
 
Examine figure 2 on page 172 of the pdf.  
 
The top drawing is a side view of the experiment. Note how the magnet is close to the disk and the 
magnetic field line go through the disk. Since the disk is so close to the magnet, the magnetic field is 
uniform throughout the disk.   
 
The bottom drawing is a top view, looking down on the Faraday Disk.  
 
As described in a prior post, the arrows next to the charge Q represent the velocity, v, at that instant of 

position and time. “e” is the elementary charge, 1.6  10-19 coulombs. The “-“ sign indicates the charge 
on an electron.  
 

“-evB” is the force on the electron due to its motion in the magnetic field. The magnetic field points in 
the “+z” direction, that is, perpendicular to the page, and toward the reader. “v” points perpendicular to 

a radius, consistent with circular motion. The arrow associated with “-evB” points toward the center of 
the disk, is the direction resulting from taking the vector product of the two vectors, v and B, and 
accounting for the “-“ charge of the electron.  
 
“-eE” is the electric force acting on the electron, with the arrow indicating the direction, radially away.  
 

“” is the angular velocity and the curved arrow indicates the direction of rotation. The relationship 

between the linear velocity v and the angular velocity  is v = r. while the entire disk rotates at the 

same rate, , particles close to the axis have smaller velocities, while particles further out have larger 
velocities.  
 
This is a statement of fact. Each of the four items with equals signs between them are different 
expressions for the same thing.  
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“Er” is the electric field in the radial direction. The subscript is part of the designation, not a separate 
entity. We do not know E, and therefore cannot do the integral.  
 
“Bz” is the magnetic field in the vertical direction. The subscript is part of the designation, not a separate 
entity.   
 
We know, however, the relationship between Er and Bz. The magnetic force and the electric force acting 

on the electron are equal, so Er = -Bzr, as in equation 2 on page 173.   
 

Therefore, we exchange Er with Bzr, and multiply by 2/2 to get the third item in the equation, so we 
have:   
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Now, do this integral. 

As noted above, Bz is constant at the disk, so we can take it out of the integral: 𝑉 = +
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Now we want to do the integral:  
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On the left is a disk of radius r, and on the right, the same disk with a concentric  annular ring.  
 
 
 
 
 
 
 
 
 

The circumference of the annular ring is 2r. The thickness of the annular ring is dr. This is the same dr 
as in the integral. It means the annular ring is extremely thin. The drawing is only a representation so we 

can see what’s going on. Therefore, 2r dr is the area of the annular ring. When we integrate from a=0 

to b=R, the radius of the disk, we get r2, the area of the disk.  
 

In our problem, we integrate from a to b, so we get 2(b2-a2), the area of the Faraday Disk. That is, the 
area of a disk with a hole at the center for the axel.  
 

Now we need to put back all the constants we took out of the integral: 
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Therefore: 𝑉 = +
𝜔

2𝜋
𝐵𝑧 2𝜋 (𝑏2 − 𝑎2)  

 

Since 2(b2-a2) is the area of the Faraday Disk, the magnetic flux, B is Φ𝐵 = 𝐵𝑧2𝜋 (𝑏2 − 𝑎2) 
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Replace V with curly E and one has equation 3.  
 
 
 
 
 


