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Performance Analysis of Wireless Systems With
Doubly Selective Rayleigh Fading
Jingxian Wu, Member, IEEE, and Chengshan Xiao, Senior Member, IEEE

Abstract—Theoretical error performances of wireless commu-
nication systems suffering from both doubly selective (time vary-
ing and frequency selective) Rayleigh fading and sampler timing
offset are analyzed in this paper. Single-input–single-output sys-
tems with doubly selective fading channels are equivalently rep-
resented as discrete-time single-input–multiple-output (SIMO)
systems with correlated frequency-flat fading channels, with the
correlation information being determined by the combined effects
of sampler timing phase, maximum Doppler spread, and power
delay profile of the physical fading. Based on the equivalent SIMO
system representation, closed-form error-probability expressions
are derived as tight lower bounds for linearly modulated systems
with fractionally spaced equalizers. The information on the sam-
pler timing offset and the statistical properties of the physical
channel fading, along with the effects of the fractionally spaced
equalizer, are incorporated in the error-probability expressions.
Simulation results show that the new analytical results can ac-
curately predict the error performances of maximum-likelihood
sequence estimation and maximum a posteriori equalizers for
practical wireless communication systems in a wide range of
signal-to-noise ratio. Moreover, some interesting observations
about receiver oversampling and system timing phase sensitivity
are obtained based on the new analytical results.

Index Terms—Doubly selective fading, error performance, frac-
tionally spaced equalizer, power delay profile (PDP), sensitivity,
timing phase.

I. INTRODUCTION

P ERFORMANCE analysis of wireless communication sys-
tems experiencing frequency-selective fading has been a

field of interest for a long time, e.g., see [1]–[15] and the
references therein. One of the most popular analytical methods
used for performance analysis of systems with frequency-
selective fading channels (or other trellis structured systems)
is the union-bound technique [1]–[8], with which system per-
formance upper bounds are evaluated by summing over pair-
wise error probabilities (PEPs) of mutually overlapped error
events. Based on the methods used for the computation of the
error events PEP, the union bounds are classified as the union
Chernoff bound and the true union bound (TUB) in [8].

Most of the union-bound results are for systems with symbol-
spaced equalizers, i.e., the sampling period Ts at the receiver is
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equal to the system symbol period Tsym. It is well known that
the performance of symbol-spaced systems depends critically
on the sampler timing phase [16], [17]. The timing phase sensi-
tivity of symbol-spaced equalizers is induced by the effects of
spectrum aliasing of the sampled signals, and it can be avoided
by the implementation of fractionally spaced equalizers with
Ts < Tsym [17]. The design and union bounds of a fractionally
spaced receiver with maximum-likelihood sequence estimation
(MLSE) equalizers are briefly discussed in [4]. The union-
bound technique provides an effective way to evaluate the upper
bounds of system performances. However, the results obtained
with the union bound are very loose, and the bounds usually
diverge at low SNR.

Matched filter bounds are derived in [9]–[14] by assuming
that ideal equalization is available at the receiver and that the
receive filter is perfectly matched to the composite impulse
response (CIR) of the transmit filter and the channel fading.
The matched filter bound for a simple two-ray fading channel
is analyzed in [9], and systems with general power delay
profiles (PDPs) are discussed in [10] and [13] with the help
of frequency-domain analysis and Karhunen–Loève expansion.
With ideal receiver assumptions, the matched filter bound de-
fines the best performance that may be achieved under a certain
system configuration, whereas it is usually far below the actual
error performances of systems with practical receivers.

In this paper, error performance analysis is carried out for
systems with doubly selective Rayleigh fading channels and
practical system configurations. New tight closed-form error
performance lower bounds are derived for linearly modulated
systems with both symbol-spaced equalizers and fractionally
spaced equalizers. The combined effects of the transmit filter,
receive filter, and the physical doubly selective fading are
represented as a sampling interval spaced discrete-time tapped-
delay-line filter with correlated tap coefficients, with the cor-
relation information being determined by the sampler timing
phase, maximum Doppler spread, and PDP of the physical
channel fading.

Instead of resorting to the complex trellis structure analysis
utilized in the union-bound technique, the new performance
bound is evaluated on a sample-by-sample basis with an equiv-
alent single-input–multiple-output (SIMO) system method,
where single-input–single-output (SISO) communication sys-
tems with doubly selective fading channels and additive white
Gaussian noise (AWGN) are equivalently represented as SIMO
systems with mutually correlated frequency-flat fading chan-
nels and colored Gaussian noise, with the noise correlation
introduced by the time span of the receive filter and receiver
oversampling [18]. Compared to the frequency-domain analysis
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utilized by the matched filter bound [10], a much simpler
time-domain analysis is employed in the derivation of the new
bounds. It is shown by simulations that our new analytical re-
sults can accurately predict the error performances of maximum
a posteriori (MAP) and MLSE equalizers at both low SNR
and high SNR. Moreover, it is observed in this paper that for
systems with practical PDPs, a fractionally spaced equalizer
cannot only overcome the problem of timing phase sensitivity
but can also achieve significant performance gain over systems
with symbol-spaced receivers.

The rest of this paper is organized as follows: Section II
presents a discrete-time representation of the communication
systems experiencing doubly selective fading, and the statistical
properties of the discrete-time system model are analyzed.
In Section III, an equivalent SIMO system representation is
presented to facilitate error performance analysis. Based on
an optimum decision rule proposed for the equivalent SIMO
system, closed-form expressions of the new error-probability
bounds for a system with doubly selective fading channels
are derived in Section IV. Numerical examples and simulation
results are given in Section V, and Section VI concludes
this paper.

II. DISCRETE-TIME SYSTEM MODEL

An equivalent discrete-time system model is derived in this
section for systems experiencing time-varying and frequency-
selective channel fading.

Let pT (t) and pR(t) be the time-invariant impulse response
of the transmit filter and receive filter, respectively, where both
are normalized with energy of unity. Let g(t, τ) be the time-
varying impulse response of the doubly selective fading chan-
nel, and it can be viewed as the response of the fading channel at
time t to an impulse input applied at time t− τ . We define the
continuous-time CIR of the channel as follows:

hc(t, τ) = pR(τ) � g(t, τ) � pT (τ) (1)

where

a(τ) � b(t, τ) =

+∞∫
−∞

a(µ)b(t− µ, τ − µ)dµ (2a)

a(t, τ) � b(τ) =

+∞∫
−∞

a(t, µ)b(τ − µ)dµ (2b)

represent the convolution operation of time-varying systems.
Therefore, the signal at the receiver yc(t) can be repre-
sented by

yc(t) =
+∞∑
n=−∞

s(n)hc(t, t− nTsym) + zc(t) (3)

where s(n) is the modulated information symbol with symbol
period Tsym, zc(t) = pR(t) � vc(t) is the noise component at
the output of the receive filter, and vc(t) is the zero-mean
complex-valued white Gaussian noise with variance N0. The

sampled output of the receive filter at the sampling instant
kTs + τ0 can be expressed by

y(k) =
L−1∑
l=0

x(k − l)h(k, l) + z(k) (4)

where the sampling period Ts satisfies Ts = Tsym/ν, with the
integer ν being the oversampling factor; L is the channel length
of the composite channel; τ0 ∈ [−(Ts/2), (Ts/2)] is the sam-
pler timing offset; y(k) = yc(kTs + τ0) and z(k) = zc(kTs +
τ0) are the time-shifted Ts-spaced samples of the received sig-
nals and noise components, respectively; h(k, n) = hc(kTs +
τ0, nTs + τ0) is the sampled version of the continuous-time
CIR hc(t, τ); and x(k) is the oversampled version of the
transmitted signals s(k) defined as

x(k) =
{
s(k/ν), k/ν is integer
0, otherwise.

In the representation of (4), the CIR h(k, l) is represented
as a causal finite-impulse response (FIR) filter in the delay
domain l by discarding negligible channel taps. This FIR repre-
sentation can be verified by the facts that the PDP G(µ) of the
physical fading channel has finite-time-domain support, and the
tails of the transmit filter and receive filter fall off rapidly in
the time domain. Moreover, systems with noncausal CIR can
always be made causal by appropriate delays at the receiver.

Equation (4) is a discrete-time representation of the com-
munication system, and the doubly selective fading channel
is represented as a Ts-spaced tapped-delay-line filter. It is
shown in [18] that the tap coefficients of h(k, l) are mutually
correlated in both temporal domain k and delay domain l. If the
channel experiences wide sense stationary uncorrelated scatter-
ing (WSSUS) Rayleigh fading, then the correlation function
ρ(k1 − k2; l1, l2) = E[h(k1, l1)h∗(k2, l2)] can be expressed
by [18]

ρ(k1 − k2; l1, l2) = J0 [2πfd(k1 − k2)Ts] · c(l1, l2) (5)

with

c(l1, l2) =

+∞∫
−∞

RpT pR
(l1Ts + τ0 − µ)

· R∗
pT pR

(l2Ts + τ0 − µ)G(µ)dµ (6)

where RpT pR
(t) = pT (t) � pR(t) is the convolution of the

transmit filter and receive filter, J0(x) is the zero-order Bessel
function of the first kind, fd is the maximum Doppler spread of
the channel fading, and G(µ) is the normalized channel PDP
with

∫ +∞
−∞ G(µ)dµ = 1. It needs to be pointed out [19] that

(5) holds for the condition that fdTs � 1, which is satisfied
for most practical conditions. The delay domain correlation
c(l1, l2) of the discrete-time CIR is introduced by the effects
of the time span of the filters pT (t) and pR(t), whereas the
underlying WSSUS physical fading channels are uncorrelated
in the delay domain τ . As defined in (5) and (6), the values
of the temporal-delay 2-D correlation ρ(k; l1, l2) are jointly
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determined by the maximum Doppler spread fd, the PDPG(µ)
of the physical channel fading, the sampler timing offset τ0, and
the effects of the transmit filter pT (t) and receive filter pR(t).

The noise component z(k) of the discrete-time system is
a linear transformation of the AWGN v(t); thus, it is still
Gaussian distributed with zero mean, and the autocorrelation
function is given by [18]

E [z(m+ n)z∗(m)] = N0 ·RpRpR
(nTs) (7)

where RpRpR
(nTs) =

∫ +∞
−∞ pR(nTs + τ)pR(τ)dτ is the auto-

correlation function of the receive filter. It should be noted
that the statistical properties of the noise component are not
affected by the timing offset τ0. If RpRpR

(nTs) = 0 for n �= 0,
then the discrete-time noise component z(k) is still white, and
this is valid for Tsym-spaced receivers with Nyquist filter. For
fractionally spaced receivers, z(k) becomes a colored Gaussian
noise process, and the correlation among noise samples is
introduced by the effects of oversampling and the time span of
the receive filter. It will be shown in this paper that the temporal-
delay correlation information of h(k, l) along with the noise
correlation is critical to the performances of the communica-
tion systems.

III. EQUIVALENT SYSTEM REPRESENTATION

An equivalent SIMO representation of a system with doubly
selective channel fading is presented in this section to facilitate
system error performance analysis.

Based on the discrete-time representation of the system given
in (4), the input–output relationship of the system can be written
in matrix format as

yk = hk · x(k) + H̃k · x̃k + zk (8)

where the vectors yk = [y(k), y(k + 1), . . . , y(k + L−
1)]T ∈ C

L×1; z(k) = [z(k), z(k + 1), . . . , z(k + L− 1)]T ∈
C
L×1 comprise all the received samples and noise samples

related to the transmitted symbol x(k), with AT representing
the operation of matrix transpose; hk = [h(k, 0), h(k +
1, 1), . . . , h(k + L− 1, L− 1)]T ∈ C

L×1 is the CIR vector
related to x(k); x̃k = [x(k − L+ 1), . . . , x(k − 1), x(k +
1), . . . , x(k + L− 1)]T ∈ C

2(L−1)×1 is the interference vector
relative to x(k); and H̃k is the corresponding interference CIR
matrix defined by (9), shown at the bottom of the page.

In the representation of (8), x(k) is treated as the desired
information symbol being transmitted in L parallel frequency-
flat fading channels, and the SISO system with doubly se-
lective fading channel is equivalently represented as a SIMO
system with L mutually correlated flat fading channels hk and
colored additive noise zk. The ISI components Ik = H̃kx̃k =

Fig. 1. Block diagrams of the SISO system and its equivalent SIMO system
representation. (a) Discrete-time SISO system with doubly selective fading
channel. (b) Equivalent SIMO system representation.

[I(k), I(k + 1), . . . , I(k + L− 1)]T are represented as addi-
tive interferences arising from channel components that are
irrelevant to the detection of the desired symbol x(k). The
block diagrams of the original SISO system along with its
SIMO counterpart are depicted in Fig. 1. With such system
configurations, the system error performances can be analyzed
on a samplewise basis without resorting to the trellis structure
utilized by union-bound techniques. Moreover, we are going to
show by simulations that the results obtained by this method
are more accurate than those obtained from union bound and
matched filter bound.

If the interference components, i.e., Ik = H̃kx̃k, are fully
canceled by the receiver, then the minimum error probability of
the SIMO system can be achieved through optimum combining
performed over the L correlated flat fading channels. It is
well known that MLSE equalizers and MAP equalizers are
optimum in the sense of maximizing the likelihood functions or
a posteriori probabilities of the transmitted symbols. In this
paper, we are going to show by simulations that the MLSE and
MAP equalizers are also asymptotically optimum for the equiv-
alent SIMO systems in the sense of interference cancellation,
i.e., if MAP or MLSE equalization algorithms are employed at
the receiver, the interference components Ik at the output of
the equalizers will tend to 0 when the SNR tends to infinity.
Therefore, the tight error-probability lower bounds of MLSE
and MAP equalizers can be obtained by assuming Ik = 0.

H̃k =


h(k, L− 1) · · · h(k, 1) 0 · · · 0

0 h(k + 1, L− 1) · · · h(k + 1, 2) h(k + 1, 0) 0
...

...
...

...
...

...
0 · · · 0 h(k + L− 1, L− 2) · · · h(k + L− 1, 0)

 ∈ C
L×2(L−1) (9)
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It is worth pointing out that the interference-free assump-
tion is also employed in the derivation of the matched filter
bounds [9]–[14], where ideal lower bounds are obtained by
assuming that the receive filter is perfectly matched to the
combined response of the transmit filter and channel fading.
The ideal receiver assumption makes the matched filter bounds
unachievable for most practical systems. On the other hand, by
considering the effects of practical receive filter and sampler
timing phase, the error performance bounds obtained by the
equivalent SIMO system method can accurately predict the
performance of systems with practical equalizers.

From (8), the interference-free SIMO system can be repre-
sented as

yk = hk · x(k) + zk (10)

where zk is a zero-mean colored Gaussian noise vector. The
correlation among the noise samples is introduced by the time
span of the receive filter, as expressed in (7), and the covariance
matrix of zk is Rz = E[zkzHk ] = N0 · Rp, where AH denotes
the matrix Hermitian operation, and Rp is the receive filter
correlation matrix defined by (11), shown at the bottom of
the page.

The Rayleigh fading channel vector hk contains zero-mean
complex Gaussian random variables (CGRVs) with covariance
matrix Rh = E[hkhHk ] given by (12), shown at bottom of
the page.

The correlation coefficient ρ(k; l1, l2) is defined in (5), and
it contains the information of both the temporal correlation
J0(2πfdkTs) and the delay domain correlation c(l1, l2), which
are in turn determined by the maximum Doppler spread fd,
the sampler timing offset τ0, and the PDP G(µ) of the chan-
nel fading.

Based on the statistical properties of the noise vector zk and
the CIR vector hk, the error probabilities of the communication
system are analyzed in the next section.

IV. ERROR PERFORMANCE ANALYSIS

Closed-form expressions of the symbol error rate (SER) of
linearly modulated systems are derived based on an optimum
decision rule for the interference-free SIMO system. SERs

obtained by this method are the tight lower performance bounds
of the corresponding SISO system.

A. Conditional Error Probability

The conditional error probability of linearly modulated sys-
tem is derived in this section based on an optimum decision rule
proposed for the interference-free SIMO system with colored
Gaussian noise.

For the oversampled system, the noise covariance matrix
Rz = N0Rp might be rank deficient. To facilitate analysis,
we resort to the pseudoinverse of receive filter correlation
matrix Rp. The corresponding pseudoinverse matrix Ψp can be
written as

Ψp = VΩ−1
p VH ∈ C

L×L (13)

with

V = [v1 v2 · · · vLp
] ∈ C

L×Lp (14a)

Ωp =diag[ω1 ω2 · · · ωLp
] ∈ R

Lp×Lp (14b)

where Lp is the number of nonzero eigenvalues of Rp, Ωp is
a diagonal matrix with its diagonal elements being the nonzero
eigenvalues of Rp, and the corresponding orthonormal eigen-
vectors vl, for l = 1, 2, . . . , Lp, form the reduced eigenvector
matrix V.

With the pseudoinverse matrix Ψp given in (13), we can
define the noise whitening matrix of the SIMO system as W =
VΩ−1/2

p ∈ C
L×Lp . Applying WH to both sides of the SIMO

system defined in (10), we have an equivalent system

ȳk = h̄k · x(k) + z̄k (15)

where ȳk = WHyk, h̄k = WHhk, and z̄k = WHzk are the
sample vector, channel vector, and noise vector of the equiv-
alent system, respectively. The noise vector z̄k is obtained
from the linear transformation of the colored Gaussian vector
zk ∼ N (0, N0Rp); thus, z̄k is still Gaussian distributed with
zero mean. The covariance matrix Rz̄ = E[z̄kz̄Hk ] of z̄k is

Rz̄ = WHRzW = N0 · ILp
(16)

Rp =


RpRpR

(0) RpRpR
(Ts) · · · RpRpR

[(L− 1)Ts]
RpRpR

(Ts) RpRpR
(0) · · · RpRpR

[(L− 2)Ts]
...

...
...

...
RpRpR

[(L− 1)Ts] RpRpR
[(L− 2)Ts] · · · RpRpR

(0)

 (11)

Rh =


ρ(0; 0, 0) ρ(1; 0, 1) · · · ρ(L− 1; 0, L− 1)
ρ(1; 1, 0) ρ(0; 1, 1) · · · ρ(L− 2; 1, L− 1)

...
...

...
...

ρ(L− 1;L− 1, 0) ρ(L− 2;L− 1, 1) · · · ρ(0;L− 1, L− 1)

 (12)
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where ILp
is an identity matrix of size Lp × Lp. Thus, the sys-

tem with colored Gaussian noise zk is equivalently converted
to a system with white Gaussian noise z̄k, as described in (15).

It is well known that the error probability of the SIMO system
with white Gaussian noise can be minimized by a maximal
ratio combining (MRC) receiver [8]. With the system equation
given in (15), the decision variable ηk at the output of the MRC
receiver can be written as

ηk = h̄Hk ȳk = hHk Ψpyk (17)

and the corresponding optimum detection rule is

x̂(k) = arg min
sm∈S

|ηk − qk · sm|2, k

ν
is integer (18)

where x̂(k) is the detected symbol at time instant k, S is the
modulation alphabet set with cardinality M , the real-valued
scalar qk = hHk Ψphk is a quadratic form of the CGRV vector
hk, and the Hermitian matrix Ψp is defined in (13) based on
the nonzero eigenvalues of the colored noise covariance matrix
Rz = N0Rp.

From (10) and (17), the decision variable ηk can be alterna-
tively expressed as

ηk =hHk Ψphk · x(k) + hHk Ψpzk

= qk · x(k) + hHk Ψpzk. (19)

From (19), the instantaneous postdetection SNR at the output
of the MRC receiver can be calculated as

γMRC = γ · qk (20)

where qk = hHk Ψphk, and γ = Es/N0 is the SNR without
fading, with Es being the average symbol energy.

Combining the decision rule described in (18) and the in-
stantaneous postdetection SNR γMRC given in (20), we have
the conditional error probabilities for m-ary amplitude-shift
keying (MASK), square m-ary quadrature-amplitude modula-
tion (MQAM), and m-ary phase-shift keying (MPSK) systems
written as follows [8, eqs. (8.5), (8.12), and (8.23)]:

� MASK :

PMASK(E|qk)=
(
2
π
− 2
πM

) π
2∫

0

exp
{ −3γ ·qk
(M2−1) sin2 φ

}
dφ

(21)

� MQAM :

PMQAM(E|qk)=
(
4
π
− 4
π
√
M

) π
2∫

0

exp
{ −3γ ·qk
2(M−1) sin2 φ

}
dφ

− 4
π

(
1− 1√

M

)2
π
4∫

0

exp
{ −3γ ·qk
2(M−1) sin2 φ

}
dφ

(22)

TABLE I
PARAMETERS OF THE UNIFIED ERROR-PROBABILITY EXPRESSIONS

� MPSK :

PMPSK(E|qk)= 1
π

π− π
M∫

0

exp

{
−γ ·qk sin

2
(
π
M

)
sin2 φ

}
dφ. (23)

Equations (21)–(23) are the conditional error probabilities
for the MASK, MQAM, and MPSK systems, respectively.
Since all of the CEPs contain integrations with integrand in the
form of an exponential function of qk = hHk Ψphk, the CEPs
for the three modulated systems can be written in a unified form
as follows:

P (E|qk) =
2∑
i=1

βi
π

ψi∫
0

exp
{
−ζ · γ · qk

sin2 θ

}
dθ (24)

where γ is the average SNR without fading, and the values of
ζ, βi, and ψi for the various modulation schemes are listed
in Table I.

B. SER

The unconditional error probabilities P (E) of the linearly
modulated systems with colored noise and correlated Rayleigh
fading channels are derived in this section with the help of
the characteristic function (CHF) of the quadratic form of
the CGRV vector.

For Rayleigh fading channels, the fading vector hk is zero-
mean Gaussian distributed with covariance matrix Rh given in
(12), i.e., hk ∼ N (0,Rh). In the unified representation of the
CEPs in (24), the integrands have the form of an exponential
function of the real-valued random variable qk = hHk Ψphk.
Since Ψp is a Hermitian matrix, qk is a quadratic form of the
zero-mean CGRV vector hk, and the CHF of qk is [22]

Φq(w) = E(ejwqk) = [det(IL − jwRhΨp)]
−1 (25)

where w is a dumb variable, and Il is an L× L identity matrix.
With the CHF defined in (25) and the unified CEP P (E|qk)

given in (24), the unconditional error probability P (E) =
E[P (E|qk)] in Rayleigh fading channels can be computed as

P (E)=
2∑
i=1

βi
π

ψi∫
0

[
det

(
IL+

ζγ

sin2 θ
RhΨp

)]−1

dθ

=
2∑
i=1

βi
π

ψi∫
0

{
det

[
IL+

ζγ

sin2 θ
Ψ

1
2
pRh

(
Ψ

1
2
p

)H]}−1

dθ

(26)
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where Ψ1/2
p is the square root of the matrix Ψp satisfy-

ing (Ψ1/2
p )HΨ1/2

p = Ψp, and the identity det(I + AB) =
det(I + BA) is used in (26).

Performing eigenvalue decomposition of the product matrix
R = Ψ1/2

p Rh(Ψ1/2
p )H , we will have

R = UΛUH (27)

where Λ = diag[λ1, . . . , λL̃, 0, . . . , 0] ∈ R
L×L is a diagonal

matrix with the diagonal elements being the eigenvalues of R,
L̃ is the number of nonzero eigenvalues of R, and the columns
of the unitary matrix U are the corresponding orthonormal
eigenvectors with UUH = Il. The values of L̃ and λl, for
l = 1, 2, . . . , L̃, are determined by both Ψp and the temporal-
delay correlation matrix Rh, which are in turn related to
the sampler timing offset and the statistical properties of the
colored Gaussian noise and the doubly selective channel fading.

Substituting (27) into (26), we can write the symbol error
probability as

P (E) =
2∑
i=1

βi
π

ψi∫
0

{
det

[
U

(
IL +

ζγ

sin2 θ
Λ
)

UH

]}−1

dθ

=
2∑
i=1

βi
π

ψi∫
0

L̃∏
l=1

[
1 + γ · ζλl

sin2 θ

]−1

dθ. (28)

The closed-form expressions of the SER given in (28) can
be obtained by partial fraction expansion. For all systems
with practical PDPs, e.g., the exponential profile [10] and the
typical urban (TU) profile [21], the nonzero eigenvalues λl,
for l = 1, . . . , L̃ are different from each other, and the SER can
be expressed as

P (E) =
2∑
i=1

L̃∑
l=1

βidl
π

ψi∫
0

[
1 + γ · ζλl

sin2 θ

]−1

dθ (29)

where the value of dl can be computed by

dl =
L̃∏

j=1
j �=l

λl
λj − λl , for l = 1, 2, . . . , L̃. (30)

The integral in (29) can be expressed in closed form as follows:

1
π

ψ∫
0

[
1 +

γζλl

sin2 θ

]−1

dθ =
ψ

π
−

√
γζλl

1 + γζλl

·
[
1
2
− 1
π

arctan

(√
γζλl

1+γζλl
cotψ

)]
∀ψ ∈ [0, 2π]. (31)

The derivation of (31) is outlined in the Appendix.
From (29)–(31), the unified closed-form SER solutions of the

linearly modulated systems can be expressed by

P (E) =
2∑
i=1

L̃∑
l=1

βidl

{
ψi
π

−
√

γζλl
1 + γζλl

×
[
1
2
− 1
π

arctan

(√
γζλl

1 + γζλl
cotψi

)]}
. (32)

With the variables of ζ, βi, and ψi in (32) substituted by the
values given in Table I, the closed-form expressions of the SER
lower bounds for MASK, MQAM, and MPSK systems with
doubly selective channel fading can be written as (33)–(35),
shown at the bottom of the page.

For the special case of frequency-flat fading channel, we have
L̃ = 1, and (34) and (35) agree with the exact error-probability
expressions previously obtained in [20, eqs. (43) and (36)] for
systems with flat fading channels.

In some special cases, such as the equal-gain Tsym-spaced
PDP with the Tsym-spaced receiver, some of the eigenvalues
of R may have identical values. To avoid the complexity of

� MASK :

PMASK(E) =
L̃∑
l=1

dl

[
M − 1
M

(
1−

√
3γλl

M2 − 1 + 3γλl

)]
(33)

� MQAM :

PMQAM(E) =
L̃∑
l=1

dl

{(
2− 2√

M

)(
1−

√
3γλl

3γλl + 2M − 2

)

+
(
1− 1√

M

)2
[
4
π

√
3γλl

3γλl + 2M − 2
·
(
π

2
− arctan

√
3γλl

3γλl + 2M − 2

)
− 1

]}
(34)

� MPSK :

PMPSK(E) =
L̃∑
l=1

dl

{
M − 1
M

−
√

γλl sin2
(
π
M

)
1 + γλl sin2( πM )

[
1
2
+

1
π

arctan

(√
γλl sin2( πM )

1 + γλl sin2( πM )
cot

( π
M

))]}
. (35)
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partial fraction expansion of expressions with roots multiplicity,
an approximation method is presented in [22], where identical
eigenvalues are slightly modified without apparently affecting
the system performance. By subtracting different small positive
random numbers from identical eigenvalues, a valid error-
probability lower bound can be obtained from (32). Moreover,
exact values of P (E) can still be computed from numerical
integration of (28), which can be easily evaluated since it
has finite integration limits and the integrand contains only
elementary functions.

In the SER expressions given in (28) and (33)–(35), the
effects of receiver oversampling, sampler timing offset τ0,
Doppler spread fd, and PDP G(µ) of the physical channel
fading are quantified as the eigenvalues of matrix R, which is
a function of the temporal-delay correlation matrix Rh and the
matrix Ψp.

For a system with binary modulation, i.e., M = 2, the SER
presented in (33) has a similar expression as the matched filter
bounds given in [11, eq. (11)] or [14, eq. (8)]. Nevertheless,
the meaning of the eigenvalues used in (33) is quite different
from those used in the conventional matched filter bounds in the
literature. In this paper, the eigenvalues are jointly determined
by the receiver sampling rate, sampler timing offset, and the
effects of the physical fading, whereas the eigenvalues used by
conventional matched filter bounds are determined by physical
fading alone, and no effects of the sampler timing offset have
been considered. It will be shown by simulations that the
sampler timing offset has significant impact on the performance
of the system with a symbol-spaced receiver.

V. NUMERICAL EXAMPLES

Numerical examples are given in this section to illustrate the
error performances of wireless communication systems with
doubly selective fading channels, and simulation results are also
provided to validate our analytical expressions.

In the examples, the symbol period is set to Tsym = 3.69 µs,
and the maximum Doppler spread fd is assumed to be 200 Hz,
which corresponds to a mobile speed of 120 km/h at a carrier
frequency of 1.8 GHz. Unless otherwise specified, a root-raised
cosine (RRC) filter with a rolloff factor of α = 0.3 is used as
both the transmit and receive filters.

In the first example, we are going to compare our new
analytical results with the well-known union Chernoff bounds
and TUB [8]. Since the intertap correlation information will
lead to “considerable analytical difficulty” [4] to obtain the
union bounds, a simple two-ray equal-gain Tsym-spaced PDP
with uncorrelated channel gains are used in this example.
The analytical results along with the corresponding simulation
results obtained with MLSE and MAP equalizers are shown in
Fig. 2. The decoding length of the equalizers is 1024 symbols,
i.e., the equalizers are operated over 1024-symbol frames.
Each point on the bit error rate curve is calculated based on
5000 frames. In the computation of the union bounds, the trellis
structure of the system is analyzed based on the error state
transition matrix method [3]. It is clear from the figure that our
new performance results are superior to both of the two union
bounds. The new SER lower bound can accurately predict the

Fig. 2. Comparison of the performance bounds of systems with two-ray equal-
gain channel profile (decoding length for the equalizers: 1024 symbols).

Fig. 3. Performances of systems with TU profile (ν: oversampling factor,
τ0: sampling timing offset, decoding length of the equalizers: 1024 symbols).

performances of MLSE and MAP equalizers at both low SNR
and high SNR. On the other hand, the union Chernoff bound
and TUB converge only when Eb/N0 is higher than 20 dB.
Even at high SNR, the union Chernoff bound is still 1 dB away
from the actual error performances. Moreover, since the error
probabilities of the newly proposed methods are analyzed on a
symbol-by-symbol basis, considerable computation efforts can
be saved compared to the trellis structure analysis used by the
union bounds.

The performances of systems with practical PDPs are il-
lustrated in the next example, and the TU profile [21] is
used to model the frequency-selective channel fading. RRC
filters with 100% excessive bandwidth (α = 1) are used as
the transmit and receive filters. Fig. 3 shows the theoretical
error performances as well as the simulation results obtained
with the MAP equalizer, and the matched filter bound is also
depicted in the figure for comparison purposes. From the figure,
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Fig. 4. Effects of sampler timing offset on system performance for two-ray
equal-gain profile (ν: oversampling factor, τ0: sampler timing offset, α: rolloff
factor of the RRC filter).

it is interesting to note that for systems without oversampling
(ν = 1), the performance of the system with sampler timing
offset τ0 = −0.25Tsym is superior to that of the system with
τ0 = 0. This phenomenon is due to the fact that the power of
the TU profile is dominated by the delayed scattering rays of the
physical channel fading, and the power of the first ray (or the
zero-delay scattering ray) of the channel accounts for only
19.0% of the total channel power.

Moreover, excellent agreements between the simulation re-
sults and our new performance bounds can be observed from
the figure forEb/N0 ≥ 10 dB. The results in Figs. 2 and 3 show
that the performances of MLSE and MAP equalizers coincide
with the performance of interference-free systems at high SNR,
which means that the residual ISI at the output of the MLSE and
MAP equalizers tends to zero as the SNR tends to infinity. Thus,
the MLSE and MAP equalizers are asymptotically optimum in
the sense of interference cancellation. Even at low SNR, the
lower bounds are still very tight compared to the simulation
results. It can also be observed from Fig. 3 that the matched
filter bound is a loose lower bound for such a system config-
uration. At an SER level of 10−5, there is a 7-dB difference
between the matched filter bound and the simulation results of
systems with τ0 = 0. This difference is mainly induced by the
ideal matched filter assumptions adopted in the derivation of the
matched filter bound, and the effects of sampler timing offset
cannot be represented by the matched filter bound either.

The effects of sampler timing phase and oversampling on
system performance are further illustrated in the third example,
where the SER lower bounds are plotted against the sampler
timing offset τ0 for systems with and without oversampling.
Fig. 4 shows the performances of systems with the two-
ray equal-gain uncorrelated Tsym-spaced PDP, and the perfor-
mances of systems with TU profile are displayed in Fig. 5.
For systems without oversampling, i.e., ν = 1, the system
performances vary dramatically with the timing phase offset
τ0. This variation is induced by the effects of the spectrum

Fig. 5. Effects of sampler timing offset on system performance for TU profile
(ν: oversampling factor, τ0: sampling timing offset, α: rolloff factor of the
RRC filter).

aliasing of the received signals [17] since the sampling rate
1/Tsym is smaller than the Nyquist rate (1 + α)/Tsym of the
received signals, where α is the rolloff factor of the RRC filter.
For different values of sampler timing phase, the amplitude
of the overlapped spectrum could add up constructively or
destructively, which will lead to performance improvement or
degradation. The effects of spectrum aliasing become more
serious for systems with larger excessive bandwidth (or larger
value of α); thus, the performances of systems with larger α
are more sensitive to the sampler timing offset. From Fig. 4, we
can see that for systems with an equal-gain two-ray profile, the
optimum sampler timing offset is τ0 = 0. However, for systems
with TU profile, τ0 = −0.3Tsym is the optimum timing offset
due to the power dominance of the delayed scattering rays of
the channel fading.

As pointed out in [17], the timing phase sensitivity of the
receiver can be avoided by oversampling. For systems with
at most 100% excessive bandwidth, spectrum aliasing at the
receiver can be completely removed by setting the oversam-
pling factor ν = 2. This statement is supported by our new
performance bounds illustrated in Figs. 4 and 5, where the
SERs for oversampled systems keep constant, regardless of the
values of the sampler timing offset τ0. For systems with TU
profile, the performance of the oversampled system improves
with the increase of the rolloff factor since more bandwidths are
consumed by the signal, and there is no aliasing in the receiver.

So far, all of the examples are focused on systems with
discrete-time PDPs, where the frequency-selective fading has
discrete-time delayed multipaths. The analytical results pro-
posed in this paper can also be directly applied to systems with
continuous-time PDPs, such as the exponentially decaying PDP
defined asG(µ) = A exp(−τ/Tsym), for 0 ≤ τ ≤ 2Tsym, with
A being a normalization factor. The timing phase sensitivity
of systems with an exponentially decaying profile is shown
in Fig. 6. From this figure, we can see that systems with an
exponentially decaying profile have similar performances with
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Fig. 6. Effects of sampler timing offset on system performance for the
exponential decaying profile (ν: oversampling factor, τ0: sampling timing
offset, α: rolloff factor of the RRC filter).

the TU profile, and the optimum sampling timing offset for the
exponentially decaying profile is τ0 = −0.1Tsym.

VI. CONCLUSION

New and tight theoretical performance bounds were derived
for wireless communication systems with time-varying and
frequency-selective (i.e., doubly selective) channel fading and
sampler timing offset. The SISO systems with doubly selective
Rayleigh fading channels and fractionally spaced receivers
were equivalently represented as a SIMO system with mutually
correlated frequency-flat fading channels and colored Gaussian
noise. Closed-form error-probability expressions were derived
as lower bounds of symbol error probabilities for systems
suffering both doubly selective channel fading and sampler
timing offset. The information on timing phase offset, the sta-
tistical properties of channel fading, and the effects of the frac-
tionally spaced receiver are quantified in the error-probability
expressions.

Compared to the loose union bound and matched filter
bound, our new analytical results can accurately predict the
error performances of MLSE and MAP equalizers in practical
system configurations at a wide range of SNR, and the results
are obtained with a simple time-domain equivalent SIMO sys-
tem method. Moreover, with the help of the theoretical expres-
sions, the effects of receiver oversampling and timing phase
sensitivity of communication systems are analyzed, and we
have the following observations: 1) For systems with a symbol-
spaced receiver and practical PDPs, zero sampler timing offset
(τ = 0) is not always optimum. 2) For systems with at most
100% excessive bandwidth, two times symbol rate oversam-
pling at the receiver can completely remove the phenomenon
of timing phase sensitivity, which agrees with the theoretical
analysis presented in [17]. 3) The timing phase sensitivity of
a system with a symbol-spaced receiver becomes more serious
with an increase in excessive system bandwidth.

APPENDIX

DERIVATION OF (31)

The closed-form solution of the integral 1/π
∫ ψ
0 [1 +

(a/ sin2 θ)]−1dθ, for ψ ∈ [0, 2π], is derived here. Changing the
integration variable to z = cot(θ), we will have

1
π

ψ∫
0

[
1+

a

sin2 θ

]−1

dθ =
1
π

+∞∫
cotψ

[
(z2+1)(az2+a+1)

]−1
dz

=
1
π

+∞∫
cotψ

(z2 + 1)−1dz

− 1
π

+∞∫
cotψ

(
z2 +

a+ 1
a

)−1

dz.

(36)

The first integral of (36) can be evaluated as

1
π

+∞∫
cotψ

(z2 + 1)−1dz =
1
2
− 1
π

arctan(cotψ) =
ψ

π
(37)

where ψ ∈ [0, 2π] is used in the second equality, and the second
integral in (36) can be computed as

1
π

+∞∫
cotψ

(
z2 +

a+ 1
a

)−1

dz

=
1
π

√
a

1 + a
arctan

(√
a

1 + a
z

)∣∣∣∣+∞

cotψ

=
√

a

1 + a

[
1
2
− 1
π

arctan
(√

a

1 + a
cotψ

)]
. (38)

Combining (36)–(38) leads to (31).
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