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Abstract—In this paper, a novel high step-up dc–dc converter is
proposed for a sustainable energy system. The proposed converter
uses coupled-inductor and switched-capacitor techniques. The ca-
pacitors are charged in parallel and discharged in series by the
coupled inductor to achieve high step-up voltage gain with an ap-
propriate duty ratio. Besides, the voltage stress on the main switch
is reduced with a passive clamp circuit; low on-state resistance
Rds(on) of the main switch can be adopted to reduce the conduc-
tion loss. In addition, the reverse-recovery problem of the diode is
alleviated by a coupled inductor. Thus, the efficiency can be fur-
ther improved. The operating principle and steady-state analyses
of voltage gain are discussed in detail. Finally, a prototype circuit
with 24-V input voltage, 400-V output voltage, and 200-W output
power is implemented in the laboratory to verify the performance
of the proposed converter.

Index Terms—Coupled inductor, high step-up voltage gain,
sustainable energy system, switched capacitor.

I. INTRODUCTION

H IGH step-up dc–dc converters are now widely used in
many applications. For example, in photovoltaic arraysin

a sustainable energy system which are the source with low volt-
age, the dc–dc converter needs to boost low voltage to high volt-
age to generate ac utility voltage [1]–[3]. Thus, the high step-up
dc–dc converter needs high voltage gain, high efficiency, and
small volume [4]–[6]. Theoretically, a conventional boost con-
verter can be adopted to provide high step-up voltage gain with
an extremely high duty ratio. In practice, the step-up voltage
gain is limited by the effects of power switch, rectifier diode,
and equivalent series resistance (ESR) of inductor and capacitor.
Also, the extremely high duty-ratio operation may result in se-
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rious reverse-recovery problem, low efficiency, and the electro-
magnetic interference (EMI) problem [7]–[9]. Some converters
such as flyback, forward, push-pull, half-bridge, and full-bridge
can adjust the turns ratio of a transformer to achieve high step-up
voltage gain. However, the main switch of these converters will
suffer high voltage spike and high power dissipation caused by
the leakage inductor of the transformer [10]. To improve these
drawbacks, a nondissipative snubber circuit and an active-clamp
circuit are used. However, the cost will be increased due to the
extra power switch and high-side driver [11].

Many topologies have been proposed to improve conversion
efficiency and achieve high step-up voltage gain [12]–[33]. High
step-up gain can be achieved by a switched capacitor or voltage-
lift technique [12]–[18]. However, the main switch suffers a high
transient current, and the conduction loss is increased. The con-
verterswith the coupled-inductor technique can achieve high
step-up gain by adjusting the turns ratio [19], [20]. However,
the leakage inductor issue that relates to the voltage spike on the
main switch and the conversion efficiency is important. For this
reason, the converters using a coupled inductor with an active
clamp circuit have been proposed [21], [22]. Also, an integrated
boost-flyback converter is presented. The secondary side of the
coupled inductor is used as a flyback type to achieve high step-
up gain [23], [24]. The energy of a leakage inductor is recycled
into the output during the switch-off period. Thus, the voltage
spike of the main switch is limited. Additionally, the voltage
stress of the main switch can be adjusted through the turns ratio
of the coupled inductor. To achieve large high step-up gain, the
converter used the secondary side of the coupled inductor used
as a flyback and a forward type has been proposed [25]–[27].
Also, many converters using the coupled-inductor technique are
proposed to achieve high step-up gain. Several converters that
combine the output-voltage stacking to increase voltage gain are
proposed [28]–[30]. The boost-sepic converter with the coupled-
inductor and output stacking techniques has been proposed [31].
The high step-up boost converters that use multiple coupled in-
ductor of output stacking are proposed [32], [33]. The convert-
ers with the coupled-inductor technique increase the voltage
gain by adding the number of turns ratio and extra winding
stages.

To achieve high voltage gain and high efficiency, this pa-
per proposes a novel high step-up voltage gain converter. The
proposed converter uses the coupled-inductor and switched-
capacitor techniques to achieve high step-up voltage gain. The
coupled inductor is operated as the flyback and forward convert-
ers. Thus, the capacitors can charge in parallel and discharge in
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Fig. 1. Circuit configuration of the proposed converter.

series by the secondary side of the coupled inductor. Besides,
the secondary-side leakage inductor of the coupled inductor can
alleviate the reverse-recovery problem of diodes, and the loss
can be reduced. However, the leakage inductor of the coupled
inductor may cause high power loss and high voltage spike.
Thus, a passive clamping circuit is needed to recycle the energy
of the leakage inductor and to clamp the voltage level of the
main switch.

II. OPERATING PRINCIPLE OF THE PROPOSED CONVERTER

Fig. 1 shows the circuit topology of the proposed converter,
which is composed of a boost converter with the coupled in-
ductor and switched capacitors. The equivalent circuit model
of the coupled inductor includes the magnetizing inductor Lm ,
leakage inductor Lk , and an ideal transformer. This converter
consists of one power switch, six diodes, and six capacitors.
The leakage-inductor energy of the coupled inductor is recycled
to capacitor C1 , and thus, the voltage across the switch S can be
clamped. Also, the voltages across capacitors C2 , C3 , C4 , and
C5 can be adjusted by the turns ratio of the coupled inductor.
For this reasons, the voltage level of the switch is reduced sig-
nificantly and low conducting resistance Rds(on) of the switch
can be used. Thus, the efficiency of the proposed converter can
be increased and high step-up voltage gain can be achieved.

To simplify the circuit analysis, the following conditions are
assumed.

1) Capacitors C1–C5 and Co are large enough. Thus,
Vc1–Vc 4 and Vo are considered as constant in one switch-
ing period.

2) The power devices are ideal, but the parasitic capacitor of
the power switch is considered.

3) The coupling coefficient of the coupled inductor k is equal
to Lm /(Lm +Lk ) and the turns ratio of the coupled inductor
n is equal to Ns /Np .

The proposed converter operating in continuous conduction
mode (CCM) and discontinuous conduction mode (DCM) is
analyzed as follows.

A. CCM Operation

Based on the aforementioned assumptions, there are five op-
erating modes discussed in one switching period under CCM
operation. Fig. 2 illustrates the typical waveforms and Fig. 3
shows the topological stages of the proposed converter. The
operating modes are described as follows.

Fig. 2. Some typical waveforms of the proposed converter at CCM operation.

1) Mode I [t0 , t1]: During this time interval, S is turned
ON to initiate this mode. Diodes D1 , D2 , and D5 are re-
verse biased, and D3 , D4 and Do are forward biased. The
current-flow path is shown in Fig. 3(a). The primary cur-
rent of iLk increases linearly. The magnetizing inductor
Lm begins to store the energy from dc source Vin . Due
to leakage inductor Lk , the secondary-side current is de-
creases linearly. Secondary-side voltages VL 2 , Vc 2 , and
Vc5 are connected in series to charge the high-voltage out-
put capacitor Co and to provide the energy to load R. Also,
the leakage-inductor energy is recycled to capacitors C3
and C4 . Because of the leakage inductor of the coupled
inductor, the reverse-recovery problem of the diode is al-
leviated. When current is becomes zero, the energy of dc
source Vin is transferred to capacitors C2 and C5 via the
coupled inductor. Until the current iDo is equal to zero at
t = t1 , this operating mode is ended.
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Fig. 3. Current-flow path of operating modes during one switching period
at CCM operation. (a) Modes I. (b) Modes II. (c) Mode III. (d) Mode IV.
(e) Mode V.

2) Mode II [t1 , t2]: During this time interval, S remains ON.
Diodes D1 , D3 , D4 , and Do are reverse biased, and D2 and
D5 are forward biased. The current-flow path is shown in
Fig. 3(b). The magnetizing inductor Lm stores the energy
from dc source Vin . A part of the energy of dc source
Vin is transferred to capacitors C2 and C5 via the coupled
inductor. Also, the energies of C3 and C4 are transferred to
capacitors C2 and C5 together. Meanwhile, voltages Vc 2
and Vc 5 are approximately equal to nVin+Vc3 . The output
capacitor Co provides its energy to load R. This operating
mode is ended when switch S is turned OFF at t = t2 .

3) Mode III [t2 , t3]: During this time interval, S is turned OFF
to initiate this mode. Diodes D1 , D3 , D4 , and Do are reverse
biased, and D2 and D5 are forward biased. The current-
flow path is shown in Fig. 3(c). The energies of leakage
inductor Lk and magnetizing inductor Lm are released to
the parasitic capacitor Cds of switch S. Capacitors C2 and
C5 are charged from dc source Vin . Output capacitor Co

provides its energy to load R. When the capacitor voltage
Vc1 is equal to Vin+Vds at t = t3 , diode D1 is conducted
and this operating mode is ended.

4) Mode IV [t3 , t4]: During this time interval, S remains
OFF. Diodes D1 , D2 , and D5 are forward biased, and D3 ,
D4 , and Do are reverse biased. The current-flow path is
shown in Fig. 3(d). The energies of leakage inductor Lk

and magnetizing inductor Lm are released to capacitor C1 .
Thus, the voltage across the switch is clamped at Vin+Vc1 .
The magnetizing energy of Lm starts to transfer energy to
capacitors C3 and C4 . The current iLk decreases quickly.
The secondary-side voltage of the coupled inductor VL 2
continues to charge capacitors C2 and C5 in parallel until
the secondary-side current is equals zero. Thus, diodes D2
and D5 are cut off at t = t4 . This operating mode is ended.

5) Mode V [t4 , t5]: During this time interval, S remains OFF.
Diodes D1 , D3 , D4 , and Do are forward biased, and D2
and D5 are reverse biased. The current-flow path is shown
in Fig. 3(e). The energies of leakage inductor Lk and mag-
netizing inductor Lm are released to capacitor C1 . Thus,
the voltage across the switch is clamped at Vin+Vc1 . A
part of the magnetizing-inductor energy is released to
capacitors C3 and C4 in parallel. Simultaneously, sec-
ondary side voltage VL 2 is connected with Vc2 and Vc 5
in series and the energy of dc sources Vin , Lm , C2 , and
C5 is released to output capacitor Co and load R. When
primary-side current iLk is equal to current iDo , capacitor
C1 starts to discharge. This mode is ended at t = t5 when
S is turned ON at the beginning of the next switching
period.

B. DCM Operation

To simplify the analysis of DCM operation, the leakage in-
ductor Lk of the coupled inductor is neglected. Fig. 4 shows
typical waveforms of the proposed converter operated in DCM.
There are three modes in DCM operation and Fig. 5 shows
the operating stages of each mode. The operating modes are
described as follows.



3484 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 26, NO. 12, DECEMBER 2011

Fig. 4. Some typical waveforms of the proposed converter at DCM operation.

1) Mode I [t0 , t1]: During this time interval, S is turned ON
to initiates this mode. The current-flow path is shown in
Fig. 5(a). The energy of dc source Vin is transferred to
magnetizing inductor Lm . Thus, iLm is increased linearly.
Also, the secondary side of the coupled inductor is con-
nected in series with capacitor C3 or C4 and releases their
energies to charge capacitors C2 and C5 in parallel. The
output capacitor Co provides its energy to load R. This
mode is ended when S is turned OFF at t = t1 .

2) Mode II [t1 , t2]: During this time interval, S is turned OFF
to initiates this mode. The current-flow path is shown in
Fig. 5(b). The energies of dc source Vin and magnetizing
inductor Lm are transferred to capacitors C1 , Co , and load
R. Similarly, capacitors C2 and C5 are discharged in series
with dc source Vin and magnetizing inductor Lm to capac-
itor Co and load R. The energy of magnetizing inductor
Lm is transferred to capacitors C3 and C4 by coil Ns . This
mode is ended when the energy stored in Lm is empty at
t = t2 .

3) Mode III [t2 , t3]: During this time interval, S remains
OFF. The current-flow path is shown in Fig. 5(c). Since
the energy stored in Lm is empty, the energy stored in Co

is discharged to load R. This mode is ended when S is
turned ON at t = t3 .

Fig. 5. Current-flow path of operating modes during one switching period at
DCM operation. (a) Modes I. (b) Mode II. (c) Modes III.

III. STEADY-STATE ANALYSIS OF THE PROPOSED CONVERTER

A. CCM Operation

At modes IV and V, the energy of the leakage inductor Lk is
released to capacitor C1 . According to [19], the energy released
duty cycle Dc 1 can be expressed as

Dc1 =
tc1

Ts
=

2(1 − D)
n + 1

(1)

where tc1 is the time interval of the energy of a leakage inductor
recycled by capacitor C1 .

By applying the volt-second balance principle of Lk , the volt-
age across capacitor C1 can be expressed as

Vc1 =
D

1 − D
· Vin · (1 + k) + (1 − k)n

2
. (2)

Since the time durations of modes I, III, and IV are sig-
nificantly short, only modes II and V are considered at CCM
operation for the steady-state analysis.
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In the time duration of mode II, the following equations can
be written based on Fig. 3(b):

vII
L1 =

Lm

Lm + Lk1
Vin = kVin (3)

vII
L2 = nvII

L1 = nkVin . (4)

Also, the voltage across capacitors C2 and C5 can be written
as

Vc2 = vII
L2 + Vc3 (5)

Vc5 = vII
L2 + Vc4 . (6)

During the time duration of modes V, the following equations
can be formulated based on Fig. 3(e):

vV
L2 = Vin + Vc1 + Vc2 + Vc5 − Vo (7)

vV
L2 = −Vc3 = −Vc4 . (8)

The voltage across magnetizing inductor Lm can be derived
from (6)

vV
L1 =

vVI
L2

n
=

Vin + Vc1 + Vc2 + Vc5 − Vo

n
. (9)

By applying the volt-second balance principle on Ns , the
following equation is given:

∫ DTs

0
vII

L2dt +
∫ Ts

DTs

vV
L2dt = 0. (10)

Substituting (4) and (8) into (10), the voltages of capacitors
C2 and C5 are obtained as

Vc3 = Vc4 =
Dnk

1 − D
Vin . (11)

And substituting (11) into (5) and (6), the voltage across
capacitors C2 and C5 can expressed as

Vc2 = Vc5 =
(

nk +
Dnk

1 − D

)
Vin . (12)

Also, using the volt-second balance principle on Np , the fol-
lowing equation is given:

∫ DTs

0
vII

L1dt +
∫ Ts

DTs

vV
L1dt = 0. (13)

Substituting (2), (3), (9), (11), and (12) into (13), the voltage
gain is obtained as

MCCM =
1 + nk(2 + D)

1 − D
+

D

1 − D
· (1 − k)(n − 1)

2
. (14)

The schematic of the voltage gain versus the duty ratio under
various coupling coefficients of the coupled inductor is shown
in Fig. 6. It illustrates that the coupling coefficient results in the
decline of voltage gain. However, voltage gain is less sensitive
to the coupling coefficient. When k = 1, the ideal voltage gain
is written as

MCCM =
1 + 2n + nD

1 − D
. (15)

In Fig. 7, the curve shows the voltage gain versus the duty ratio
of the proposed converter, and the converters in [26] and [27] at

Fig. 6. Voltage gain versus duty ratio at CCM operation under n = 3 and
various k.

Fig. 7. Voltage gain versus duty ratio of the proposed converter, and the
converters in [26] and [27] at CCM operation under n = 3 and k = 1.

CCM operation under k = 1 and n = 3. Since the coupled induc-
tor is worked as flyback and forward converters, voltage gain
of the proposed converter is higher than that of the converters
in [26] and [27]. Moreover, the utilization rate of the magnetic
core of the coupled inductor can be improved.

B. DCM Operation

In DCM operation, three modes are discussed. The typical
waveforms are shown in Fig. 4. In the time duration of mode
I, switch S is turned ON. Thus, the following equations can be
formulated based on Fig. 5(a):

vI
L1 = Vin (16)

vI
L2 = nVin . (17)

The peak value of the magnetizing-inductor current is given
as

ILmp =
Vin

Lm
DTs. (18)

Furthermore, the voltage across capacitors C2 and C3 can be
written as

Vc2 = vI
L2 + Vc3 (19)

Vc5 = vI
L2 + Vc4 . (20)
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In the time interval of mode II, the following equations can
be expressed based on Fig. 5(b):

vII
L1 = −Vc1 (21)

vII
L2 = Vin + Vc1 + Vc2 + Vc5 − Vo. (22)

Also, the voltage across capacitors C3 and C4 is expressed as

Vc3 = Vc4 = −vII
L2 . (23)

During the time interval of mode III, the following equation
can be derived from Fig. 5(c):

vIII
L1 = vIII

L2 = 0. (24)

By applying the volt-second balance principle on the coupled
inductor, the following equations are given as
∫ DTs

0
vI

L1dt +
∫ (D+DL )Ts

DTs

vII
L1dt +

∫ Ts

(D+DL )Ts

vIII
L1dt = 0

(25)
∫ DTs

0
vI

L2dt +
∫ (D+DL )Ts

DTs

vII
L2dt +

∫ Ts

(D+DL )Ts

vIII
L2dt = 0.

(26)

Substituting (17), (23), and (24) into (26), the voltage is ob-
tained as

Vc3 = Vc4 =
nD

DL
Vin . (27)

Similarly, substituting (16), (19), (20), (21), (22), (24), and
(27) into (25), the voltage across capacitors C1 , C2 , and C5 is
derived as

Vc1 =
D

DL
Vin (28)

Vc2 = Vc5 =
(

n+
nD

DL

)
Vin . (29)

Also, the voltage gain is expressed as

Vo =
[

D

DL
(3n + 1) + (2n + 1)

]
Vin . (30)

According to (30), the duty cycle DL can be derived as

DL =
(1 + 3n)DVin

Vo − (1 + 2n)Vin
. (31)

From Fig. 4, the average value of ico is computed as

Ico =
1
2
DL

ILmp

3n + 1
− Io . (32)

Since Ico is equal to zero under steady state, (18), (31), and
Ico = 0 can be substituted to (32). Thus, (32) can be rewritten
as follows:

D2V 2
inTs

2 [Vo − (1 + 2n)Vin ] Lm
=

Vo

R
. (33)

Then, the normalized magnetizing-inductor time constant is
defined as

τLm ≡ Lm

RTs
=

Lm fs

R
(34)

Fig. 8. Voltage gain versus duty ratio at DCM operation under various τ Lm

and at CCM operation under n = 3 and k = 1.

Fig. 9. Boundary condition of the proposed converter under n = 3.

where fs is the switching frequency.
Substituting (34) into (33), the voltage gain is given by

MDCM =
Vo

Vin
=

1 + 2n
2

+

√
(1 + 2n)2

4
+

D2

2τLm
. (35)

The curve of the voltage gain is shown in Fig. 8 which illus-
trates the voltage gain versus the duty ratio under various τLm .

C. Boundary Operating Condition Between CCM and DCM

If the proposed converter is operated in boundary condition
mode, the voltage gain of CCM operation is equal to the voltage
gain of DCM operation. The boundary normalized magnetizing-
inductor time constant τLmB can be derived from (15) and (35)
as

τLmB =
D(1 − D)2

2(1 + 3n)(1 + 2n + nD)
. (36)

The curve of τLmB is plotted in Fig. 9. If τLm is larger than
τLmB , the proposed converter is operated in CCM.
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D. Voltage Stress and Current Stress on Power Devices

Based on the description of operating modes in CCM, the
voltage stresses of S is expressed as

VDS = Vin + Vc1 =
1

1 − D
Vin =

Vo + nVin

3n + 1
. (37)

Also, the voltage stress of diodes D1–D5 and Do in Fig. 3(c)
and (e) are expressed as

VD1 = Vin + Vc1 =
1

1 − D
Vin =

Vo + nVin

3n + 1
(38)

VD3 = nVin + Vc3 =
n

1 − D
Vin =

n

3n + 1
(Vo + nVin ) (39)

VD4 = nVin + Vc4 =
n

1 − D
Vin =

n

3n + 1
(Vo + nVin ) (40)

VD2 = Vc2 =
n

1 − D
Vin =

n

3n + 1
(Vo + nVin) (41)

VD5 = Vc5 =
n

1 − D
Vin =

n

3n + 1
(Vo + nVin) (42)

VDo = Vo − Vin − Vc3 − Vc5 =
n

1 − D
Vin

=
n

3n + 1
(Vo + nVin). (43)

Under the BCM condition, the average current on the diode
Do is equal to output current Io when switch S is OFF. The
following equations can be derived as

(1 − D)TsiDo(peak)

2
1
Ts

= Io (44)

Io = Ic2(off ) = Ic5(off ) (45)

where Io is the boundary current.
According to the current-balance principle on capacitors C2

and C5 , the following equation can be derived as
∫ DTs

0
Ic2(on)dt +

∫ Ts

DTs

Ic2(off )dt = 0 (46)

∫ DTs

0
Ic5(on)dt +

∫ Ts

DTs

Ic5(off )dt = 0. (47)

Substituting (45) into (46) and (47), the following equation is
derived as switch is ON:

Ic2(on) = Ic5(on) =
1 − D

D
Io. (48)

Also, the energies of C2 and C5 are provided by capacitors
C3 and C4 . The following equation can be derived as

Ic3(on) = Ic2(on) =
1 − D

D
Io (49)

Ic4(on) = Ic5(on) =
1 − D

D
Io. (50)

Using the current-balance principle on capacitors C3 and C4 ,
the current is derived as

Ic3(off ) = Ic4(off ) = Io . (51)

The average current of diodes D2–D5 can be derived from
charged current of capacitors C2–C5 . Thus, the following equa-
tions are given as

DTsiD2(peak)

2
1
Ts

= Ic2(off ) (52)

DTsiD5(peak)

2
1
Ts

= Ic5(off ) (53)

(1 − D)TsiD3(peak)

2
1
Ts

= Ic3(off ) (54)

(1 − D)TsiD4(peak)

2
1
Ts

= Ic4(off ) . (55)

Substituting (45) and (54) into (44), (52), (53), (54), and (55),
the peak current of diodes is expressed as

iD2(peak) = iD5(peak) =
2Vo

DR
(56)

iD3(peak) = iD4(peak) = iDo(peak) =
2Vo

(1 − D)R
. (57)

The current flow through the switch based on Fig. 3(b) is
expressed as

ids(peak) = n(ID2(peak) + ID5(peak)) + ILmp . (58)

Also, when the switch is turned OFF, the peak current of the
switch is equal to the current of diode D1 .

Substituting (32) and (56) into (58), the peak current values
of the switch and diode D1 are expressed as

ids(peak) = iD1(peak) =
2(D + Dn + 2n)Vo

(1 − D)DR
. (59)

If the converter is operating at CCM, the current stress is
modified to

iD2(peak) = iD5(peak) =
2Io(BCM)

D
+

Io − Io(BCM)

1 − D
(60)

iD3(peak) = iD4(peak) = iDo(peak) =
2Io(BCM)

(1 − D)
+

Io − Io(BCM)

D

(61)

ids(peak) = iD1(peak) =
2(D + Dn + 2n)Io(BCM)

(1 − D)D

+
(2Dn + 1 − D)(Io − Io(BCM))

D(1 − D)
. (62)

IV. DESIGN AND EXPERIMENT OF THE PROPOSED CONVERTER

To verify the performance of the proposed converter, a proto-
type circuit is implemented in the laboratory. The specifications
are as follows:

1) input dc voltage Vin : 24 V
2) output dc voltage Vo : 400 V
3) maximum output power: 200 W
4) switching frequency: 50 kHz
5) MOSFET S: IRFB4410ZPBF
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Fig. 10 Experiment results under full-load Po = 200 W.

6) Diodes D1 : MBR30100CT, D2 /D3 /D4 /D5 /Do : DESP30
7) Coupled inductor: ETD-59, core pc40, Np : Ns = 1:2,

Lm = 100 μH; Lk = 0.4 μH
8) Capacitors C1 /C2 /C3 /C4 /C5 : 22 μF/ 200 V, Co : 150 μF/

450 V.

Fig. 10 shows the measured waveforms for full-load Po =
200 W and Vin = 24 V. The proposed converter is operated in
CCM under full-load condition. In the measured waveforms, Vds
is clamped at appropriately 93 V during the switch-off period.
The waveforms demonstrate that the steady-state analysis is
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Fig. 11. Experimental conversion efficiency.

correct. Therefore, the low-voltage rated switch can be adopted
to achieve high efficiency for the proposed converter.

The waveform of secondary-side current is in Fig. 10(a)
shows that the proposed converter is operated in CCM because
the current is not equal to zero when the switch is turned ON. In
Fig. 10(b), the waveforms of iD 2 and iD 3 show that capacitors
C2 and C3 are charged in different time durations. Capacitors
C2 and C5 are charged in parallel when the switch is turned
ON. Capacitors C3 and C4 are charged in parallel during the
switch-off period and capacitors C2 and C5 are discharged in
series at the same time. Fig. 10(c) shows that the energy of
leakage inductor Lk is released to capacitor C1 through diode
D1 . Fig. 10(d) reveals that Vc 1 , Vc2 , and Vc 3 satisfy (2), (11),
and (12). In addition, output voltage Vo is consistent with (15).
Fig. 10(e) shows the voltage stress of the main switch and diodes,
and demonstrates the consistency of (38), (39), (41)–(43). The
reverse-recovery problem is also alleviated by the coupled in-
ductor. Fig. 11 shows the experimental conversion efficiency of
the proposed converter. Maximum efficiency is around 95.28%
at Po = 80 W and Vin = 24 V. The full-load efficiency is appro-
priately 93.8% at Po = 200 W, Vin = 24 V, and Vout = 400 V.

V. CONCLUSION

This paper has proposed a novel high step-up dc–dc converter
with the coupled inductor and switched capacitors. The pro-
posed converter adds passive components without extra winding
stage, and uses capacitors charged in parallel and discharged in
series with a coupled inductor to achieve high step-up voltage
gain and high efficiency. The steady-state analyses of voltage
gain and boundary operating condition are discussed. Finally, a
prototype circuit of the proposed converter is implemented in the
laboratory. Experimental results verify the analysis. The conver-
sion efficiency is 95.28%. Also, the reverse-recovery problem of
diodes is alleviated by a coupled inductor. The voltage stress on
the main switches is 93 V. Low voltage ratings and low on-state
resistance levels Rds(on) switch can be selected. The proposed
converter is suitable for a low-voltage source to grid connection.
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