to the superbright light. This set-up should be enclosed. Measure the
LDR resistance.

5. Repeat #3 and #4 using red, green and blue LEDs.

29

Exercise 18: Temperature Sensors

For this experiment you will be using the following:

Thermistor. The thermistor is a sensor that varies its
resistance with temperature. As temperature increases,
thermistor resistance decreases.

LM35. An LM35 is an integrated circuit temperature
sensor. Its output voltage is directly related to change in
temperature.

As you go along in this exercise, fill-in the table below.

 Temperature
Using

Thermometer

Thermistor
Resistance

LM35 Output
Voltage

Room

Body

1. Using a thermometer, measure the room temperature and your body temperature.

2. Measure the resistance of the thermistor at room temperature.

3. Place the thermistor inside your clasped hand. Measure the resistance of the thermistor.

4. Power up the LM35 from a 5V supply. Make sure that the +Vs

pin is connected to the positive supply and the GND pin is
connected to ground. The pin outs are shown here.

5. Do #2 and # 3 using the LM35.

6. Using the values from the table, make a plot of Temperature vs Thermistor Resistance

and Temperature vs LM35 Output Voltage.

7. From the plots, derive the transfer function of the thermistor and the LM35.

8. Try to put the thermistor under/right below your nostril (where inhaled and exhaled air

passes). What happens to the thermistor resistance as you inhale? as you exhale?

9. Do #8 using the LM35.

 Thermistor Resistance LM35 Output Voltage

Inhalation

Exhalation

Thermistor

LM35

30

Exercise 19: Colorimeter

Making a Color Sensor

 Light has 3 primary colors: Red, Green, and Blue. A mix of 2 or more in varying
intensities can produce other colors. For instance, Red and Green combined produce
yellow. Reflected light can be sensed by the LDR. If we know the color of the light being
reflected from an object, then we can deduce the color of the object itself. Let's say I have a
red object. When I flash Green or Blue light, both colors get absorbed by the object, but
when I flash red light, the "Red" color is reflected almost completely! Hence, when we want
to know the color of the object, we can employ the use of the LDR and measure the
resistance when each of the Red, Green, and Blue lights is flashed individually. The more
the LDR resistance changes when a specific light is flashed, the more positive we are that
the color of the object must contain a component of the light reflected(i.e. when Green is
flashed and the LDR resistance does not change, then we can conclude that the object
absorbs green light).

1. Measure the LDR's resistance when Red light (Red LED) is flashed directly onto the
LDR(about an inch apart). Repeat using Green and yellow LEDs.

2. Try the SuperBright LEDs and read the LDR resistance for each LED flashed directly
onto the LDR.

3. Now try to "bounce" the light off the object whose color we wish to "read" /decipher.
Read the LDR resistance for each reflected light of each object (try Red, Yellow, and
Green) when the superbright LED is flashed one at a time.

Light LDR
Resistance

Red

Green

Yellow

Superbright Red

Superbright Green

Superbright Yellow

Reflected Red

Reflected Green

Reflected Yellow

31

Exercise 20: TempEST

The thermistor changes its resistance but the LM35 changes its voltage when
temperature varies. Most, if not all, microcontroller systems "prefer" reading voltages rather
than resistances. The TempEST or Temperature-to-Electric Signal Sensing Tool board
acts as signal conditioning board to translate thermistor resistance change to voltage
change.

1. Connect the thermistor and LM35 to the input side of the TempEST.

2. Power up the TempEST using a 9V battery.

3. Using a thermometer, measure the room temperature and your body temperature.

4. Measure the output voltage for the thermistor at room temperature.

5. Place the thermistor inside your fist or clasped hand. Measure the output voltage for the
thermistor.

6. Do #4 and # 5 using the LM35.

 Temperature
Using

Thermometer

Thermistor
Output

LM35 Output

Room

Body

Supply

Input

Output

32

Exercise 21: Analog-to-Digital Conversion

1. Download the code below to your microcontroller.

2. Open the HyperTerminal. Follow the steps in Exercise 12.

3. Press the reset button.

4. What is the ADC value displayed on the HyperTerminal?

5. Touch the PB0 pin. What is the ADC value this time?

#include <ez8.h>
#include <stdio.h>
#include <sio.h>

#define CHANNEL 0x00 // ANA0
#define MODE 0x00 // Singleshot (Continuous = 0x10)
#define VREF 0x00 // Internal VRef (External = 0x20)
#define ENABLE 0x80 // CEN

void InitADC(void){
 PBAF = 0x01; // PB0 = ANA0
 ACTL = (CHANNEL | MODE | VREF);
}

int PollADC(void){
 ACTL |= ENABLE; // Enable ADC
 while (ACTL & ENABLE); // Wait for End of Conversion
 return (((int)ADHR << 2) | (ADLR >> 6));
}

void delay(void){

unsigned char i,j;

for(i = 0; i < 0xFF; i++)

for(j = 0; j < 0xFF; j++);
}

void main(void){
 int VALUE = 0;
 float volts = 0.0;

 init_uart(_UART0, _DEFFREQ, _DEFBAUD);

 printf("Analog-to-Digital Conversion\n");
 InitADC();
 while(1) {
 VALUE = PollADC();
 volts = VALUE / 512.0; // Turn ADC Readng to Volts
 printf("ADC: %X, %4.3f volts \n",VALUE, volts);
 delay()
 }
}

33

Exercise 22: Voltmeter

In this exercise, you will use a potentiometer. A potentiometer is a resistor with
variable resistance. You can change the resistance between two adjacent leads of a
potentiometer by turning the knob. The resistance between the leads at the ends of the
potentiometer is constant. This is the value or rating of the potentiometer.

1. Do Exercise 21.

2. Connect the potentiometer to the Slimboard as shown below.

3. Press Reset on the Slimboard.

4. What happens on the displayed ADC values as you turn the knob of the potentiometer?

Vdd

B0

Gnd

Potentiometer

Symbol

Potentiometer

34

Exercise 23: ADC (TempEST)

You are already familiar with the TempEST board. As you have learned, it translates
the output of the temperature sensors into voltage levels that can be accepted by the
microcontroller as inputs. In this exercise, you will use ADC to read the output voltages of
the TempEST board.

1. Connect the TempEST board to the Slimboard as shown below.

2. Use the ADC code to read the voltage output for the thermistor.

3. Record the displayed voltage at room temperature and at body temperature.

Connect Thermistor

Connect to VCC

Connect to B0 pair

Connect to GND

