
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2010 201

A New VLSI Architecture of Parallel
Multiplier–Accumulator Based on Radix-2

Modified Booth Algorithm
Young-Ho Seo, Member, IEEE, and Dong-Wook Kim, Member, IEEE

Abstract—In this paper, we proposed a new architecture of
multiplier-and-accumulator (MAC) for high-speed arithmetic.
By combining multiplication with accumulation and devising a
hybrid type of carry save adder (CSA), the performance was im-
proved. Since the accumulator that has the largest delay in MAC
was merged into CSA, the overall performance was elevated. The
proposed CSA tree uses 1’s-complement-based radix-2 modified
Booth’s algorithm (MBA) and has the modified array for the sign
extension in order to increase the bit density of the operands.
The CSA propagates the carries to the least significant bits of the
partial products and generates the least significant bits in advance
to decrease the number of the input bits of the final adder. Also,
the proposed MAC accumulates the intermediate results in the
type of sum and carry bits instead of the output of the final adder,
which made it possible to optimize the pipeline scheme to improve
the performance. The proposed architecture was synthesized with
250, 180 and 130 m, and 90 nm standard CMOS library. Based
on the theoretical and experimental estimation, we analyzed the
results such as the amount of hardware resources, delay, and
pipelining scheme. We used Sakurai’s alpha power law for the
delay modeling. The proposed MAC showed the superior proper-
ties to the standard design in many ways and performance twice
as much as the previous research in the similar clock frequency.
We expect that the proposed MAC can be adapted to various fields
requiring high performance such as the signal processing areas.

Index Terms—Booth multiplier, carry save adder (CSA) tree,
computer arithmetic, digital signal processing (DSP), multiplier-
and-accumulator (MAC).

I. INTRODUCTION

W ITH the recent rapid advances in multimedia and com-
munication systems, real-time signal processings like

audio signal processing, video/image processing, or large-ca-
pacity data processing are increasingly being demanded. The
multiplier and multiplier-and-accumulator (MAC) [1] are the
essential elements of the digital signal processing such as fil-
tering, convolution, and inner products. Most digital signal pro-
cessing methods use nonlinear functions such as discrete cosine
transform (DCT) [2] or discrete wavelet transform (DWT) [3].
Because they are basically accomplished by repetitive applica-
tion of multiplication and addition, the speed of the multipli-
cation and addition arithmetics determines the execution speed

Manuscript received June 23, 2008; revised October 14, 2008. First published
November 17, 2009; current version published January 20, 2010. This work was
supported by the IT R&D program of MKE/IITA. [2009-S-001-01, Signal Pro-
cessing Elements and their SoC Developments to Realize the Integrated Service
System for Interactive Digital Holograms.]

The authors are with Kwangwoon University, Seoul 139-701, Korea.
Digital Object Identifier 10.1109/TVLSI.2008.2009113

and performance of the entire calculation. Because the mul-
tiplier requires the longest delay among the basic operational
blocks in digital system, the critical path is determined by the
multiplier, in general. For high-speed multiplication, the mod-
ified radix-4 Booth’s algorithm (MBA) [4] is commonly used.
However, this cannot completely solve the problem due to the
long critical path for multiplication [5], [6].

In general, a multiplier uses Booth’s algorithm [7] and array
of full adders (FAs), or Wallace tree [8] instead of the array
of FAs., i.e., this multiplier mainly consists of the three parts:
Booth encoder, a tree to compress the partial products such as
Wallace tree, and final adder [9], [10]. Because Wallace tree is
to add the partial products from encoder as parallel as possible,
its operation time is proportional to , where is the
number of inputs. It uses the fact that counting the number of 1’s
among the inputs reduces the number of outputs into . In
real implementation, many (3:2) or (7:3) counters are used to
reduce the number of outputs in each pipeline step. The most
effective way to increase the speed of a multiplier is to reduce
the number of the partial products because multiplication pro-
ceeds a series of additions for the partial products. To reduce
the number of calculation steps for the partial products, MBA
algorithm has been applied mostly where Wallace tree has taken
the role of increasing the speed to add the partial products. To
increase the speed of the MBA algorithm, many parallel multi-
plication architectures have been researched [11]–[13]. Among
them, the architectures based on the Baugh–Wooley algorithm
(BWA) have been developed and they have been applied to var-
ious digital filtering calculations [14]–[16].

One of the most advanced types of MAC for general-purpose
digital signal processing has been proposed by Elguibaly [17].
It is an architecture in which accumulation has been combined
with the carry save adder (CSA) tree that compresses partial
products. In the architecture proposed in [17], the critical path
was reduced by eliminating the adder for accumulation and de-
creasing the number of input bits in the final adder. While it
has a better performance because of the reduced critical path
compared to the previous MAC architectures, there is a need
to improve the output rate due to the use of the final adder re-
sults for accumulation. An architecture to merge the adder block
to the accumulator register in the MAC operator was proposed
in [18] to provide the possibility of using two separate /2-bit
adders instead of one -bit adder to accumulate the -bit MAC
results. Recently, Zicari proposed an architecture that took a
merging technique to fully utilize the 4–2 compressor [19]. It

1063-8210/$26.00 © 2009 IEEE

202 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2010

Fig. 1. Basic arithmetic steps of multiplication and accumulation.

also took this compressor as the basic building blocks for the
multiplication circuit.

In this paper, a new architecture for a high-speed MAC is
proposed. In this MAC, the computations of multiplication and
accumulation are combined and a hybrid-type CSA structure
is proposed to reduce the critical path and improve the output
rate. It uses MBA algorithm based on 1’s complement number
system. A modified array structure for the sign bits is used to
increase the density of the operands. A carry look-ahead adder
(CLA) is inserted in the CSA tree to reduce the number of bits in
the final adder. In addition, in order to increase the output rate
by optimizing the pipeline efficiency, intermediate calculation
results are accumulated in the form of sum and carry instead of
the final adder outputs.

This paper is organized as follows. In Section II, a simple
introduction of a general MAC will be given, and the architec-
ture for the proposed MAC will be described in Section III. In
Section IV, the implementation result will be analyzed and the
characteristic of the proposed MAC will be shown. Finally, the
conclusion will be given in Section V.

II. OVERVIEW OF MAC

In this section, basic MAC operation is introduced. A mul-
tiplier can be divided into three operational steps. The first is
radix-2 Booth encoding in which a partial product is generated
from the multiplicand and the multiplier . The second
is adder array or partial product compression to add all partial
products and convert them into the form of sum and carry. The
last is the final addition in which the final multiplication result
is produced by adding the sum and the carry. If the process to
accumulate the multiplied results is included, a MAC consists
of four steps, as shown in Fig. 1, which shows the operational
steps explicitly.

A general hardware architecture of this MAC is shown in
Fig. 2. It executes the multiplication operation by multiplying
the input multiplier and the multiplicand . This is added to
the previous multiplication result as the accumulation step.

Fig. 2. Hardware architecture of general MAC.

The -bit 2’s complement binary number can be expressed
as

(1)

If (1) is expressed in base-4 type redundant sign digit form in
order to apply the radix-2 Booth’s algorithm, it would be [7].

(2)

(3)

If (2) is used, multiplication can be expressed as

(4)

If these equations are used, the afore-mentioned multiplica-
tion–accumulation results can be expressed as

(5)

Each of the two terms on the right-hand side of (5) is calcu-
lated independently and the final result is produced by adding
the two results. The MAC architecture implemented by (5) is
called the standard design [6].

If -bit data are multiplied, the number of the generated par-
tial products is proportional to . In order to add them serially,
the execution time is also proportional to . The architecture of
a multiplier, which is the fastest, uses radix-2 Booth encoding
that generates partial products and a Wallace tree based on CSA
as the adder array to add the partial products. If radix-2 Booth
encoding is used, the number of partial products, i.e., the inputs
to the Wallace tree, is reduced to half, resulting in the decrease
in CSA tree step. In addition, the signed multiplication based on
2’s complement numbers is also possible. Due to these reasons,
most current used multipliers adopt the Booth encoding.

III. PROPOSED MAC ARCHITECTURE

In this section, the expression for the new arithmetic will be
derived from equations of the standard design. From this result,

SEO AND KIM: NEW VLSI ARCHITECTURE OF PARALLEL MULTIPLIER–ACCUMULATOR 203

VLSI architecture for the new MAC will be proposed. In addi-
tion, a hybrid-typed CSA architecture that can satisfy the oper-
ation of the proposed MAC will be proposed.

A. Derivation of MAC Arithmetic

1) Basic Concept: If an operation to multiply two -bit
numbers and accumulate into a 2 -bit number is considered,
the critical path is determined by the 2 -bit accumulation op-
eration. If a pipeline scheme is applied for each step in the stan-
dard design of Fig. 1, the delay of the last accumulator must
be reduced in order to improve the performance of the MAC.
The overall performance of the proposed MAC is improved by
eliminating the accumulator itself by combining it with the CSA
function. If the accumulator has been eliminated, the critical
path is then determined by the final adder in the multiplier. The
basic method to improve the performance of the final adder is to
decrease the number of input bits. In order to reduce this number
of input bits, the multiple partial products are compressed into a
sum and a carry by CSA. The number of bits of sums and carries
to be transferred to the final adder is reduced by adding the lower
bits of sums and carries in advance within the range in which
the overall performance will not be degraded. A 2-bit CLA is
used to add the lower bits in the CSA. In addition, to increase
the output rate when pipelining is applied, the sums and carrys
from the CSA are accumulated instead of the outputs from the
final adder in the manner that the sum and carry from the CSA
in the previous cycle are inputted to CSA. Due to this feedback
of both sum and carry, the number of inputs to CSA increases,
compared to the standard design and [17]. In order to efficiently
solve the increase in the amount of data, a CSA architecture is
modified to treat the sign bit.

2) Equation Derivation: The aforementioned concept is ap-
plied to (5) to express the proposed MAC arithmetic. Then, the
multiplication would be transferred to a hardware architecture
that complies with the proposed concept, in which the feedback
value for accumulation will be modified and expanded for the
new MAC.

First, if the multiplication in (4) is decomposed and rear-
ranged, it becomes

(6)

If (6) is divided into the first partial product, sum of the middle
partial products, and the final partial product, it can be reex-
pressed as (7). The reason for separating the partial product ad-
dition as (7) is that three types of data are fed back for accumu-
lation, which are the sum, the carry, and the preadded results of
the sum and carry from lower bits

(7)

Now, the proposed concept is applied to in (5). If is first
divided into upper and lower bits and rearranged, (8) will be
derived. The first term of the right-hand side in (8) corresponds
to the upper bits. It is the value that is fed back as the sum and
the carry. The second term corresponds to the lower bits and is

Fig. 3. Proposed arithmetic operation of multiplication and accumulation.

Fig. 4. Hardware architecture of the proposed MAC.

the value that is fed back as the addition result for the sum and
carry

(8)

The second term can be separated further into the carry term
and sum term as

(9)

Thus, (8) is finally separated into three terms as

(10)

If (7) and (10) are used, the MAC arithmetic in (5) can be
expressed as

(11)

If each term of (11) is matched to the bit position and rear-
ranged, it can be expressed as (12), which is the final equation
for the proposed MAC. The first parenthesis on the right is the
operation to accumulate the first partial product with the added
result of the sum and the carry. The second parenthesis is the

204 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2010

Fig. 5. Architecture of the proposed CSA tree.

one to accumulate the middle partial products with the sum of
the CSA that was fed back. Finally, the third parenthesis ex-
presses the operation to accumulate the last partial product with
the carry of the CSA

(12)

B. Proposed MAC Architecture

If the MAC process proposed in the previous section is rear-
ranged, it would be as Fig. 3, in which the MAC is organized
into three steps. When compared with Fig. 1, it is easy to iden-
tify the difference that the accumulation has been merged into
the process of adding the partial products. Another big differ-
ence from Fig. 1 is that the final addition process in step 3 is not
always run even though it does not appear explicitly in Fig. 3.
Since accumulation is carried out using the result from step 2 in-
stead of that from step 3, step 3 does not have to be run until the
point at which the result for the final accumulation is needed.

The hardware architecture of the MAC to satisfy the process
in Fig. 3 is shown in Fig. 4. The -bit MAC inputs, and , are
converted into an -bit partial product by passing through
the Booth encoder. In the CSA and accumulator, accumulation
is carried out along with the addition of the partial products. As
a result, -bit , and (the result from adding the lower bits
of the sum and carry) are generated. These three values are fed
back and used for the next accumulation. If the final result for
the MAC is needed, is generated by adding and

in the final adder and combined with that was
already generated.

C. Proposed CSA Architecture

The architecture of the hybrid-type CSA that complies with
the operation of the proposed MAC is shown in Fig. 5, which
performs 8 8-bit operation. It was formed based on (12). In
Fig. 5, is to simplify the sign expansion and is to com-
pensate 1’s complement number into 2’s complement number.

and correspond to the th bit of the feedback sum and
carry. is the th bit of the sum of the lower bits for each
partial product that were added in advance and is the pre-
vious result. In addition, corresponds to the th bit of the
th partial product. Since the multiplier is for 8 bits, totally four

partial products are generated from the
Booth encoder. In (11), and correspond to

and , respectively. This CSA requires at least
four rows of FAs for the four partial products. Thus, totally five
FA rows are necessary since one more level of rows are needed
for accumulation. For an -bit MAC operation, the level
of CSA is . The white square in Fig. 5 represents an
FA and the gray square is a half adder (HA). The rectangular
symbol with five inputs is a 2-bit CLA with a carry input.

The critical path in this CSA is determined by the 2-bit CLA.
It is also possible to use FAs to implement the CSA without
CLA. However, if the lower bits of the previously generated
partial product are not processed in advance by the CLAs, the
number of bits for the final adder will increase. When the entire
multiplier or MAC is considered, it degrades the performance.

In Table I, the characteristics of the proposed CSA architec-
ture have been summarized and briefly compared with other ar-
chitectures. For the number system, the proposed CSA uses 1’s

SEO AND KIM: NEW VLSI ARCHITECTURE OF PARALLEL MULTIPLIER–ACCUMULATOR 205

TABLE I
CHARACTERISTICS OF CSA

TABLE II
CALCULATION OF HADWARE RESOURCE

complement, but ours uses a modified CSA array without sign
extension. The biggest difference between ours and the others
is the type of values that is fed back for accumulation. Ours has
the smallest number of inputs to the final adder.

IV. IMPLEMENTATION AND EXPERIMENT

In this section, the proposed MAC is implemented and
analyzed. Then it would be compared with some previous
researches. First, the amount of used resources in implementing
in hardware is analyzed theoretically and experimentally, then
the delay of the hardware is analyzed by simplifying Sakurai’s
alpha power law [20]. Finally, the pipeline stage is defined and
the performance is analyzed based on this pipelining scheme.
Implementation result from each section will be compared with
the standard design [6] and Elguibaly’s design [17], each of
which has the most representative parallel MBA architecture.

A. Hardware Resource

1) Analysis of Hardware Resource: The three architec-
ture mentioned before are analyzed to compare the hardware
resources and the results are given in Table II. In calculating
the amount of the hardware resources, the resources for Booth
encoder is excluded by assuming that the identical ones were
used for all the designs. The hardware resources in Table II are
the results from counting all the logic elements for a general
16-bit architecture. The 90 nm CMOS HVT standard cell library
from TSMC was used as the hardware library for the 16 bits. The
gate count for each design was obtained by synthesizing the logic
elements in an optimal form and the result was generated by mul-
tiplying it with the estimated number of hardware resources. The
gate counts for the circuit elements obtained through synthesis
are shown in Table III, which are based on a two-input NAND gate.

Let us examine the gate count for several elements in Table III
first. Since the gate count is 3.2 for HA and 6.7 for FA, FA is
about twice as large as HA. Because the gate count for a 2-bit

TABLE III
GATE SIZE OF LOGIC CIRCUIT ELEMENT

TABLE IV
ESTIMATION OF GATE SIZE BY SYNTHESIS

CLA is 7, it is slightly larger than FA. In other words, even if a
2-bit CLA is used to add the lower bits of the partial products in
the proposed CSA architecture, it can be seen that the hardware
resources will not increase significantly.

As Table II shows, the standard design uses the most hard-
ware resources and the proposed architecture uses the least. The
proposed architecture has optimized the resources for the CSA
by using both FA and HA. By reducing the number of input bits
to the final adder, the gate count of the final adder was reduced
from 109.5 in [17] to 97.

2) Gate Count by Synthesis: The proposed MAC and [17]
were implemented in register-transfer level (RTL) using hard-
ware description language (HDL). The designed circuits were
synthesized using the Design Complier from Synopsys, Inc.,
and the gate counts for the resulting netlists were measured and
summarized in Table IV. The circuits in Table IV are for 16-bit
MACs. In order to examine the various circuit characteristics
for different CMOS processes, the most popular four process
libraries (0.25, 0.18, 0.13 m, 90 nm) for manufacturing dig-
ital semiconductors were used. It can be seen that the finer the
process is, the smaller the number of gates is.

As shown in Table II, the gate count for our architecture is
slightly smaller than that in [17]. It must be kept in mind that if
a circuit is implemented as part of a larger circuit, the number of
gates may change depending on the timing for the entire circuit
and the electric environments even though identical constraints
were applied in the synthesis. The results in Table IV were for
the combinational circuits without sequential element. The total
gate count is equal to the sum of the Booth encoder, the CSA,
and the final adder.

206 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2010

TABLE V
NORMALIZED CAPACITANCE AND GATE DELAY

�� � �� � � ��� � � � ���� ��	�

TABLE VI
DELAY TIME ANALYSIS AND COMPARISON

B. Delay Model

1) Modeling: In this paper, Sakurai’s alpha power law [20] is
used to estimate the delay. Because CMOS process is used and
the interconnect delay that is not due to gates related to logic
operation is ignored, was used. The delay by simplifying
the alpha power law was modeled in [17]. order for easy com-
parisons with other architectures, the modeled values identical
to [17] are used in this paper. The normalized input capacitance

and gate delay for the hardware building blocks with
these modeled values are shown in Table V.

In Table II, is the ratio of the saturation velocity. and
are the load gate capacitance and gate capacitance of the

minimum-area transistor, respectively. is the duration time
and is the falling time of the minimum-area inverter due to

. Since delay modeling and its simplification process is not
the focus of this paper, it will not be described in detail here. For
additional description, refer to [17] and [20].

2) Delay Analysis: The results of delay modeling for the
Booth encoder , the CSA , and the final adder
using Table VI and [17] and [20] are given in (13)–(16). In (13),

, and represent the select logic delay, buffer delay, and
MUX delay, respectively

(13)

(14)

(15)

Fig. 6. Pipelined hardware structure. (a) Proposed structure. (b) Elguibaly’s
structure.

(16)

The delays in Table VI were obtained using the hardware
resources in Table II and the gate delays in Table V. From
Table VI, it is easily recognizable that the delay of [6] is con-
siderably larger than others. The proposed architecture uses the
same Booth encoder as in [17] and the delay is also identical
to . Because the critical path for the CSA tree is
determined by the 2-bit CLA, the delay is proportional to it.
The proposed architecture has one more 2-bit CLA compared
to [17], as shown in Table II where the delay is greater by 67.1.
The number of input bits for the final adder is less by one in our
architecture and the delay is also faster by 57.2.

If pipelining is applied for each step, the critical path for the
proposed architecture is 33.55 and it corresponds to the value
of 536.8 for 16-bit MAC. If clock speed is simply considered,
the characteristic for the proposed architecture may seem infe-
rior to [17]. However, if the performance of the actual output
rate is considered, it can be verified that the proposed architec-
ture is superior. The reason will be explained in detail in the next
section with the pipelining scheme.

In addition, we compared the proposed architecture with that
of [18]. Because of the difficulties in comparing other factors,
only delay is compared. The sizes of both MACs were 8 8 bits
and implemented by a 0.35 m fabrication process. The delay of
ours was 3.94 , while in [18], it was it 4.26 ns, which means
that ours improved about 7.5% of the speed performance. This
improvement is mainly due to the final adder. The architecture
from [18] should include a final adder with the size of 2 to per-
form an multiplication. It means that the operational bot-
tleneck is induced in the final adder no matter how much delays

SEO AND KIM: NEW VLSI ARCHITECTURE OF PARALLEL MULTIPLIER–ACCUMULATOR 207

Fig. 7. Pipelined operational sequence. (a) Elguibaly’s operation. (b) Proposed operation.

TABLE VII
PIPELINE STAGE

TABLE VIII
PIPELINE AND PERFORMANCE ANALYSIS

are reduced in the multiplication or accumulation step, which
is the general problem in designing a multiplier. However, our
design uses -bit final adder, which causes the speed im-
provement. This improvement is getting bigger as the number
of input bits increases.

C. Pipelining

1) Stage Analysis: The pipeline stages were determined
based on the delay modeling obtained earlier. step 1 and step
2 in Fig. 3 that correspond to the Booth encoding and CSA
operation, respectively, are set to stage 1 and step 3, which
correspond to the final adder and are set to stage 2. Such
pipeline stage can be organized as shown in Table VII and the
clock frequency is determined by this result.

In Table VII, it can be seen that CSA can operate at a higher
clock rate in [17] compared to the proposed architecture. How-
ever, it does not mean that the overall MAC performance is
better. The reason why the proposed architecture has slightly
higher delay and hardware resources is that the focus of ours
has been on the overall performance. This will be examined in
detail in the next section.

2) Pipeline Structure and Operation: A hardware incorpo-
rates a pipelining scheme to increase the operation speed and
ours did too, which is shown in Fig. 6(a), with the one from
Elguibaly’s scheme [17] in Fig. 6(b) for the purpose of compar-
ison. The difference between the two is because ours carries out
the accumulation by feeding back the final CSA outputs rather
than the final adder results as in Fig. 6(b).

Fig. 8. Timing analysis of the synthesized circuits. (a) 90 nm. (b) 0.13 �m. (c)
0.18 �m. (d) 0.25 �m.

These two schemes are also compared in the time sequence
in Fig. 7(a) and (b) for Fig. 6(a) and (b), respectively. While
an accumulated result cannot be output by the method in [17]
every clock period because of a structural drawback for the ac-
cumulation, ours can output a result in every clock cycle. Thus,
even though our delay is a little longer than [17], as shown in
Table VII or Table VIII, ours shows much better overall perfor-
mance or the output rate.

3) Timing Analysis: After synthesizing using 0.25, 0.18,
0.13, and 0.09 m processes, static timing analyses (STAs)
were performed and the results are shown in Fig. 8 graphically.
This result is an important result for the physical synthesis
and placement and routing (P & R) process in actual chip
production. In this figure, the frequencies in axis mean the
target frequencies of the constraints imposed in synthesis and
the times in axis are the timing margins (slacks), i.e., we
observed the timing margins increasing target frequency from
80 to 200 MHz.

The finer the process is, the more timing margin (slack) for
STA the proposed MAC needs compared to [17]. Especially for

208 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2010

the 90 nm process, the design compiler can execute more de-
tailed and precise synthesis and optimization if the data path
and structure for the designed circuit are more structural and
regular. This is because it becomes easier for the design com-
piler to repeat the process of mapping various cells and carrying
out STA in order to generate good circuit satisfying the condi-
tions in the constraint. It requires more diverse driving forces to
drive the standard cells. Fig. 8(d) has the biggest slack time that
is over 20%. In general, if the correlation between EDA tools
used during the back-end process is assumed to be 5% and a
timing margin is greater than ns, further optimization is not
needed for the later physical synthesis and P&R process. It can
also easily overcome the routing congestion that is a very fre-
quently occurring problem.

If the STA result is considered with synthesis, it can be
concluded that the proposed architecture is very structural and
regular.

V. CONCLUSION

In this paper, a new MAC architecture to execute the mul-
tiplication-accumulation operation, which is the key operation,
for digital signal processing and multimedia information pro-
cessing efficiently, was proposed. By removing the independent
accumulation process that has the largest delay and merging it
to the compression process of the partial products, the overall
MAC performance has been improved almost twice as much as
in the previous work.

The proposed hardware was implemented and synthesized
through four types of CMOS processes. When examination
is based on theoretical and experimental results, the proposed
MAC required the hardware resources as much as the previous
research. The delay was modeled using Sakurai’s alpha power
law. While the delay has been increased slightly compared to
the previous research, actual performance has been increased
to about twice if the pipeline is incorporated.

Consequently, we can expect that the proposed architecture
can be used effectively in the area requiring high throughput
such as a real-time digital signal processing.

REFERENCES

[1] J. J. F. Cavanagh, Digital Computer Arithmetic. New York: McGraw-
Hill, 1984.

[2] Information Technology-Coding of Moving Picture and Associated
Autio, MPEG-2 Draft International Standard, ISO/IEC 13818-1, 2, 3,
1994.

[3] JPEG 2000 Part I Fina1119l Draft, ISO/IEC JTC1/SC29 WG1.
[4] O. L. MacSorley, “High speed arithmetic in binary computers,” Proc.

IRE, vol. 49, pp. 67–91, Jan. 1961.
[5] S. Waser and M. J. Flynn, Introduction to Arithmetic for Digital Sys-

tems Designers. New York: Holt, Rinehart and Winston, 1982.
[6] A. R. Omondi, Computer Arithmetic Systems. Englewood Cliffs, NJ:

Prentice-Hall, 1994.
[7] A. D. Booth, “A signed binary multiplication technique,” Quart. J.

Math., vol. IV, pp. 236–240, 1952.
[8] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Elec-

tron Comput., vol. EC-13, no. 1, pp. 14–17, Feb. 1964.

[9] A. R. Cooper, “Parallel architecture modified Booth multiplier,” Proc.
Inst. Electr. Eng. G, vol. 135, pp. 125–128, 1988.

[10] N. R. Shanbag and P. Juneja, “Parallel implementation of a 4� 4-bit
multiplier using modified Booth’s algorithm,” IEEE J. Solid-State Cir-
cuits, vol. 23, no. 4, pp. 1010–1013, Aug. 1988.

[11] G. Goto, T. Sato, M. Nakajima, and T. Sukemura, “A 54� 54 regular
structured tree multiplier,” IEEE J. Solid-State Circuits, vol. 27, no. 9,
pp. 1229–1236, Sep. 1992.

[12] J. Fadavi-Ardekani, “M�N Booth encoded multiplier generator using
optimized Wallace trees,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 1, no. 2, pp. 120–125, Jun. 1993.

[13] N. Ohkubo, M. Suzuki, T. Shinbo, T. Yamanaka, A. Shimizu, K.
Sasaki, and Y. Nakagome, “A 4.4 ns CMOS 54� 54 multiplier using
pass-transistor multiplexer,” IEEE J. Solid-State Circuits, vol. 30, no.
3, pp. 251–257, Mar. 1995.

[14] A. Tawfik, F. Elguibaly, and P. Agathoklis, “New realization and
implementation of fixed-point IIR digital filters,” J. Circuits, Syst.,
Comput., vol. 7, no. 3, pp. 191–209, 1997.

[15] A. Tawfik, F. Elguibaly, M. N. Fahmi, E. Abdel-Raheem, and P.
Agathoklis, “High-speed area-efficient inner-product processor,” Can.
J. Electr. Comput. Eng., vol. 19, pp. 187–191, 1994.

[16] F. Elguibaly and A. Rayhan, “Overflow handling in inner-product pro-
cessors,” in Proc. IEEE Pacific Rim Conf. Commun., Comput., Signal
Process., Aug. 1997, pp. 117–120.

[17] F. Elguibaly, “A fast parallel multiplier–accumulator using the modi-
fied Booth algorithm,” IEEE Trans. Circuits Syst., vol. 27, no. 9, pp.
902–908, Sep. 2000.

[18] A. Fayed and M. Bayoumi, “A merged multiplier-accumulator for
high speed signal processing applications,” Proc. ICASSP, vol. 3, pp.
3212–3215, 2002.

[19] P. Zicari, S. Perri, P. Corsonello, and G. Cocorullo, “An optimized
adder accumulator for high speed MACs,” Proc. ASICON 2005, vol.
2, pp. 757–760, 2005.

[20] T. Sakurai and A. R. Newton, “Alpha-power law MOSFET model and
its applications to CMOS inverter delay and other formulas,” IEEE J.
Solid-State Circuits, vol. 25, no. 2, pp. 584–594, Feb. 1990.

Young-Ho Seo (M’05) received the M.S. and Ph.D.
degrees from the Department of Electronic Materials
Engineering, Kwangwoon University, Seoul, Korea,
in 2000 and 2004, respectively.

From 2003 to 2004, he was a Researcher at Korea
Electrotechnology Research Institute (KERI). He
was also a Research Professor in the Department of
Electronic and Information Engineering, Yuhan Col-
lege, Buchon, Korea. He was an Assistant Professor
in the Department of Information and Communi-
cation Engineering, Hansung University, Seoul.

He is currently an Assistant Professor in the Division of General Education,
Kwangwoon University. His current research interests include 2-D/3-D digital
image processing, system-on-a-chip design, and contents security.

Dong-Wook Kim (S’82–M’85) received the B.S.
and M.S. degrees from the Department of Electronic
Engineering, Hangyang University, Seoul, Korea, in
1983 and 1985, respectively, and the Ph.D. degree
from the Department of Electrical Engineering,
Georgia Institute of Technology, Atlanta, in 1991.

He is currently a Professor and the Dean of
Academic Affairs at Kwangwoon University, Seoul.
His current research interests include digital system
design, digital testability and design-for-test, digital
embedded systems for wired and wireless communi-

cation, and design of digital signal processors.

