
SDF Annotator Guide

Product Version 3.2
January 2001

 1990-2000 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission statement,
this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or
distributed in any way, without prior written permission from Cadence. This statement grants you permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s customer
in accordance with, a written agreement between Cadence and its customer. Except as may be explicitly set
forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties
as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does
not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any
liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

SDF Annotator Guide

Contents
Preface .. 7

About This Guide . 7
Finding Information in This Guide . 7

Other Sources of Information . 8
Related Manuals . 8
Customer Education Services . 8

Syntax Conventions . 8

1
Using the SDF Annotator . 10

Understanding How the SDF Annotator Works . 10
Calling the SDF Annotator from Verilog HDL . 12

$sdf_annotate System Task Syntax . 12
Examples: Calling the SDF Annotator . 14

2
Using the Configuration File . 16

Understanding the Configuration File . 16
Sample Configuration File . 16

Configuration File Keyword Syntax . 17
Timing Keywords . 17
INTERCONNECT_MIPD Keyword . 20
MTM Keyword . 21
SCALE_FACTORS Keyword . 21
SCALE_TYPE Keyword . 22
TURNOFF_DELAY Keyword . 23
MODULE Keyword . 24
MAP_INNER Keyword . 24
January 2001 3 Product Version 3.2

SDF Annotator Guide
3
Using the SDF File . 30

Understanding the SDF File . 30
SDF File Conventions . 31

Using Identifiers . 31
Using Characters . 32

OVI SDF Specification Tool Compatibility . 34
OVI Standard SDF Keywords . 34
SDF Keywords for Verilog-XL . 35
SDF Keywords for Verifault-XL . 36

OVI SDF Specification Version Differences . 36
SDF Version 1.* Constructs . 37
SDF Version 2.* Constructs . 37
SDF Version 3.* Constructs . 38

SDF File Keyword Constructs . 38
DELAYFILE Keyword . 39
CELL Keyword and Constructs . 41
DELAY Keyword and Constructs . 43
ABSOLUTE Keyword . 44
INCREMENT Keyword . 44
PATHPULSE Keyword . 58
PATHPULSEPERCENT Keyword . 60
TIMINGCHECK Keyword and Constructs . 60
TIMINGENV Keyword and Constructs . 72

SDF File Examples . 82
Example 1 . 82
Example 2 . 83
Example 3 . 84

4
Annotating with Verilog-XL and Verifault-XL. 85

SDF-Specific Plus Options . 85
+sdf_cputime . 86
+sdf_error_info . 86
January 2001 4 Product Version 3.2

SDF Annotator Guide
+sdf_file<filename> . 87
+sdf_ign_timing_edge . 87
+sdf_nocheck_ celltype . 87
+sdf_no_errors . 87
+sdf_nomsrc_int . 88
+sdf_no_warnings . 88
+sdf_split_two_timing_check
+sdf_splitvlog_splitsuh
+sdf_splitvlog_splitrecrem . 88
+sdf_verbose . 88

Additional Plus Options that Control the SDF Annotator . 89
Improving SDF Annotator Performance and Memory Use . 91

Removing Module Mapping . 92
Disabling Multisource Interconnect Timing Resolution . 92
Using Pre-scaled Delays . 93
Synchronizing Time Scales . 93
Synchronizing Precision . 93
Disabling Cell Type Verification . 93
Processing Without Verbose Annotation . 94
Using (INSTANCE *) . 94
Grouping Redundant Constructs . 94
Removing Zero-Delay MIPDs, MITDs, and SITDs . 94

Working with Verilog-XL SDF Annotator Restrictions . 94
Reverting to Original Timing Limitation . 95
PATHPULSE Limitation for Interconnect Delays . 95
COND Keyword Matching Condition Restriction . 95
TIMESCALE Keyword Restriction in SDF File Header . 95
Edge Identifier Limitations . 96
Multiple Delay Data Limitations . 96
Escape Identifier Restrictions . 97
January 2001 5 Product Version 3.2

SDF Annotator Guide
A
SDF Annotator Error and Warning Messages 98

Error Messages . 99
Warning Messages . 100

B
Valid and Invalid Interconnect Combinations. 102

Overview . 102
Valid Interconnect Combinations . 102
Invalid Interconnect Combinations . 115

Index.. 118
January 2001 6 Product Version 3.2

SDF Annotator Guide
Preface

This preface describes the following:

■ About This Guide on page 7

■ Other Sources of Information on page 8

■ Syntax Conventions on page 8

About This Guide

This guide describes the Standard Delay Format (SDF) Annotator ™ , which facilitates the
exchange of timing data between an SDF file and a Verilog family tool. The SDF Annotator
uses the SDF file as input for the annotation process. This guide assumes that you are
familiar with one or more of the Verilog family tools.

Finding Information in This Guide

This guide describes the SDF Annotator and is organized as follows:

Chapter 1, "Using the SDF Annotator" describes the SDF Annotator and how to call it from
the Verilog Hardware Design Language (HDL).

Chapter 2, "Using the Configuration File" describes the optional configuration file, which lets
you filter timing data in the SDF file before the data is annotated to the Verilog family tool. If
you donot use a configuration file, you can skip this chapter.

Chapter 3, "Using the SDF File" describes the SDF file, which stores timing data generated
by the Verilog family tool. It also describes the conventions and keywords for the SDF file,
including the keywords that are used by various Verilog family tools.

Chapter 4, "Annotating with Verilog-XL and Verifault-XL" describes the SDF-specific plus
options you can specify on the Verilog-XL command line. It also describes the restrictions you
have between the SDF Annotator and Verilog®-XL.

Appendix A, “SDF Annotator Error and Warning Messages” lists the Error and Warning
messages that the SDF Annotator issues.
January 2001 7 Product Version 3.2

SDF Annotator Guide
Preface
Appendix B, “Valid and Invalid Interconnect Combinations” lists the valid and invalid
interconnect combinations.

Other Sources of Information

Related Manuals

Cadence provides the following sources of information.

The SDF Annotator is used with other Cadence products during the design process. For more
information about the SDF Annotator and other related products, see the following manuals.

Programming Language Interface 1.0 User Guide and Reference
VPI User Guide and Reference
PLI Wizard User Guide
Contains information about how you can use the interface to pass information between the
SDF Annotator and the Verilog family tool.

Verilog-XL Reference
Verilog-XL User Guide
Contains information about how to use the Verilog®-XL simulator.

Verifault-XL Reference
Verifault-XL User Guide
Contains information about how to use the Verifault-XL® simulator.

Customer Education Services

Cadence also offers many customer education services. Contact your sales representative
for more information.

Syntax Conventions

The following table shows the conventions for the syntax code in this guide:

KEYWORDS Uppercase text indicates a keyword, which must be typed exactly as
shown.
January 2001 8 Product Version 3.2

SDF Annotator Guide
Preface
item An italicized item in syntax examples indicates a variable name where
you must supply information to complete the syntax.

item+ The plus (+) on a item indicates that this item can be replicated one or
more times.

{item} Items in braces indicate that an item is optional.

[item|item] Items in brackets with a vertical bar (meaning “or”) indicate that you
must choose one item only.

[item] Items in brackets, when shown without a vertical bar, are required as
part of the syntax. These generally occur in text, showing bit
specifications, but are noted here (and in the text) so they are not
confused with syntax conventions.

(“item”) Parentheses and quotation marks, when shown, are required as part
of the syntax of an item.
January 2001 9 Product Version 3.2

SDF Annotator Guide
1
Using the SDF Annotator

This chapter describes the following:

■ Understanding How the SDF Annotator Works on page 10

■ Calling the SDF Annotator from Verilog HDL on page 12

Understanding How the SDF Annotator Works

The SDF Annotator annotates timing data for Verilog family tools. Timing data in an SDF file
can come from front-end tools such as SiliconQuest™. Preview™, or Veritime™, or from
Cadence’s back-end tools, such as Cell3 Ensemble™and Gate Ensemble™. Timing data is
annotated as illustrated in Figure 1-1 .
January 2001 10 Product Version 3.2

SDF Annotator Guide
Using the SDF Annotator
Figure 1-1 Standard Delay Format Annotation Process

The process shown in Figure 1-1 is described in more detail as follows:

1. A Verilog family tool responds to the $sdf_annotate system task, which calls the
SDF Annotator. See the section “Calling the SDF Annotator from Verilog HDL” on
page 12 for more information.

2. The SDF Annotator then reads the configuration file, if one exists. The configuration file
filters timing data before it is annotated to a Verilog Family tool. See Chapter 2, “Using
the Configuration File” for more information.

3. The SDF Annotator reads the timing data from the SDF file, which is an ASCII text file
that stores the timing data generated by the Verilog family tool. See Chapter 3, “Using
the SDF File” for more information about the SDF file.

4. The SDF Annotator processes the timing data according to the configuration file
commands or the SDF Annotator’s settings.

5. The processed data is annotated to the Verilog family tool.

using $sdf_annotate(...);

Configuration

 file?

Read configuration
file settings

Use SDF default
settings

Process timing data
in the SDF file

Pass annotation back
to the tool that used
$sdf_annotate(...);

Verilog description
makes the system call

No

Yes
January 2001 11 Product Version 3.2

SDF Annotator Guide
Using the SDF Annotator
The SDF Annotator operates on many aspects of a design. However, when you need to
operate on only a few aspects of a design, you can achieve significant annotation process
performance improvements by implementing some of the recommendations described in
Chapter 4, “Annotating with Verilog-XL and Verifault-XL.” You can perform separate
annotations to distinct hierarchical portions of a single design description. For example, you
can annotate from multiple SDF files, each of which corresponds to a separate IC within a
description of a board-level design.

Note: When doing multiple annotations, specify a different log file name for each annotation
so that you can verify the results.

Calling the SDF Annotator from Verilog HDL

To call the SDF Annotator from a Verilog family tool, enter the $sdf_annotate system task
at the interactive command line or in the Verilog family tool’s description. The
$sdf_annotate system task specifications take precedence over specifications in the
SDF file.

Note: You must use the +annotate_any_time option on the Verilog-XL command line to
annotate after time 0 with Verilog-XL.

$sdf_annotate System Task Syntax

$sdf_annotate (“sdf_file”
{, module_instance}
{, “config_file”}
{, “log_file”}
{, “mtm_spec”}
{, “scale_factors”}
{, “scale_type”});

Note: You must specify the arguments to the $sdf_annotate system task in the order
shown in the syntax. You can skip an argument specification, but the number of comma
separators must maintain the argument sequence. For example, to specify only the first and
last arguments, use the following syntax:

$sdf_annotate (“sdf_file”,,,,,, “scale_type”);

$sdf_annotate Arguments

“sdf_file” The full or relative path of the SDF file. This argument is required
and must be in quotation marks. You can specify the file name
with the +sdf_file plus option on the command line.
January 2001 12 Product Version 3.2

SDF Annotator Guide
Using the SDF Annotator
module_instance Optional: Specifies the scope in which the annotation takes
place. The names in the SDF file are relative paths to the
module_instance with respect to the entire Verilog HDL
description. The SDF Annotator uses the hierarchy level of the
specified instance for running the annotation. Array indexes
(module_instance[index]) are permitted in the scope.
If you do not specify module_instance , the SDF Annotator
uses the module containing the call to the $sdf_annotate
system task as the module_instance for annotation.

“config_file” Optional: The name of the configuration file, specified in
quotation marks, that the SDF Annotator reads before
annotating begins. If you do not specify config_file , the
SDF Annotator uses the default settings. See Chapter 2, “Using
the Configuration File” for more information.

“log_file” Optional: The name of the log file, specified in quotation marks,
that the SDF Annotator generates during annotation. Also, you
must specify the +sdf_verbose plus option on the command
line to generate a log file. If you do not specify a log file name,
but do specify the +sdf_verbose plus option, the SDF
Annotator creates a default log file called sdf.log .

“mtm_spec” Optional: One of the following keywords, specified in quotation
marks, indicating the delay values that are annotated to the
Verilog family tool.

“scale_factors” Optional: The minimum, typical, and maximum timing data
values, specified in quotation marks, expressed as a set of three

Keyword Description

MAXIMUM Annotates the maximum delay value.

MINIMUM Annotates the minimum delay value.

TOOL_CONTROL
(default)

Annotates the delay value that is determined by the Verilog-XL
and Verifault-XL command line options (+mindelays ,
+typdelays , or +maxdelays); minimum, typical, and
maximum values are always annotated to Veritime. If none of
the TOOL_CONTROL command line options is specified, the
default keyword is then TYPICAL.

TYPICAL Annotates the typical delay value.
January 2001 13 Product Version 3.2

SDF Annotator Guide
Using the SDF Annotator
positive real number multipliers
(min_mult:typ_mult:max_mult) . For example,
1.6:1.4:1.2 . If you do not specify values, the default values
are 1.0:1.0:1.0 for minimum, typical, and maximum values.
The SDF Annotator uses these values to scale the minimum,
typical, and maximum timing data from the SDF file before they
are annotated to the Verilog family tool. The scale_factors
argument overrides the SCALE_FACTORS keyword in the
configuration file. See the “SCALE_FACTORS Keyword” on
page 21for an example of scaling delay values.

“scale_type” Optional: One of the following keywords, specified in quotation
marks, to scale the timing specifications in SDF, which are
annotated to the Verilog family tool. The scale_type
argument overrides the SCALE_TYPE keyword in the
configuration file.

See the “SCALE_FACTORS Keyword” on page 21 for an
example of delay scaling.

Examples: Calling the SDF Annotator

The following examples show different ways to call the SDF Annotator to pass timing
information to your Verilog family tool.

Annotation with Scaling

This example shows annotation with scaling to the top-level design. The FROM_MTMkeyword
overrides any scale type specifications in the configuration file.

module top;
•••
circuit m1(i1,i2,i3,o1,o2,o3);

Keyword Description

FROM_MAXIMUM Scales from the maximum timing specification.

FROM_MINIMUM Scales from the minimum timing specification.

FROM_MTM
(default)

Scales from the minimum, typical, and maximum timing
specifications. This is the default.

FROM_TYPICAL Scales from the typical timing specification.
January 2001 14 Product Version 3.2

SDF Annotator Guide
Using the SDF Annotator
initial
$sdf_annotate("my.sdf",m1,"config"

,,,1.6:1.4:1.2,"FROM_MTM");
// stimulus and response-checking

•••
endmodule

Separate Annotations

This example shows separate annotations to distinct portions of a design hierarchy. There is
no configuration file specification, so the SDF Annotator uses the defaults.

module top;
•••
cpu m1(i1,i2,i3,o1,o2,o3);
fpu m2 (i4,o1,o3,i2,o4,o5,o6);
dma m3(o1,o4,i5,i6,i2);
// perform annotation
initial
begin

$sdf_annotate("cpu.sdf",m1,,"cpu.log");
$sdf_annotate("fpu.sdf",m2,,"fpu.log");
$sdf_annotate("dma.sdf",m3,,"dma.log");

end
// stimulus and response-checking

•••
endmodule

Annotation with Arrays of Instances

This example shows arrays of instance in a design hierarchy. There is no configuration file
specification, so the SDF Annotator uses the defaults.

module top;
•••
cpu ar[1](i1,i2,i3,o1,o2,o3);
fpu ar[2](i4,o1,o3,i2,o4,o5,o6);
dma ar[3](o1,o4,i5,i6,i2);
// perform annotation
initial
begin

$sdf_annotate("cpu.sdf",ar[1],,"cpu.log");
$sdf_annotate("fpu.sdf",ar[2],,"fpu.log");
$sdf_annotate("dma.sdf",ar[3],,"dma.log");

end
// stimulus and response-checking

•••
endmodule
January 2001 15 Product Version 3.2

SDF Annotator Guide
2
Using the Configuration File

This chapter describes the following:

■ Understanding the Configuration File on page 16

■ Configuration File Keyword Syntax on page 17

Understanding the Configuration File

The configuration file allows you to filter timing data in the SDF file before the data is
annotated to a Verilog family tool using the SDF Annotator configuration file. If you do not use
a configuration file, the SDF Annotator uses default settings for annotation, and you can skip
this chapter. You can do the following using the configuration file.

■ Map or ignore timing constructs from the SDF file to the Verilog HDL description

■ Select multiple timing specifications

■ Select minimum, typical, or maximum delays values

■ Specify scaling operations

■ Determine turn-off delays

■ Specify delay data for a specific type of module

Sample Configuration File

Many of the configuration file keywords are shown in the following example. If the SDF
Annotator finds conflicting keywords, it uses the last specified keyword.

Note: Keywords must be in uppercase letters. Blank lines are not allowed.

PATHPULSE = IGNORE; // Ignores all PATHPULSE constructs in SDF file.
INTERCONNECT_MIPD = MAXIMUM; // Specifies maximum interconnect delay.
MTM = MAXIMUM; // Specifies maximum delays from SDF.
SCALE_FACTORS = 0.5:1:2.0; // Scales the delays with these factors.
SCALE_TYPE = FROM_TYPICAL; // Scales from the typical delays.
January 2001 16 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
TURNOFF_DELAY = FROM_FILE; // Specifies the turn-off delays in SDF.
MODULE AND // Applies to instances of type AND.
{
MAP_INNER = and1; // Maps delays to inner module and1.
(in1 => out1) = OVERRIDE // Uses delays between in1 and out1
 { // specified to override the delay paths
 (CP => Q); // between CP and Q in Verilog.
 }
}

Configuration File Keyword Syntax

This section lists the keywords you can specify in the configuration file.

Timing Keywords

The following keywords have only one option (IGNORE), which specify whether the SDF
Annotator ignores the constructs in the SDF file. See Chapter 3, “Using the SDF File” for
information about using these keywords in the SDF file.

■ DEVICE = IGNORE;

■ HOLD = IGNORE;

■ INTERCONNECT = IGNORE;

■ IOPATH = IGNORE;

■ NETDELAY = IGNORE;

■ NOCHANGE = IGNORE;

■ PATHPULSE = IGNORE;

■ PATHPULSEPERCENT = IGNORE;

■ PERIOD = IGNORE;

■ PORT = IGNORE;

■ RECOVERY = IGNORE;

■ SETUP = IGNORE;

■ SETUPHOLD = IGNORE;

■ SKEW = IGNORE;

■ WIDTH = IGNORE;
January 2001 17 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
Default Mapping for Verilog-XL

In Verilog-XL, if you do not specify a mapping for a timing keyword, the SDF Annotator uses
the default mapping for that keyword as shown in Table 2-1 on page 18.

Table 2-1 Default mapping for Verilog-XL

Default Mapping for Verifault-XL

In Verifault-XL, if you do not specify a mapping for a timing keyword, the SDF Annotator uses
the default mapping for that keyword as shown in Table 2-2 on page 19.

SDF Timing Keywords Path delay library Distributed delay library

DEVICE PATH LUMPED OUTPUT

HOLD HOLD

INTERCONNECT MIPD a, SITD b, MITD c

a. Module Input Port Delay

b. Single-Source Interconnect Transport Delay

c. Multisource Interconnect Transport Delay

MIPD

IOPATH PATH LUMPED OUTPUT

NETDELAY MIPD, SITD, MITD MIPD

PERIOD PERIOD

PORT MIPD, SITD, MITD MIPD

RECOVERY RECOVERY

SETUP SETUP

SETUPHOLD SETUP/HOLD

SKEW SKEW

WIDTH WIDTH
January 2001 18 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
Table 2-2 Default Mapping for Verifault-XL

Default Mapping for Veritime

In Veritime, if you do not specify a mapping for a timing keyword, the SDF Annotator uses the
default mapping for that keyword as shown in Table 2-3 on page 19.

Table 2-3 Default Mapping for Veritime

SDF Timing Keywords Path Delay Library Distributed Delay Library

DEVICE PATH LUMPED OUTPUT

HOLD HOLD

INTERCONNECT MIPD MIPD

IOPATH PATH LUMPED OUTPUT

NETDELAY MIPD MIPD

PERIOD PERIOD

PORT MIPD MIPD

RECOVERY RECOVERY

SETUP SETUP

SETUPHOLD SETUP/HOLD

SKEW SKEW

WIDTH WIDTH

SDF Timing Keywords Path delay library Distributed delay library

DEVICE PATH LUMPED OUTPUT

HOLD HOLD

INTERCONNECT INTERMOD PATH INTERMOD PATH

IOPATH PATH LUMPED OUTPUT

NETDELAY INTERMOD PATH INTERMOD PATH

PERIOD PERIOD

PORT MIPD MIPD
January 2001 19 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
INTERCONNECT_MIPD Keyword

The INTERCONNECT_MIPDkeyword selects how the interconnect delays in the SDF file are
mapped to MIPDs in the Verilog family tool. You can select the options shown in the following
syntax.

INTERCONNECT_MIPD = [AVERAGE | MAXIMUM | MINIMUM];

The different options for the INTERCONNECT_MIPD keyword are described below.

Example: INTERCONNECT_MIPD Keyword

If multiple interconnect delays fan into the same device input port, and if the interconnect
delays have different values, the maximum delay is annotated to the MIPD at the common
input port by default. Use MINIMUM or AVERAGE to override the default.

RECOVERY RECOVERY

SETUP SETUP

SETUPHOLD SETUP/HOLD

SKEW SKEW

WIDTH WIDTH

Keyword Description

AVERAGE Annotates the average of the overlapping timing specification.

MAXIMUM (Default) Annotates the maximum of the overlapping timing specification.

MINIMUM Annotates the minimum of the overlapping timing specification.

SDF Timing Keywords Path delay library Distributed delay library

i1

i3

i1
i2

o1

i2 o1

o1y

x

i1

i3
i2

z

January 2001 20 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
For example, the average value of the interconnect delay is annotated to the MIPD at z.i2,
which is the common input port if you specify the AVERAGE assignment.

MTM Keyword

The MTM keyword specifies whether the SDF Annotator uses the minimum, typical, or
maximum delays from the SDF file. The syntax for the MTM keyword is as follows:

MTM = [MAXIMUM | MINIMUM | TOOL_CONTROL | TYPICAL];

The different keywords for the MTM keyword are described in the table that follows.

Note: The mtm_spec option in the $sdf_annotate system task call overrides the MTM
keyword. See “Calling the SDF Annotator from Verilog HDL” on page 12 for details.

SCALE_FACTORS Keyword

The SCALE_FACTORSkeyword specifies scaling operations that the SDF Annotator
performs on the timing information before it is annotated to the Verilog family tool. The syntax
for the SCALE_FACTORSkeyword is as follows:

SCALE_FACTORS = min_mult:typ_mult:max_mult;

Note: The scale_factors argument in the $sdf_annotate system task overrides the
SCALE_FACTORSkeyword. See “Calling the SDF Annotator from Verilog HDL” on page 12
for more information.

The min_mult:typ_mult:max_mult argument to the SCALE_FACTORS keyword is
expressed as a set of three positive real number multipliers
(min_mult:typ_mult:max_mult), for example, 1.6:1.4:1.2 . If you do not specify
values, the default values are 1.0:1.0:1.0 for minimum, typical, and maximum values.

Keyword Description

MAXIMUM Annotates the maximum delay value.

MINIMUM Annotates the minimum delay value.

TOOL_CONTROL Delay value is determined by the Verilog family tool plus
options (+mindelays, +typdelays, or +maxdelays).

TYPICAL (Default) Annotates the typical delay value.
January 2001 21 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
SCALE_TYPE Keyword

The SCALE_TYPEkeyword specifies which of the scale types to use when performing
scaling operations on the timing information before it is annotated to the Verilog family tool.
The syntax for the SCALE_TYPEkeyword is as follows:

SCALE_TYPE = [FROM_MAXIMUM | FROM_MINIMUM | FROM_MTM | FROM_TYPICAL];

Note: The scale_type argument in the $sdf_annotate system task overrides the
SCALE_TYPEkeyword. See “Calling the SDF Annotator from Verilog HDL” on page 12 for
more information.

The following table describes the keywords for the SCALE_TYPE keyword.

Example: SCALE_FACTORS and SCALE_TYPE Keywords

To show how the SCALE_FACTORS and SCALE_TYPEkeywords work in the SDF file that
assigns rise, fall, and turn-off delays to a net in the cell instance x , consider the following
CELL entry:

(CELL (CELLTYPE "adder4")
(INSTANCE x)
(DELAY (ABSOLUTE (NETDELAY a.o2 (6:7:8) (4:6:7) (5:8:9)))))

The configuration file defines the scale factors and scale type as follows:

SCALE_FACTORS = 0.5:1:1.5;
SCALE_TYPE = FROM_TYPICAL;

The typical delays in the SDF file are multiplied by the specified scaling factors to create new
min:typ:max triplets, producing the following delays for the net:

(3.5:7:10.5) (3:6:9) (4:8:12)

Keyword Description

FROM_MAXIMUM Scales from the maximum timing specification in the SDF
file.

FROM_MINIMUM Scales from the minimum timing specification in the SDF
file.

FROM_MTM (Default) Scales directly from the minimum, typical, and maximum
timing specifications in the SDF file.

FROM_TYPICAL Scales from the typical timing specification in the SDF file.
January 2001 22 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
TURNOFF_DELAY Keyword

The TURNOFF_DELAY keyword specifies how the SDF Annotator determines the turn-off
delay that is annotated to the Verilog family tool. The syntax for the TURNOFF_DELAY
keyword is as follows:

TURNOFF_DELAY=[AVERAGE | FROM_FILE | MAXIMUM | MINIMUM];

The following table describes the keywords for the TURNOFF_DELAYkeyword.

Note: The TURNOFF_DELAY keyword is relevant only when both rise and fall delays are
specified for a specific SDF construct. Also, when the SDF Annotator calculates the turn-off
delays from the rise and fall delays, it uses that delay for all transitions to or from Z.

Example: TURNOFF_DELAY Keyword

The following cell entry in the SDF file assigns rise, fall, and turn-off delays to a net in the cell
instance x. If the configuration file sets the TURNOFF_DELAYkeyword to MAXIMUM, then
the turn-off delay for annotation is (6:7:9) which is derived from the 6 rise and 4 fall
minimum values, the 7 rise and 6 fall typical values, and the 8 rise and 9 fall maximum values;
the (5:8:10) delay is ignored.

(CELL (CELLTYPE “adder4”)
(INSTANCE x)
(DELAY
 (ABSOLUTE (NETDELAY a.o2 (6:7:8) (4:6:9) (5:8:10)))

Keyword Description

AVERAGE Average the values from the rise and fall delays.

FROM_FILE The SDF Annotator uses the turn-off delays in the SDF file. If you do
not specify FROM_FILE, or you specify FROM_FILE but the SDF file
does not contain the turn-off delay, the turn-off delay is set to
MINIMUM(rise, fall) .

MAXIMUM Choose the greatest values from the rise and fall delays.

MINIMUM
(Default)

Choose the smallest values from the rise and fall delays.
January 2001 23 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
MODULE Keyword

The MODULEkeyword maps path delays and timing checks from the SDF file to Verilog HDL
description, performs scaling operations for a specific type of module, and selects
min:typ:max delay data.

The syntax for the MODULE keyword is as follows:

MODULEmodule_name
 {

 [MTM = [MINIMUM | TYPICAL | MAXIMUM];]
 [SCALE_FACTORS = min_mult : typ_mult : max_mult ;]
 [MAP_INNER = path ;
 (original_timing) = [ADD | OVERRIDE | IGNORE] [{(new_timing) ; }]
]
 }

The following table describes the arguments to the MODULEkeyword.

Note: The MTM and SCALE_FACTORS arguments to the MODULE keyword affect only the
IOPATH, DEVICE, and TIMINGCHECK information annotated to the specified
module_name module; they do not affect scale factors specified for other modules in the
same design.

MAP_INNER Keyword

The MAP_INNER keyword is an optional argument to the MODULE keyword. It specifies a
subsequent module in the hierarchy of the module specified with the MODULE keyword. You
can specify the MAP_INNER keyword for each subsequent module in the module hierarchy.

Argument Description

module_name Name of a specific type of module (not instance name)
specified in the corresponding Verilog HDL description.

MTM Specifies the minimum, typical, or maximum delays from the
SDF file. See “MTM Keyword” on page 21 for more
information.

SCALE_FACTORS See “SCALE_FACTORS Keyword” on page 21 for more
information.

[MAP_INNER]
(Optional)

See “MAP_INNER Keyword” on page 24 for more information.
January 2001 24 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
The syntax for the MAP_INNER keyword is as follows:

MAP_INNER = path ;
 (original_timing) = [ADD | OVERRIDE | IGNORE]
 { (new_timing) ; }

The following table describes the arguments to the MAP_INNER keyword.

Note: In all cases, the path name is applied to all new_timing specifications before they
are annotated to the Verilog family tool.

Examples of Using the MODULE and MAP_INNER Keywords

The following examples shows how the MODULE and MAP_INNER keywords work.

Example 1

This example applies module mapping to the shift module type, which contains a
submodule called m2and specifies that the delay between in1 and out1 in the SDF file is

Argument Description

path Verilog HDL hierarchical path of a submodule within
module_type of the MODULE keyword. The paths specified
in the SDF file are mapped to module_type . This path
applies to all path delays and timing checks specified for this
module in the SDF file including those mapped with ADD and
OVERRIDE.

original_timing The path delay or timing specification that is in the SDF file.

new_timing The path delay in the Verilog description that corresponds to the
original_timing delay.

ADD Adds to the mapping specifications of the SDF file. The
original_timing specification is mapped to
new_timing , the Verilog HDL syntax of a path delay or timing
check.

OVERRIDE Replaces the mapping specifications of the SDF file. The
original_timing specification is mapped to
new_timing , the Verilog HDL syntax of a path delay or timing
check.

IGNORE Ignores the mapping specifications in the SDF file.
January 2001 25 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
to be mapped to the delay between i and x of m2 in Verilog, using minimum delays and a
scaling factor of 2.0.

MODULE shift
{
MTM = MINIMUM;
SCALE_FACTORS = 2.0:2.0:2.0;
MAP_INNER = m2;

(in1 => out1) = OVERRIDE
{

(i => x)
 }
}

Example 2

In this example, two mappings are performed with the MAP_INNER keyword. Using the
OVERRIDEkeyword with the hierarchical design in the following figure, this example shows
how to map and annotate the delay from the path ctrl_in1=>ctrl_out1 to the path
moto_i=>moto_o , and clk=>moto_o .

The Verilog design has a specify block with the following path delay specification:

(moto_i => moto_o) = (3, 4);

The SDF file for the design has the following delay specification for the path:

(IOPATH ctrl_in1 ctrl_out1 (5) (6))

shift

m2i x out1in1

ctrl_module

ctrl_in1 ctrl_out1moto_i moto_o
moto_ctrl

CLK clk
January 2001 26 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
A module mapping for this hierarchy is specified in the SDF configuration file as follows:

MODULE ctrl_module
{ MAP_INNER = moto_ctrl;

 (ctrl_in1 => ctrl_out1) = OVERRIDE
{ (moto_i => moto_o);

(clk => moto_o); }
}

Example 3

Using the IGNORE keyword with the same hierarchy as shown in
Example 2, the following mapping in the configuration file ignores the specification in the SDF
file and continues to use the timing in the Verilog design.

MODULE ctrl_module
{ MAP_INNER = moto_ctrl;
 (ctrl_in1 => ctrl_out1) = IGNORE; }

Example 4

In this example three mappings are done using the MAP_INNER keyword. Using the ADD
keyword with the hierarchy in the following figure, this example shows how to map a path from
(clk=>moto_o2) and
(clk=>moto_o1) in addition to the (CLK=>OUT) mapping.

The following mapping example allows the annotation of the delay specified for the IOPATH
(CLK =>OUT) to (CLK =>OUT) , (clk=>moto_o1) and (clk=>moto_o2) .

MODULE ctrl_module
{ MAP_INNER = moto_ctrl;
 (CLK => OUT) = ADD
 { (clk => moto_o1);
 (clk => moto_o2); }
}

Example 5

This examples shows how to specify IOPATH mappings with a CONDcondition around them.
For example, if the Verilog design has a specify block with the following conditional statement:

ctrl_module

ctrl_in1

ctrl_out1

moto_i1

moto_o1
moto_ctrl

CLK clk

ctrl_in2 moto_i2

ctrl_out2moto_o2

OUT
January 2001 27 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
specify
if (TI_cond0)

(A => B) = (3:4:5);
endspecify

And the SDF file for the design has a statement for annotation:

(COND TI_cond0

(IOPATH A B(0.2:0.3:0.4) (0.27:0.37:0.47)))

The configuration file for mapping can have a specification:

IF (TI_cond0)
(A => B) = OVERRIDE

{ (a => b); }

The conditions in the SDF file are compared to the condition in the configuration file and
mapping is performed if the conditions match.

Rules for Module Mapping with Conditional Delays

The rules for module mapping in the case of conditional path delays are shown in the
following tables. Table 2-4 on page 28 shows different combinations of how Verilog design
path delays are handled in the SDF annotation process, when combined with the COND
statements of SDF. Table 2-5 on page 28 shows the rules for mapping paths between the
SDF file and the configuration file.

Table 2-4 Annotating Path Delays in Verilog-XL

SDF Verilog-XL Annotate action

no condition no condition Annotate one path

no condition conditional path
delay

Annotate to all conditions in the design, unless an
ifnone is present

COND no_cond No annotation

COND conditional path
delay

Annotate one path

Table 2-5 Module Mapping in SDF

SDF File Config File Map action

no condition no condition Mapping performed

no condition COND No mapping performed
January 2001 28 Product Version 3.2

SDF Annotator Guide
Using the Configuration File
COND no condition Mapping performed

COND COND Mapping performed

Table 2-5 Module Mapping in SDF

SDF File Config File Map action
January 2001 29 Product Version 3.2

SDF Annotator Guide
3
Using the SDF File

This chapter describes the following:

■ Understanding the SDF File on page 30

■ SDF File Conventions on page 31

■ OVI SDF Specification Tool Compatibility on page 34

■ OVI SDF Specification Version Differences on page 36

■ SDF File Keyword Constructs on page 38

■ SDF File Examples on page 82

Understanding the SDF File

The SDF file is an ASCII text file that stores the timing data generated by the Verilog family
tool. The SDF file can contain either a pre-layout or post-layout timing data.

The timing data in the SDF file is independent of the Verilog family tool and can include the
following:

Delays Timing Checks Data Parameters

Module path
Device
Interconnect
Port
Incremental
Absolute
Conditional
Unconditional

Setup
Hold
Recovery
Removal
Skew
Width
Conditional
Unconditional

Design
Instance
Type
Library

Scaling
Environmental
Technological
January 2001 30 Product Version 3.2

SDF Annotator Guide
Using the SDF File
The SDF file supports hierarchical delay annotation. A design hierarchy might include several
different application-specific integrated circuits (ASICs), including cells or blocks within
ASICs. Each design hierarchy has its own SDF file, as shown in Figure 3-1 .

Figure 3-1 Multiple SDF Files in a Hierarchical Design

SDF File Conventions

This section describes identifiers, character use, operators, and common expressions in SDF
files.

Using Identifiers

Identifiers are names for ports or nets, depending on the syntax. Identifiers can have up to
1024 alphanumeric characters. Special characters are permitted if the escape character
precedes the special character. Spaces are not allowed in identifiers. For more information
about character use in SDF files, see “Using Characters” on page 32.

You can specify hierarchical identifiers by placing the hierarchy divider character (. or /) in
the identifier name.

Bit specifications can be placed at the end of identifiers with no spaces between the bit
specifications and the identifier. Bit specifications are specified in square braces ([]). If the
bit spec is a range, use a colon to separate the range, as shown in the following examples:

[4] [3:31] [15:0]

Edge identifiers are specified with the following names:

System Module

ASIC 1

ASIC 2

SDF File
for ASIC 1

SDF File
for ASIC 2
January 2001 31 Product Version 3.2

SDF Annotator Guide
Using the SDF File
posedge negedge 01 10 0z z1 lz z0

Examples of Correct IDENTIFIERs
AMUX\+BMUX
Cache_Row_\#4
mem_array\[0\:1023\]\(0\:15\)

//From a language where square brackets indicate arrays
// parentheses indicate bit specs

pipe4\-done\&enb[3]
// Unescaped square brackets is a bit spec

Examples of Incorrect IDENTIFIERs
\AMUX+BMUX

// Do not use Verilog style name escaping

PHASE\ LOCK\ DONE
// Spaces cannot be escaped

Ctl_Brk\
// Do not use carriage return

MEM[4:16]_BRK\+IDLE
// Do not include bit specs within identifiers

Using Characters

The following table describes the characters you can use in the SDF file.

Character Type Characters

Alphanumeric Characters ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789_ (underscore)

Arithmetic Characters + (add), - (subtract), / (divide), * (multiply)

Bit-wise binary and & (ampersand)

Bit-wise binary equivalence ^~ or ~^ (caret tilde or tilde caret)

Bit-wise binary exclusive or ^ (caret)

Bit-wise binary inclusive or | (vertical bar)

Bit-wise unary negation ~ (tilde)

Case equality operator === (triple equals signs)

Case inequality operator !== (exclamation equals equals)
January 2001 32 Product Version 3.2

SDF Annotator Guide
Using the SDF File
Note: The escape character (\) must precede a special character in a port or net
identifier , which enables you to use special characters in port or net identifier
names. If you use an escape character preceding a hierarchy divider character (. or /), the
characters no longer divide the hierarchy.

Operator Precedence

Figure 3-2 shows the order of precedence for SDF operators. Operators shown on the same
row have the same precedence.

Comment Characters // double slash for any single line
/* begins comment text ending with */

Escape Character \ (backslash)

Hierarchy dividers . (period) or / (slash)

Left shift << (double left angle brackets)

Logical and && (double ampersand)

Logical equality == (double equals signs)

Logical inequality != (exclamation equals)

Logical negation ! (exclamation)

Logical or || (double vertical bar)

Modulus % (percentage)

Relational operators > (greater than), >= (greater than or equal to),
< (less than), <= (less than or equal to),

Right shift >> (double right angle brackets)

Space Space, tab, and new line.

Special Characters ~ ! " # $ % & ´ () * + , -
. / : ; < = > ? @ [\] ^ `
{ | }

Unary Operators + - ! ~ & ~& | ~| ^ ^~ ~^

Binary Operators + < - <= * > / >= % & == | != ^
=== ^~ !== ~^ && >> || <<

Character Type Characters
January 2001 33 Product Version 3.2

SDF Annotator Guide
Using the SDF File
Figure 3-2 Operator Precedence

OVI SDF Specification Tool Compatibility

This section shows the keywords that Verilog-XL and Verifault-XL uses. Each tool can read
an SDF file with all the OVI SDF Standard keyword constructs, but each tool uses a different
subset of the OVI SDF Standard keyword constructs. Because a subset of OVI standard
keywords apply to some tools but not others, some of the OVI keywords are ignored by the
SDF Annnotator. You do not receive error messages on ignored, syntactically correct OVI
standard keyword constructs. The OVI SDF Standard keywords are described in “SDF File
Keyword Constructs” on page 38.

OVI Standard SDF Keywords

Figure 3-3 shows the keywords that are supported by the OVI SDF Specification, Version 3.0.

Figure 3-3 OVI Standard 3.0 SDF Keywords
(DELAYFILE

(SDFVERSION ...)
(DESIGN ...)
(DATE ...)
(VENDOR ...)
(PROGRAM ...)
(VERSION ...)
(DIVIDER ...)
(VOLTAGE ...)
(PROCESS ...)
(TEMPERATURE ...)
(TIMESCALE ...)
(CELL (CELLTYPE ...)

 (INSTANCE ...)
 (DELAY

(ABSOLUTE | INCREMENT

! ~
* / %
+ -
<< >>
< <= > >=
== != === !==
&
^ ^~ ~^
|
&&
||

highest precedence

lowest precedence
January 2001 34 Product Version 3.2

SDF Annotator Guide
Using the SDF File
(IOPATH ...)
(COND ... (IOPATH ... {(RETAIN ...)}...))
(CONDELSE (IOPATH ... {(RETAIN ...)} ...))
(PORT ...)

(INTERCONNECT ...)
(NETDELAY ...)

(DEVICE ...)
) // end ABSOLUTE or INCREMENT
(PATHPULSE ...)
(PATHPULSEPERCENT ...)

) // end DELAY
 (TIMINGCHECK {COND ...)

(SETUP ...)
(HOLD ...)
(SETUPHOLD ... {(SCOND ...)} {(CCOND ...)})
(RECOVERY ... {(SCOND ...)} {(CCOND ...)})
(REMOVAL ...)
(RECREM ... {(SCOND ...)} {(CCOND ...)})
(SKEW ...)
(WIDTH ...)
(PERIOD ...)
(NOCHANGE ...)

) // end TIMINGCHECK
 (TIMINGENV

(PATHCONSTRAINT ...)
(PERIODCONSTRAINT ... (EXCEPTION (INSTANCE ...)))
(SKEWCONSTRAINT ...)
(SUM ...)
(DIFF ...)
(ARRIVAL ...)
(DEPARTURE ...)
(SLACK ...)
(WAVEFORM ...)

) // end TIMINGENV
) // end CELL

) // end DELAYFILE

SDF Keywords for Verilog-XL

Figure 3-4 shows the keywords that are used by Verilog-XL.

Figure 3-4 Verilog-XL SDF Keywords
(DELAYFILE

(SDFVERSION ...)
(DIVIDER...)
(TIMESCALE...)
(CELL (CELLTYPE...)

 (INSTANCE...)
 (DELAY

(ABSOLUTE | INCREMENT
(IOPATH...)
(COND...(IOPATH...))
(CONDELSE (IOPATH...))
(PORT...)
(INTERCONNECT...)
(NETDELAY...)
January 2001 35 Product Version 3.2

SDF Annotator Guide
Using the SDF File
(DEVICE...)
)// end ABSOLUTE or INCREMENT
(PATHPULSE...)
(PATHPULSEPERCENT...)

)// end DELAY
 (TIMINGCHECK{COND...)

(SETUP...)
(HOLD...)
(SETUPHOLD... {(SCOND...)} {(CCOND...)})
(RECOVERY... {(SCOND...)} {(CCOND...)})
(SKEW...)
(WIDTH...)

(PERIOD...)
) // end TIMINGCHECK

) // end CELL
) // end DELAYFILE

SDF Keywords for Verifault-XL

Figure 3-5 shows the keywords that are used by Verifault-XL.

Figure 3-5 Verifault-XL SDF Keywords
(DELAYFILE

(SDFVERSION...)
(DIVIDER...)
(TIMESCALE...)
(CELL (CELLTYPE...)

 (INSTANCE...)
 (DELAY

(ABSOLUTE | INCREMENT
(IOPATH...)
(COND... (IOPATH...))
(CONDELSE (IOPATH...))
(PORT...)
(INTERCONNECT...)
(NETDELAY...)
(DEVICE...)

) // end ABSOLUTE or INCREMENT
(PATHPULSE...)
(PATHPULSEPERCENT...)

) // end DELAY
) // end CELL

) // end DELAYFILE

OVI SDF Specification Version Differences

The SDF Annotator supports multiple versions of the OVI SDF specifications. However,
because some constructs in one version may not available in other versions, you need to
specify which version you want to use in the SDFVERSIONentry in the header section of the
SDF file. For information about the header section of the SDF file, see “SDF File Keyword
Constructs” on page 38.
January 2001 36 Product Version 3.2

SDF Annotator Guide
Using the SDF File
In most cases, the difference between versions are minimal. If a construct that is not
supported under the current version setting is encountered, then you will receive a syntax
error.

The following sections show the constructs that exist in a specific version of the OVI SDF
specifications when you specify 1.*, 2.*, or 3.* in the SDFVERSION entry.

SDF Version 1.* Constructs

The following constructs are specific to the 1.* versions of the SDF standard. Specify 1.* for
any version prior to 2.0.

■ If no SDFVERSION is specified, version 1.0 is used by default.

■ Version 1.* specifies the conditional TIMINGCHECK construct differently than later
versions, as follows:

(COND ... (timing_check ...))

This implies that you can supply a single condition to the timing check. By contrast, in
SDF version 2.0 or greater, you can match one or more timing check terminals, if more
than one is present.

■ The INCLUDE keyword specifies the full or relative path of a file that contains timing
specifications. The file is read as if it was inserted as a continuation of the current SDF
file. If the specified file is in your current directory, you can specify just the file name else,
you need to specify the full path. The example given below illustrates this.

(INCLUDE /cds/home/dff_celldef)

SDF Version 2.* Constructs

The following constructs are specific to the 2.* versions of the SDF standard:

■ The GLOBALPATHPULSE construct is supported. This was changed to
PATHPULSEPERCENT in Version 3.0.

■ You can optionally specify the TIMESCALE keyword in Version 2.0; in Version 2.1, the
TIMESCALE keyword is required. The default for TIMESCALE is 1 nanosecond (ns).

■ The timing constraints (PATHCONSTRAINT, SUM, DIFF, SKEWCONSTRAINT) are
allowed within the TIMINGCHECK construct.

■ The INCLUDE keyword is no longer supported.
January 2001 37 Product Version 3.2

SDF Annotator Guide
Using the SDF File
SDF Version 3.* Constructs

The following constructs are specific to the 3.* versions of the SDF standard:

■ The PATHPULSEPERCENT keyword replaces the 2.* GLOBALPATHPULSE keyword
but the functionality is the same.

■ Consecutive INSTANCE constructs are not allowed. In addition, the INSTANCE
construct is allowed only in the CELL header.

■ You can specify 12 delay values, the extra 6 delay values being X transition delays.

■ The CONDELSE construct is supported.

■ The RETAIN construct is supported in IOPATH, COND IOPATH, and CONDELSE
IOPATH constructs.

■ The REMOVAL timing check is allowed.

■ The RECOVERY construct allows a single limit only, and does not allow use of the
SCOND or CCOND constructs. Two-limit recoveries should be annotated using the
RECREM construct.

■ The NETDELAY construct is no longer supported.

■ The RECREM construct is supported.

■ You can specify timing constraint constructs only in the TIMINGENV construct. In
addition the new TIMINGENV entries (ARRIVAL, DEPARTURE, SLACK, WAVEFORM)
are supported.

SDF File Keyword Constructs

Every SDF file contains a header section followed by one or more cell entries, as shown in
the Figure 3-6 . For each cell entry, you can specify delay and timing check types.
January 2001 38 Product Version 3.2

SDF Annotator Guide
Using the SDF File
Figure 3-6 Sample SDF File

DELAYFILE Keyword

The DELAYFILE keyword construct contains all header and CELL entries in an SDF file. You
can specify any or all header entries in the DELAYFILE construct (but they must be in the
sequence shown in the following syntax) before you specify CELL entries.

(DELAYFILE
[(SDFVERSION "sdf_version")]
[(DESIGN "design_name")]
[(DATE "date")]
[(VENDOR "vendor_name")]
[(PROGRAM "program_name")]
[(VERSION "program_version")]
[(DIVIDER hierarchy_divider)]
[(VOLTAGE min:typ:max)]
[(PROCESS "process_name")]
[(TEMPERATURE min:typ:max)]
January 2001 39 Product Version 3.2

SDF Annotator Guide
Using the SDF File
[(TIMESCALE time_scale)]
(CELL cell_constructs)

)

Note: Verilog-XL and Verifault-XL use only the SDFVERSION, DIVIDER , and TIMESCALE
header keywords. The other keywords are provided for completeness.

The following table describes the SDF file header keywords and arguments.

Keyword Keyword Argument Description

SDFVERSION sdf_version A string specified in quotation marks that
specifies the SDF software version
number.

DESIGN design_name A string specified in quotation marks that
specifies the name of the design.

DATE date A string specified in quotation marks that
specifies the date and time when SDF
was generated.

VENDOR vendor_name A string specified in quotation marks that
specifies the name of the vendor whose
tools generated the SDF file.

PROGRAM program_name A string specified in quotation marks that
specifies the name of the program used
to generate the SDF file.

VERSION program_version A string specified in quotation marks that
specifies the program version number
used to generate the SDF file.

DIVIDER hierarchy_divider Either the period (.) which is the default,
or the slash (/) which specifies which
hierarchical path divider your program is
using.

VOLTAGE min:typ:max Three values (min:typ:max) that specify
the operating voltage (in volts) of the
design.

PROCESS process_name A string specified in quotation marks that
specifies the process operating
envelope, which is a string in double
quotes
January 2001 40 Product Version 3.2

SDF Annotator Guide
Using the SDF File
CELL Keyword and Constructs

The cell entries identify specific design instances, paths, and nets and associate timing data
with them. Cell entries are specific to a design, instance, library, or type. Each cell entry
begins with the CELL keyword followed by the CELLTYPE, and INSTANCE keywords.
These keywords, in turn, are followed by one or more timing specifications, which contain the
actual timing data associated with the cell entry.

The CELL keyword specifies an instance of a cell. The syntax for the CELL keyword is as
follows:

(CELL
(CELLTYPE "celltype")
(INSTANCE path)
{(DELAY delay_keywords)}
{(TIMINGCHECK tcheck_keywords)}
((TIMINGENV tenv_keywords)}

)

Note: The TIMINGENV keyword and its subsequent constructs are ignored by Verilog-XL
and Verifault-XL, but are included in this syntax diagram for completeness. You do not receive
error messages if you specify TIMINGENV keywords.

You can specify one or more timing specifications using the DELAY, TIMINGCHECK, and
TIMINGENV keywords. For information about the DELAY keyword, see “DELAY Keyword
and Constructs” on page 43. For information about the TIMINGCHECK keyword, see

TEMPERATURE min:typ:max Three values (min:typ:max) that specify
the operating ambient temperature(s) of
the design in centigrade degrees.

TIMESCALE time_scale A value followed by a time specification,
such as 100 ps for 100 picoseconds. If
you do not specify this keyword, the
default is 1 ns. You can specify the
following time specifications:

■ ns (nanoseconds; default)

■ us (microseconds)

■ ps (picoseconds)

CELL cell_constructs For more information, see CELL
Keyword and Constructs on page 41.

Keyword Keyword Argument Description
January 2001 41 Product Version 3.2

SDF Annotator Guide
Using the SDF File
“TIMINGCHECK Keyword and Constructs” on page 60. The other CELL keyword constructs
are described in this section.

CELLTYPE Keyword

The CELLTYPEkeyword specifies the type of a cell in a quoted string. For example, "DFF"
specifies a D flip-flop.

Note: This keyword is equivalent to the HDL module name.

INSTANCE Keyword

The INSTANCE keyword specifies an instance of the specified cell type. Specify a full
hierarchical path such as a1.b1.c1 or a path relative to the scope of annotation. A full
hierarchical path can be represented in either of the following formats:

(CELL
(CELLTYPE "DFF")
(INSTANCE a1.b1.c1)

timing_specification
timing_specification)

(CELL
(CELLTYPE "DFF")
(INSTANCE a1)
(INSTANCE b1)
(INSTANCE c1)

timing_specification
timing_specification)

The timing data in the timing specification applies only to the specified cell instance. You can
also specify an arrayed instance for the cell instance, as shown in the following format:

(CELL (CELLTYPE "DFF")
 (INSTANCE a1.b1[3].c1)

timing_specification
timing_specification

)

To associate the timing data with all instances of the specified cell type, you can place a
wildcard character (*) after the INSTANCEkeyword, as shown in the following example. Only
instances in or below the current top level are affected.

(CELL (CELLTYPE "DFF")
 (INSTANCE *)

timing_specification
timing_specification
...

)

If you do not specify a path, the default is the current top level.
January 2001 42 Product Version 3.2

SDF Annotator Guide
Using the SDF File
DELAY Keyword and Constructs

The DELAY keyword specifies the delay values associated with module paths, nets,
interconnects, devices, and ports. You can specify the keyword entries listed in the following
syntax.

(DELAY
{(ABSOLUTE

(IOPATH port_spec port_path delay_list)
(COND cond_port_expr

(IOPATH port_spec port_path
{(RETAIN delay_list)} delay_list))

(CONDELSE
(IOPATH port_spec port_path

{(RETAIN delay_list)} delay_list))
(PORT port_path delay_list)
(INTERCONNECT port_path1 port_path2 delay_list)
(NETDELAY name delay_list)
(DEVICE {port_path} delay_list))}

{(INCREMENT
(IOPATH port_spec port_path rdelay_list)
(COND cond_port_expr

(IOPATH port_spec port_path
{(RETAIN rdelay_list)} rdelay_list))

(CONDELSE
(IOPATH port_spec port_path

{(RETAIN rdelay_list)} rdelay_list))
(PORT port_path rdelay_list)
(INTERCONNECT port_path1 port_path2 rdelay_list)
(NETDELAY name rdelay_list)
(DEVICE {port_instance} rdelay_list))}

{(PATHPULSE port_path1 {port_path2} (reject) {(error)})}

{(PATHPULSEPERCENT port_path1 {port_path2} (reject) {(error)})}

)

Note: The delay_list variable in the syntax descriptions of this guide can be specified
as any of the syntaxes for delays shown in the following table. Also, a delay can be a single
value or three values representing minimum, typical, and maximum delays in the form
min:typ:max . Although you can specify up to 12 delays, Verilog-XL and Verifault-XL use
only the first six.

Transitions Delay Syntax

All transitions delay

Rise and fall (delay, delay)

Rise, fall, and Z (delay, delay, delay)

01, 10, 0Z, Z1, 1Z, Z0 (delay, delay, delay,
delay, delay, delay)
January 2001 43 Product Version 3.2

SDF Annotator Guide
Using the SDF File
ABSOLUTE Keyword

The ABSOLUTEkeyword specifies the delay values that replace the existing delay values in
the design. The syntax for the ABSOLUTE keyword construct is as follows:

(ABSOLUTE
(IOPATH port_spec port_path delay_list)
(COND cond_port_expr

(IOPATH port_spec port_path
{(RETAIN delay_list)} delay_list))

(CONDELSE
(IOPATH port_spec port_path

{(RETAIN delay_list)} delay_list))
(PORT port_path delay_list)
(INTERCONNECT port_path1 port_path2 delay_list)
(NETDELAY name delay_list)
(DEVICE {port_path} delay_list)

)

In the following example, the delay values in the examples are specified as two
min:typ:max triplets. The first triplet is the delay for a rising edge transition and the second
triplet is the delay for a falling edge transition.

(CELL
(CELLTYPE "DFF")
(INSTANCE a.b.c)
(DELAY

(ABSOLUTE
(IOPATH (posedge clk) q (22:28:33) (25:30:37))
(PORT clr (32:39:49) (35:41:47))

)
)

)

INCREMENT Keyword

The INCREMENT keyword specifies delay values that are positive or negative and that are
added to the existing delay values. The syntax for the INCREMENTkeyword construct is as
follows:

(INCREMENT
(IOPATH port_spec port_path rdelay_list)
(COND cond_port_expr

(IOPATH port_spec port_path

01, 10, 0Z, Z1, 1Z, Z0,
0X, X1, 1X, X0, XZ, ZX

(delay, delay, delay,
delay, delay, delay,
delay, delay, delay,
delay, delay, delay)

Transitions Delay Syntax
January 2001 44 Product Version 3.2

SDF Annotator Guide
Using the SDF File
{(RETAIN rdelay_list)} rdelay_list))
(CONDELSE

(IOPATH port_spec port_path
{(RETAIN rdelay_list)} rdelay_list))

(PORT port_path rdelay_list)
(INTERCONNECTport_instance1 port_instance2 rdelay_list)
(NETDELAY name rdelay_list)
(DEVICE { port_instance } rdelay_list)

)

Note: You can only use positive numbers (delay_list) with the ABSOLUTEkeyword; you
can use positive or negative numbers (rdelay_list) with the INCREMENT keyword.
Other than this difference, the keywords have the same syntax. The following sections
describe the constructs that you can use within the ABSOLUTE and INCREMENT keyword
constructs.

In the following example, the delay values in the examples are specified as two
min:typ:max triplets. The first triplet is the delay for a rising edge transition and the second
triplet is the delay for a falling edge transition.

(CELL (CELLTYPE "DFF")
(INSTANCE a.b.c)
(DELAY (INCREMENT

(IOPATH (posedge clk) q (-4::2) (-7::5))
(PORT clr (2:3:4) (5:6:7))

)
)

)

IOPATH Keyword

The IOPATH keyword specifies delays on a path from an input port to an output port of a
device and optional reject limits and error limits on the path. The syntax for the IOPATH
keyword is as follows:

(IOPATH port_spec port_path {(RETAIN rdelay_list)} rdelay_list)

The following table describes the arguments of theIOPATH keyword

Keyword Argument Description

port_spec Input or inout (bidirectional) port. An edge identifier can be
included.

port_path Output or inout port. Where applicable, a port path can have an
array index. For example: x.y[3].p .

RETAIN Ignored by Verilog-XL and Verifault-XL because retain delays are
not supported by these tools. It is part of the syntax only for
completeness.
January 2001 45 Product Version 3.2

SDF Annotator Guide
Using the SDF File
Each delay value is associated with a unique input port/output port pair.

Note: The SDF Annotator calculates the reject and error limit values as follows to determine
the level of acceptance for a delay value on a module path.

error_limit = (error%/100) * (module_path_delay)
reject_limit = (reject%/100) * (module_path_delay)

In the following example, the delay_list for each IOPATH is a set of three
min:typ:max triplets that specifies the delays for rise, fall, and turn-off transitions. This
example also includes a conditional IOPATH using the COND construct to represent state-
dependent path delays.

(INSTANCE x.y.z)
(DELAY (ABSOLUTE

 (IOPATH (posedge i1) o1 (2:3:4) (4:5:6) (3:5:6))
 (IOPATH i2 o1 (2:4:5) (5:6:7) (4:6:7))
 (COND i1 (IOPATH i3 o1 (2:4:5) (4:5:6) (4:5:7))

)
)

To specify optional reject and error limits, enclose the entire delay_list in parentheses
and enclose the delay, reject limit, and error limit in their own parentheses. For example, the
following construct specifies one delay. For all transitions, the delay is 12, the reject limit is 6,
and the error limit is 10.

(IOPATH A B ((12:12:12) (6:6:6) (10:10:10)))

To specify that a current delay is to be maintained, use an empty set of parentheses. For
example, the following IOPATH statement would annotate a delay of 3:5:7 and an error
limit of 2:3:6 , while keeping the current setting for the reject limit.

(IOPATH A B ((3:5:7) () (2:3:6)))

The following commented examples illustrate the syntax for the IOPATH keyword construct.

rdelay_list IOPATHdelay from port_spec to port_path . The delay can
also include optional reject and error limit specifications. You can
specify negative numbers only within the INCREMENT keyword
construct.

Keyword Argument Description

i1

i3

o1
i2

o2

x.y.z
January 2001 46 Product Version 3.2

SDF Annotator Guide
Using the SDF File
(IOPATH A B (12:12:12))
// Delay=12 for all transitions

// Reject and error limits are not specified,

// and are set equal to the delay.

(IOPATH A B (12:12:12)
(10:10:10))

// Delay=12 for rise transition.
// Delay=10 for fall transition.
// Reject and error limits are not specified,
// and are set equal to the delay.

(IOPATH A B ((12:12:12) (10:10:10)))
// Delay=12 and reject=10 for all transitions.
// Error limit is not included,
// so it is set equal to reject limit.

(IOPATH A B ((12:12:12) (6:6:6) (10:10:10)))
// Delay=12, reject=6, error=10
// for all transitions.

(IOPATH A B ((12:12:12) () (10:10:10)))
// Delay=12, reject=current value,
//error=10 for all transitions.

(IOPATH A B (12:12:12)
((10:10:10) (5:5:5) (9:9:9)))

// Delay=12, reject=12, error=12
// for rise transition.
// Delay=10, reject=5, error=9
// for fall transition.

(IOPATH A B ((12:12:12) (6:6:6) (8:8:8))
((10:10:10) (5:5:5) (9:9:9)))

// Delay=12, reject=6, error=8
// for rise transition.
// Delay=10, reject=5, error=9
// for fall transition.

(IOPATH A B ((12:12:12) (6:6:6))
((10:10:10) (5:5:5) (9:9:9)))

// Delay=12, reject=6, error=6
// for rise transition.
// Delay=10, reject=5, error=9

// for fall transition.

(IOPATH A B ((5:5:5) (2:2:2) (3:3:3))
((6:6:6) (3:3:3) (4:4:4))
((15:15:15) (7:7:7) (10))

((14:14:14) (6:6:6) (9:9:9))
((12:12:12) (7:7:7) (9:9:9))
((13:13:13) (5:5:5) (8:8:8)))
// Delay=5, reject=2, error=3 for 01 transition.
// Delay=6, reject=3, error=4 for 10 transition.
// Delay=15, reject=7, error=10 for 0Z transition.
// Delay=14, reject=6, error=9 for Z1 transition.
// Delay=12, reject=7, error=9 for 1Z transition.
// Delay=13, reject=5, error=8 for Z0 transition.
January 2001 47 Product Version 3.2

SDF Annotator Guide
Using the SDF File
COND Keyword

The COND keyword specifies conditional module path delays. The syntax is as follows:

(COND cond_port_expr
(IOPATH port_spec port_path

{(RETAIN rdelay_list)} rdelay_list
)

)

The following table describes the arguments of the COND keyword.

CONDELSE Keyword

The CONDELSEkeyword specifies path delays when a signal change must be propagates to
an output or inout, but none of the conditions for module paths to it are true. The syntax is as
follows:

(CONDELSE
(IOPATH port_spec port_path

{(RETAIN rdelay_list)} rdelay_list
)

)

The following table describes the arguments of the CONDELSEkeyword.

Keyword Argument Description

cond_port_expr Boolean description of the state dependencty of the delay. The
delay values apply only if cond_port_expr is true(logical
one).

IOPATH See IOPATH Keyword on page 45 for more information.

port_spec Input or inout port that can have an edge identifier.

port_path Output or inout port. Where applicable, a port path can have an
array index. For example: x.y[3].p .

RETAIN Ignored by Verilog-XL and Verifault-XL because both these tools
do not support retain delays. It is part of the syntax only for
completeness.

rdelay_list IOPATH delay from port_spec to port_path .

Keyword Argument Description

IOPATH See IOPATH Keyword on page 45 for more information.
January 2001 48 Product Version 3.2

SDF Annotator Guide
Using the SDF File
Use the CONDELSE keyword to cover all cases for a path that have not been specified in
COND keyword constructs.

RETAIN Keyword

The RETAIN keyword specifies the time for which an output or inout port retains its previous
logic value after a change at a related input or inout port. It is specified inside an IOPATH
keyword construct. Use the RETAIN keyword on paths that proceed from the address or
select inputs to the data outputs of memory and register file circuits. Also, you should use
this keyword only where the cell timing model includes an explicit mechanism for providing
retention times. The syntax is as follows:

(RETAIN delay_list)

The delay_list variable specifies the retention time data from the port_spec to the
port_path variables in the IOPATH keyword construct. Consecutive delays in the
delay_list must be increasing numerically.

The following example shows the retain time of the bus do[7:0] with respect to changes
on the bus addr[13:0] . The rise time (4:5:7) proceeds from low to X; the fall time
(5:6:9) proceeds from high to X.

(IOPATH addr[13:0] do[7:0] (RETAIN (4:5:7) (5:6:9))

PORT Keyword

The PORTkeyword specifies estimated or actual interconnect delay values you can place on
the input port, without having to specify a start point for the wire path. The syntax is as follows:

(PORT port_path delay_list)

port_spec Input or inout port that can have an edge identifier.

port_path Output or inout port. Where applicable, a port path can have an
array index. For example: x.y[3].p .

RETAIN Ignored by Verilog-XL and Verifault-XL because both these tools
do not support retain delays. It is part of the syntax only for
completeness.

rdelay_list IOPATH delay from port_spec to port_path .

Keyword Argument Description
January 2001 49 Product Version 3.2

SDF Annotator Guide
Using the SDF File
The following table describes the arguments of the PORT keyword.

If you specify interconnect delays and port delays for the same input of a module, the SDF
Annotator uses whichever specification appears last in the SDF file.

In the following example, the delay consists of one min:typ:max triplet specifying the
minimum, typical, and maximum delays for all transitions. The PORT delay is specified as
incremental, which means the existing delay data values are increased or decreased rather
than replaced.

(INSTANCE x)
(DELAY

(INCREMENT (PORT a.b.i1 (-2:0:2)))
)

Port delays are mapped to Module Input Port Delays (MIPDs). By default, MIPDs use inertial
delays. Verilog-XL has interconnect transport delay functionality with pulse control, which is
enabled by using the +transport_int_delays and the +multisource_int_delays
plus options.

Verilog-XL generates Single-source Interconnect Transport Delays (SITDs) or Multi-source
Interconnect Transport Delays (MITDs), as shown in the following table:

Keyword Argument Description

port_path Input or inout port. Where applicable, a port path can have an
array index. For example: x.y[3].p .

delay_list PORT delay of the port_path . Optional reject and error limits
can be included.

Plus Option Single-source Nets Multi-source Nets

+transport_int_delays SITD SITD

i1

i2
o1

a.b
x

January 2001 50 Product Version 3.2

SDF Annotator Guide
Using the SDF File
For more information and examples of valid and invalid interconnect combinations, see
Appendix B, “Valid and Invalid Interconnect Combinations.”

To specify optional reject and error limits, enclose the entire delay_list in parentheses
and enclose the delay, reject limit, and error limit in their own parentheses. For example, the
following command specifies one delay. For all transitions, the delay is 12, the reject limit is
6, and the error limit is 10.

(PORT A ((12:12:12) (6:6:6) (10:10:10)))

To specify that a current delay is to be maintained, use an empty set of parentheses. For
example, the following PORT keyword would annotate a delay of 3:5:7 and an error limit of
2:3:6, while keeping the current setting for the reject limit.

(PORT A ((3:5:7) () (2:3:6)))

The following commented examples show how to use the PORT keyword.

(PORT A (12:12:12))
// Delay=12 for all transitions.
// Reject and error limits are not specified,
// and are set equal to the delay.

(PORT A (12:12:12)
(10:10:10))

// Delay=12 for rise transition.
// Delay=10 for fall transition.
// Reject and error limits are not specified,
// and are set equal to the delay.

(PORT A ((12:12:12) (6:6:6) (10:10:10)))
// Delay=12, reject=6, error=10
// for all transitions.

(PORT A ((12:12:12) () (10:10:10)))
// Delay=12, reject=current value,
// error=10 for all transitions.

(PORT A ((12:12:12) (10:10:10)))
// Delay=12 and reject=10 for all transitions.
// Error limit is not included,
// so it is set equal to reject limit.

(PORT A ((5:5:5) (2:2:2) (3:3:3))
((6:6:6) (3:3:3) (4:4:4))
((15:15:15) (7:7:7) (10))
((14:14:14) (6:6:6) (9:9:9))
((12:12:12) (7:7:7) (9:9:9))
((13:13:13) (5:5:5) (8:8:8)))

+multisource_int_delays MIPD MITD

Both plus options SITD MITD

Neither plus option MIPD MIPD

Plus Option Single-source Nets Multi-source Nets
January 2001 51 Product Version 3.2

SDF Annotator Guide
Using the SDF File
// Delay=5, reject=2, error=3 for 01 transition.
// Delay=6, reject=3, error=4 for 10 transition.
// Delay=15, reject=7, error=10 for 0Z transition.
// Delay=14, reject=6, error=9 for Z1 transition.
// Delay=12, reject=7, error=9 for 1Z transition.
// Delay=13, reject=5, error=8 for Z0 transition.

INTERCONNECT Keyword

The INTERCONNECTkeyword specifies estimated or actual delays in the wire paths between
devices. The syntax is as follows:

(INTERCONNECTport_path1 port_path2 delay_list)

The following table describes the arguments of the INTERCONNECTkeyword

In the following example, the delay_list consists of two min:typ:max triplets
specifying the delays for rise and fall transitions.

(INSTANCE x)
(DELAY

(ABSOLUTE
(INTERCONNECT y.z.o1 w.i3 (5:6:7) (5.5:6:6.5))

)
)

Keyword Argument Description

port_path1 Output or inout port. Where applicable, a port path can have an
array index. For example: x.y[3].p .

port_path2 Input or inout port. Where applicable, a port path can have an
array index. For example: x.y[3].p .

delay_list Interconnect delay between the output and input ports. Unique
delays can be specified for multi-source nets. The delay can also
include optional reject and error limits.

i1

i3 o2
i2i1

i3
o1i2

o1z
w

x

y

January 2001 52 Product Version 3.2

SDF Annotator Guide
Using the SDF File
INTERCONNECTdelays are mapped to Module Input Port Delays (MIPDs) by default. MIPDs
use inertial delays. Verilog-XL has interconnect transport delay functionality with pulse
control, which is enabled by using the +transport_int_delays and/or the
+multisource_int_delays plus options.

Verilog-XL generates Single-source Interconnect Transport Delays (SITDs) or Multi-source
Interconnect Transport Delays (MITDs), as shown in the following table:

For more information and examples of valid and invalid interconnect combinations, see
Appendix B, “Valid and Invalid Interconnect Combinations.”

To specify optional reject and error limits, enclose the entire delay_list in parentheses
and enclose the delay, reject limit, and error limit in their own parentheses. For example, the
following command specifies one delay. For all transitions, the delay is 12, the reject limit is
6, and the error limit is 10.

(INTERCONNECT A B ((12:12:12) (6:6:6) (10:10:10)))

To specify that a current delay is to be maintained, use an empty set of parentheses. For
example, the following INTERCONNECT statement annotates a delay of 3:5:7 and an error
limit of 2:3:6, while keeping the current setting for the reject limit.

(INTERCONNECT A B ((3:5:7) () (2:3:6)))

The following commented examples illustrate the syntax for INTERCONNECT.

(INTERCONNECT A B (12:12:12))
// Delay=12 for all transitions.
// Reject and error limits are not specified,
// and are set equal to the delay.

(INTERCONNECT A B ((12:12:12) (6:6:6) (10:10:10)))
// Delay=12, reject=6, error=10
// for all transitions.

(INTERCONNECT A B ((12:12:12) () (10:10:10)))
// Delay=12, reject=current value,
// error=10 for all transitions.

(INTERCONNECT A B ((12:12:12) (10:10:10)))
// Delay=12 and reject=10 for all transitions.
// Error limit is not included,
// so it is set equal to reject limit.

(INTERCONNECT A B (12:12:12)

Plus Option Single-source Nets Multi-source Nets

+transport_int_delays SITD SITD

+multisource_int_delays MIPD MITD

Both plus options SITD MITD

Neither plus option MIPD MIPD
January 2001 53 Product Version 3.2

SDF Annotator Guide
Using the SDF File
((10:10:10) (5:5:5) (9:9:9)))
// Delay=12, reject=12, error=12
// for rise transition.
// Delay=10, reject=5, error=9
// for fall transition.

(INTERCONNECT A B ((5:5:5) (2:2:2) (3:3:3))
((6:6:6) (3:3:3) (4:4:4))
((15:15:15) (7:7:7) (10))
((14:14:14) (6:6:6) (9:9:9))
((12:12:12) (7:7:7) (9:9:9))
((13:13:13) (5:5:5) (8:8:8)))

// Delay=5, reject=2, error=3 for 01 transition.
// Delay=6, reject=3, error=4 for 10 transition.
// Delay=15, reject=7, error=10 for 0Z transition.
// Delay=14, reject=6, error=9 for Z1 transition.
// Delay=12, reject=7, error=9 for 1Z transition.
// Delay=13, reject=5, error=8 for Z0 transition.

(INTERCONNECT A D ((5:5:5) (2:2:2) (3:3:3)))
(INTERCONNECT B D ((6:6:6) (3:3:3) (4:4:4)))
(INTERCONNECT C D ((7:7:7) (4:4:4) (5:5:5)))

// Unique delays, reject limits, and error limits
// for multi-source net.

NETDELAY Keyword

The NETDELAYkeyword specifies delay for a complete net, where delays from all the source
port(s) on the net to all destination port(s) have the same value. NETDELAY is a short form
of INTERCONNECT delay.

The syntax is as follows:

(NETDELAY name delay_list)

The following table describes the arguments of the NETDELAY keyword.

In the following example, the net is identified by name. The delay_list consists of three
min:typ:max triplets specifying the rise, fall, and turn-off delays.

(INSTANCE x)
(DELAY

Keyword Argument Description

name Name of the net or the output port driving the net. Where
applicable, a port name can have array index (for example,
x.y[3].p).

delay_list Delay associated with the net or port specified by name. The
value specifies the same delay for all source/load pairs. The
delay can include optional reject and error limits.
January 2001 54 Product Version 3.2

SDF Annotator Guide
Using the SDF File
(ABSOLUTE
(NETDELAY w1 (2.5:3.0:3.5) (2.9:3.4:4.2) (6.3:8:9.9))

)
)

NETDELAYdelays are mapped to Module Input Port Delays (MIPDs). By default, MIPDs use
inertial delays. Verilog-XL has interconnect transport delay functionality with pulse control,
which is enabled by using the +transport_int_delays and/or the
+multisource_int_delays plus options.

Verilog-XL generates Single-source Interconnect Transport Delays (SITDs) or Multi-source
Interconnect Transport Delays (MITDs), as shown in the following table:

For more information and examples of valid and invalid interconnect combinations, see
Appendix B, “Valid and Invalid Interconnect Combinations.”

To specify optional reject and error limits, enclose the entire delay_list in parentheses
and enclose the delay, reject limit, and error limit in their own parentheses. For example, the
following command specifies one delay. For all transitions, the delay is 12, the reject limit is
6, and the error limit is 10.

(NETDELAY A ((12:12:12) (6:6:6) (10:10:10)))

To specify that a current delay is to be maintained, use an empty set of parentheses. For
example, the following NETDELAYstatement would annotate a delay of 3:5:7 and an error
limit of 2:3:6 , while keeping the current setting for the reject limit.

(NETDELAY A ((3:5:7) () (2:3:6)))

Plus Option Single-Source Nets Multi-source Nets

+transport_int_delays SITD SITD

+multisource_int_delays MIPD MITD

Both plus options SITD MITD

Neither plus option MIPD MIPD

i1

i3

i1
i2

o1

i2 o1

x

i1

i2
o1 w1
January 2001 55 Product Version 3.2

SDF Annotator Guide
Using the SDF File
The following commented examples illustrate the syntax for NETDELAY.

(NETDELAY A (12:12:12))
// Delay=12 for all transitions.
// Reject and error limits are not specified,
// and are set equal to the delay.

(NETDELAY A (12:12:12)
(10:10:10))

// Delay=12 for rise transition.
// Delay=10 for fall transition.
// Reject and error limits are not specified,
// and are set equal to the delay.

(NETDELAY A ((12:12:12) (6:6:6) (10:10:10)))
// Delay=12, reject=6, error=10
// for all transitions.

(NETDELAY A ((12:12:12) () (10:10:10)))
// Delay=12, reject=current value,
// error=10 for all transitions.

(NETDELAY A ((12:12:12) (10:10:10)))
// Delay=12 and reject=10 for all transitions.
// Error limit is not included,
// so it is set equal to reject limit.

(NETDELAY A ((5:5:5) (2:2:2) (3:3:3))
((6:6:6) (3:3:3) (4:4:4))
((15:15:15) (7:7:7) (10))
((14:14:14) (6:6:6) (9:9:9))
((12:12:12) (7:7:7) (9:9:9))
((13:13:13) (5:5:5) (8:8:8)))

// Delay=5, reject=2, error=3 for 01 transition.
// Delay=6, reject=3, error=4 for 10 transition.
// Delay=15, reject=7, error=10 for 0Z transition.
// Delay=14, reject=6, error=9 for Z1 transition.
// Delay=12, reject=7, error=9 for 1Z transition.
// Delay=13, reject=5, error=8 for Z0 transition.

DEVICE Keyword

The DEVICE keyword specifies the intrinsic delay of a module or gate. Intrinsic delay is
specific to the type of the object and has the same value for every instance of that module or
gate. Conceptually, this represents all path delays through the object, independent of loading
or input slope. At the gate level, the delay is associated with the output. If a module has more
than one output, specify the delays to each output port by using additional port_instance
specifications. If you do not specify any port, SDF assumes that all output ports have the
same delay values. The syntax is as follows:

(DEVICE {port_path} delay_list)
January 2001 56 Product Version 3.2

SDF Annotator Guide
Using the SDF File
The following table describes the arguments of the DEVICE keyword.

In the following example, the delay_list consists of three min:typ:max triplets
specifying the rise, fall, and turn-off delays.

(INSTANCE x.a.b)
(DELAY

(ABSOLUTE
(DEVICE o1 (6:7:8) (4:6:7) (5:8:9))

)
)

Verilog-XL and Verifault-XL have path pulse control functionality. To specify optional reject
and error limits, enclose the entire delay_list in parentheses and enclose the delay,
reject limit, and error limit in their own parentheses. For example, the following command
specifies one delay. For all transitions, the delay is 12, the reject limit is 6, and the error limit
is 10.

(DEVICE A ((12:12:12) (6:6:6) (10:10:10)))

To specify that you want a current delay maintained, use an empty set of parentheses. For
example, the following DEVICE statement would annotate a delay of 3:5:7 and an error
limit of 2:3:6 , while keeping the current setting for the reject limit.

(DEVICE A ((3:5:7) () (2:3:6)))

The following commented examples illustrate the syntax for DEVICE.

(DEVICE A (12:12:12))
// Delay=12 for all transitions.
// Reject and error limits are not specified,
// and are set equal to the delay.

(DEVICE A (12:12:12)
(10:10:10))

// Delay=12 for rise transition.
// Delay=10 for fall transition.

Keyword Argument Description

port_path Output port. Where applicable, a port path can have array
index (for example, x.y[3].p).

delay_list Device delay (specific to a type).

i1

i2

o1
x.a.b
January 2001 57 Product Version 3.2

SDF Annotator Guide
Using the SDF File
// Reject and error limits are not specified,
// and are set equal to the delay.

(DEVICE A ((12:12:12) (10:10:10)))
// Delay=12 and reject=10 for all transitions.
// Error limit is not included,
// so it is set equal to reject limit.

(DEVICE A ((12:12:12) (6:6:6) (10:10:10)))
// Delay=12, reject=6, error=10
// for all transitions.

(DEVICE A ((12:12:12) () (10:10:10)))
// Delay=12, reject=current value,
// error=10 for all transitions.

(DEVICE A (12:12:12)
((10:10:10) (5:5:5) (9:9:9)))

// Delay=12, reject=12, error=12
// for rise transition.
// Delay=10, reject=5, error=9
// for fall transition.

(DEVICE A ((12:12:12) (6:6:6) (8:8:8))
((10:10:10) (5:5:5) (9:9:9)))

// Delay=12, reject=6, error=8
// for rise transition.
// Delay=10, reject=5, error=9
// for fall transition.

(DEVICE A ((5:5:5) (2:2:2) (3:3:3))
((6:6:6) (3:3:3) (4:4:4))
((15:15:15) (7:7:7) (10))
((14:14:14) (6:6:6) (9:9:9))
((12:12:12) (7:7:7) (9:9:9))
((13:13:13) (5:5:5) (8:8:8)))

// Delay=5, reject=2, error=3 for 01 transition.
// Delay=6, reject=3, error=4 for 10 transition.
// Delay=15, reject=7, error=10 for 0Z transition.
// Delay=14, reject=6, error=9 for Z1 transition.
// Delay=12, reject=7, error=9 for 1Z transition.
// Delay=13, reject=5, error=8 for Z0 transition.

PATHPULSE Keyword

The PATHPULSEkeyword specifies the limits associated with a legal path between an input
port and an output port of a device. These limits determine whether a pulse at the input can
pass through the device to the output.

The syntax for the PATHPULSE keyword is as follows. If you specify only one value for
reject or error , both limits are set to that value.

(PATHPULSE port_path1 { port_path2 } (reject) {(error)})
January 2001 58 Product Version 3.2

SDF Annotator Guide
Using the SDF File
The following table describes the arguments of the PATHPULSE keyword.

In the following example, the first value (13) is the pulse reject limit and the second value (21)
is the error limit.

(INSTANCE x)
(DELAY

(PATHPULSE y.i1 y.o1 (13) (21))
)

Keyword
Argument Description

port_path1 Input or inout port. Where applicable, a port path can have array
index (for example, x.y[3].p).

port_path2 Output or inout port. Where applicable, a port path can have array
index (for example, x.y[3].p).

reject Pulse rejection limit, in time units. This limit defines the minimum
pulse width required for the pulse to pass through to the output.
Anything smaller does not affect the output.

error The error limit, in time units. This limit defines the minimum pulse
width necessary to drive the output to a known state. Anything smaller
causes the output to enter the unknown (e) state or is rejected (if
smaller than the pulse reject limit). The error limit must be equal to or
greater than the pulse reject limit.

pulse reject limit

i1

o1

error limit
January 2001 59 Product Version 3.2

SDF Annotator Guide
Using the SDF File
PATHPULSEPERCENT Keyword

The PATHPULSEPERCENT keyword is the same as the PATHPULSE keyword except that
reject and error limits are expressed in percentages (%) of the cell path delay from the input
to the output. If you specify only one value, both reject and error limits are set to that value.
See the PATHPULSE keyword for a description of the syntax.

Note: The PATHPULSEPERCENT keyword supersedes the GLOBALPATHPULSE keyword.

In the following example, the first value (25) is the pulse reject limit and the second value (35)
is the error limit.

(INSTANCE x)
(DELAY

(PATHPULSEPERCENT y.i1 y.o1 (25) (35))
)

The error limit must be equal to or greater than the reject limit.

If you omit both the reject limit and error limit, both specifications are set to 100. If the reject
limit exceeds the error limit or if you omit the error limit, the error limit is set equal to the reject
limit.

TIMINGCHECK Keyword and Constructs

The TIMINGCHECKkeyword assigns timing check limits to specific cell instances and assigns
layout constraints to critical paths in the design that determine how the signals can change in
relation to each other. Verilog family tools use this information during the design process, as
follows:

■ Simulation tools are notified of signal transitions that violate timing checks.

■ Timing analysis tools identify paths that might violate timing checks and determine the
timing constraints for those paths.

■ Layout tools use the timing constraints from timing analysis tools to generate layouts that
do not violate any timing checks.

The syntax of the TIMINGCHECK keyword is as follows:

(TIMINGCHECK
{(SETUP data_sig clk_sig setup_time)}
{(HOLD data_event clk_event hold_time)}
{(SETUPHOLD data_event clk_event setup_time hold_time

{(SCOND tstamp_cond)} {(CCOND tcheck_cond)})}
{(RECOVERY asynch_ctl_sig clk_or_gate recovery_time

{(SCOND tstamp_cond)} {(CCOND tcheck_cond)})}
{(REMOVAL asynch_ctl_sig clk_or_gate removal_time)}
January 2001 60 Product Version 3.2

SDF Annotator Guide
Using the SDF File
{(RECREM asynch_ctl_port clk_or_gate recovery_time removal_time
{(SCOND tstamp_cond)} {(CCOND tcheck_cond)})}

{(SKEW lower_clk upper_clk max_skew)}
{(WIDTH edge_clk max_width)}
{(PERIOD edge_clk max_period)}
{(NOCHANGE clk_event data_event start_offset end_offset)})

Note: The following syntax applies to SDF standards prior to OVI Version 2.0, where
tcheck applies to the TIMINGCHECK keyword constructs.

(TIMINGCHECK
(COND tcheck_cond tcheck)

)

The following example shows a cell entry that assigns setup and hold timing checks:

(CELL (CELLTYPE "DFF")
(INSTANCE a.b.c)
(TIMINGCHECK

(SETUP din (posedge clk) (3:4:5.5))
(HOLD din (posedge clk) (4:5.5:7))))

COND Keyword

The COND keyword specifies conditional timing check. The syntax is as follows for OVI SDF
Versions previous to 2.0:

(COND tcheck_cond tcheck)

The CONDkeyword in OVI SDF Version 2.0 and higher places the condition on the signal itself
as shown in the following syntax examples:

(SETUP
 (COND tcheck_cond data_sig) clk_sig setup_time
)

(SETUP
 (data_sig (COND tcheck_cond clk_sig) setup_time
)

The following table describes the arguments of the COND keyword.

Note: In SETUPHOLD and RECOVERYtiming checks, you can use the SCOND and CCOND
constructs to condition the time stamp and time check events. See “SETUPHOLD Keyword”

Keyword Argument Description

tcheck_cond Boolean expression.

data_sig Data signal.
January 2001 61 Product Version 3.2

SDF Annotator Guide
Using the SDF File
on page 64 and “RECOVERY Keyword” on page 65 for more information about these
conditional keywords.

SETUP Keyword

The SETUP keyword specifies the minimum interval before a clock transition. The syntax is
as follows:

(SETUP data_sig clk_sig setup_time)

The following table describes the arguments of the SETUP keyword.

The following examples show how SETUP and HOLD works:

(INSTANCE x.a)
(TIMINGCHECK

(SETUP din (posedge clk) (12))
)

(INSTANCE x.a)
(TIMINGCHECK

Keyword Argument Description

data_sig Data signal.

clk_sig Clock signal.

setup_time Specifies the minimum interval between the data and
clock event (that is, before clock transition). Any change
to the data signal within these intervals results in a timing
violation.
January 2001 62 Product Version 3.2

SDF Annotator Guide
Using the SDF File
(HOLD din (posedge clk) (9.5))
)

HOLD Keyword

The HOLD keyword specifies the minimum interval after a clock transition. The syntax is as
follows:

(HOLD data_event clk_event hold_time)

The following table describes the arguments of the HOLD keyword.

See the example in “SETUPHOLD Keyword” on page 64 to see how you use SETUP and
HOLD.

Keyword
Argument Description

data_event Data event.

clk_event Clock event.

hold_time Specifies the minimum interval between the clock and data events
(that is, after clock transition). Any change to the data signal within
these intervals results in a timing violation.
January 2001 63 Product Version 3.2

SDF Annotator Guide
Using the SDF File
SETUPHOLD Keyword

The SETUPHOLD keyword specifies the same information with one keyword as both the
SETUP and HOLD keywords do. The syntax is as follows:

(SETUPHOLD data_event clk_event setup_time hold_time
{(SCOND tstamp_cond)} {(CCOND tcheck_cond)})

The following table describes the arguments of the SETUPHOLD keyword.

Note: The setup_time or the hold_time can be negative, but their sum must be 0 or
more. To perform SDF back annotation to SETUPHOLD timing checks with negative values,
you must use the +neg_tchk plus option on the command line.

In addition to performing the SETUPand HOLDoperations, the SETUPHOLDkeyword can have
different conditions specified for the event that triggers the check and the event that causes
the check to be validated.

If SCOND or CCOND is used with the COND construct, the COND construct is overruled.

The following examples show how to use the SETUPHOLD keyword:

Keyword Argument Description

data_event Data event.

clk_event Clock event.

setup_time Minimum interval between the data and clock events (that
is, before clock transition). Any change to the data signal
within these intervals results in a timing violation.

hold_time Minimum interval between the clock and data events (that
is, after clock transition). Any change to the data signal
within these intervals results in a timing violation.

(SCONDtstamp_cond) Event that triggers the timing check. If the
tstamp_cond is true, the Verilog family tool accepts the
timing check. If false, the Verilog family tool ignores the
timing check.

(CCONDtcheck_cond) Event that causes the timing check to be validated. If the
tcheck_cond is true, the Verilog family tool accepts the
timing check. If false, the Verilog family tool ignores the
timing check.
January 2001 64 Product Version 3.2

SDF Annotator Guide
Using the SDF File
(INSTANCE x.a)
(TIMINGCHECK

(SETUPHOLD din (posedge clk) (12) (9.5))
)

(INSTANCE x.a)
(TIMINGCHECK

(SETUPHOLD din (posedge clk) (12) (9.5) (SCOND !rst))
)

(INSTANCE x.a)
(TIMINGCHECK

(SETUPHOLD din (posedge clk) (12) (9.5) (CCOND !rst))
)

RECOVERY Keyword

The RECOVERYkeyword limits a change in an asynchronous control signal and the next clock
pulse (for example, between clearbar and the clock for a flip-flop). If the clock signal violates
the constraint, the output value is unknown. The syntax is as follows:

(RECOVERYasynch_ctl_sig clk_or_gate recovery_time
{(SCOND tstamp_cond)} {(CCOND tcheck_cond)})

The following table describes the arguments of the COND keyword.

Keyword Argument Description

asynch_ctl_sig Asynchronous control signal, which normally has an edge
identifier associated with it to indicate which transition
corresponds to the release from the active state.

clk_or_gate Clock (flip-flops) or gate (latches) signal, which normally
has an edge identifier to indicate the active edge of the
clock or the closing edge of the gate.

recovery_time Minimum interval between the release of the
asynchronous control signal and the next active edge of
the clock/gate event. The simulator uses the recovery limit
for deterministic comparisons and does not admit x
values.

(SCONDtstamp_cond) Event that triggers the timing check. If the tstamp_cond
is true, the Verilog family tool accepts the timing check. If
false, the Verilog family tool ignores the timing check.

(CCONDtcheck_cond) Event that causes the timing check to be validated. If the
tcheck_cond is true, the Verilog family tool accepts the
timing check. If false, the Verilog family tool ignores the
timing check.
January 2001 65 Product Version 3.2

SDF Annotator Guide
Using the SDF File
The recovery timing check can have different conditions specified for the event that triggers
the check and the event that causes the check to be validated.

If SCOND or CCOND is used with the COND construct, the COND construct is overruled.

The following example shows how to use the RECOVERY keyword:

(INSTANCE x.b)
(TIMINGCHECK

(RECOVERY (posedge clearbar) (posedge clk) (11.5)))

(INSTANCE x.a)
(TIMINGCHECK

(RECOVERY (posedge rst) (posedge clk) (12) (9.5)
(SCOND !clear))

)

(INSTANCE x.a)
(TIMINGCHECK

(RECOVERY (posedge rst) (posedge clk) (12) (9.5)
(CCOND !clear))

)

Note: Prior to the release of SDF version 3.0, the RECOVERYkeyword was used to annotate
two limits - the recovery limit and the removal limit. Two-limit recoveries are now annotated
using the RECREMkeyword. For more information on two-limit recoveries, refer to “RECREM
Keyword” on page 67.

REMOVAL Keyword

The REMOVAL keyword is similar to the HOLD keyword and specifies the time between an
active clock edge and the release of an asynchronous control signal from the active state. The
syntax is as follows:

(REMOVAL asynch_ctl_sig clk_or_gate removal_time)
January 2001 66 Product Version 3.2

SDF Annotator Guide
Using the SDF File
The following table describes the arguments of the REMOVAL keyword.

For example, if the release of the clearbar occurs too soon after the edge of the clock, the
state of a flip-flop between the clock and the clearbar becomes uncertain. That is, it could be
the value set by the clearbar, or it could be the value clocked into the flip-flop from the data
input. The following example shows how to use the REMOVALkeyword to avoid this problem.

(INSTANCE x.b)
(TIMINGCHECK

(REMOVAL (posedge clearbar) (posedge clk) (6.3))

)

RECREM Keyword

The RECREM keyword specifies both recovery and removal limits in a single keyword. The
syntax is as follows:

(RECREMasynch_ctl_sig clk_or_gate recovery_time removal_time
{(SCOND tstamp_cond)} {(CCOND tcheck_cond)})

The following table describes the arguments of the RECREM keyword.

Keyword Argument Description

asynch_ctl_sig Asynchronous control signal, which normally has an edge
identifier associated with it to indicate which transition
corresponds to the release from the active state.

clk_or_gate Clock (flip-flops) or gate (latches) signal, which normally
has an edge identifier to indicate the active edge of the
clock or the closing edge of the gate.

removal_time Positive time value for which an extraordinary operation
(such as a set or reset) must persist to ensure that a
device ignores any normal operation (such as, clocking in
new data).

Keyword Argument Description

asynch_ctl_sig Asynchronous control signal, which normally has an edge
identifier associated with it to indicate which transition
corresponds to the release from the active state.
January 2001 67 Product Version 3.2

SDF Annotator Guide
Using the SDF File
When two time limits (recovery_time and removal_time) are specified, the
recovery_time can be negative, but the sum of both must be 0 or more. To perform SDF
annotation to recovery timing checks with negative values, you must use the +neg_tchk plus
option on the command line.

The following example specifies a recovery time of 1.5 before the clock transition and a
removal time of 0.8 after the clock transition. Any change to the clearbar signal within this
interval results in a timing violation.

(INSTANCE x.b)
(TIMINGCHECK

(RECREM (posedge clearbar) (posedge clk) (1.5) (0.8)))

Note: Prior to the release of SDF version 3.0, the RECOVERYkeyword was used to annotate
two-limit recoveries.

SKEW Keyword

The SKEWkeyword specifies the limits for signal skew timing checks. A signal skew limit is the
maximum delay allowable between two signals. You can specify these timing checks only
between two signals existing at the same design hierarchy level. The syntax is as follows:

clk_or_gate Clock (flip-flop) or gate (latch) signal, which normally has
an edge identifier to indicate the active edge of the clock or
the closing edge of the gate.

recovery_time Minimum interval between the release of the
asynchronous control signal and the next active edge of
the clock/gate event. The simulator uses the recovery limit
for deterministic comparisons and does not admit x
values.

removal_time Minimum interval between the clock and data events (that
is, after clock transition). Any change to the data signal
within these intervals results in a timing violation.

(SCONDtstamp_cond) Event that triggers the timing check. If the tstamp_cond
is true, the Verilog family tool accepts the timing check. If
false, the Verilog family tool ignores the timing check.

(CCONDtcheck_cond) Event that causes the timing check to be validated. If the
tcheck_cond is true, the Verilog family tool accepts the
timing check. If false, the Verilog family tool ignores the
timing check.

Keyword Argument Description
January 2001 68 Product Version 3.2

SDF Annotator Guide
Using the SDF File
(SKEW lower_clk upper_clk max_skew)

The following table describes the arguments of the SKEW keyword.

The following example shows how to use the SKEW keyword:

(INSTANCE x)
(TIMINGCHECK

(SKEW (posedge clk1) (posedge clk2) (6)))

WIDTH Keyword

The WIDTH keyword specifies the duration of signal levels from one clock edge to the
opposite clock edge. If a signal has unequal phases, specify a separate width check for each
phase. The syntax is as follows:

(WIDTH edge_clk max_width)

The following table describes the arguments of the WIDTH keyword.

Keyword Argument Description

lower_clk Lower-bound clock event which can include an edge specification.

upper_clk Upper-bound clock event which can include an edge specification.

max_skew Maximum delay allowed between the upper- and lower-bound clock
signals.

Keyword
Argument Description

edge_clk Edge-triggered clock event.
January 2001 69 Product Version 3.2

SDF Annotator Guide
Using the SDF File
The following example shows how to use the WIDTH keyword:

(INSTANCE x.b)
(TIMINGCHECK

 (WIDTH (posedge clk) (30))
 (WIDTH (negedge clk) (16.5))

)

The first width check is the phase beginning with the positive clock edge, and the second
width check is the phase beginning with the negative clock edge. The data event is equal to
the clock event with the opposite edge.

PERIOD Keyword

The PERIODkeyword specifies limit values for a minimum period timing check. The minimum
period timing check is the minimum allowable time for one complete cycle.

(PERIOD edge_clk max_period))

The following table describes the arguments for the PERIOD keyword.

The following example shows how to use the PERIODkeyword. The period is the interval
between two positive clock edges. The data event is equal to the clock event with the same
edge.

max_width Maximum time for the positive or negative phase of each cycle.

Keyword Argument Description

edge_clk Edge-triggered clock event.

max_period Minimum period for complete signal cycle.

Keyword
Argument Description
January 2001 70 Product Version 3.2

SDF Annotator Guide
Using the SDF File
(INSTANCE x.b)
(TIMINGCHECK

(PERIOD (posedge clk) (46.5))

NOCHANGE Keyword

The NOCHANGEkeyword specifies a signal constraint relative to the width of a clock pulse. You
can use this construct to model the timing constraints of memory devices, for example, when
address lines must remain stable during a write pulse. The syntax is as follows:

(NOCHANGEclk_event data_event start_offset end_offset)

The following table describes the arguments of the NOCHANGE keyword.

The following example defines a period beginning at 4.5 time units before the negative clk
edge and ending at 4.5 time units after the subsequent positive clk edge. Both clock and
data events can be edge-triggered and conditional. During this time period, the data signal
must not change.

(INSTANCE x)
(TIMINGCHECK

Keyword Argument Description

clk_event Clock event.

data_event Data event.

start_offset Start edge event.

end_offset End edge event.
January 2001 71 Product Version 3.2

SDF Annotator Guide
Using the SDF File
 (NOCHANGE (negedge clk) data (4.5) (4.5))
)

TIMINGENV Keyword and Constructs

The TIMINGENV keyword and its constructs are ignored by Verilog-XL and Verifault-XL.
However, the following syntax is included for completeness. Specifying the TIMINGENV
keyword constructs will not generate an error message. The TIMINGENV keyword
associates constraint values with critical paths in the design and provides information about
the timing environment in which the circuit operates. The syntax is as follows:

(TIMINGENV
{(PATHCONSTRAINT {" path_name "} start_path { int_path +} end_path max_rise
max_fall)}
{(PERIODCONSTRAINT edge_clk max_period {(EXCEPTION (INSTANCE path+))}
{(SKEWCONSTRAINTport_path max_skew)}
{(SUM (start_path end_path) {(start_path end_path)+} (start_end_sum)
{(start_end_sum)+})}
{(DIFF (start_path end_path) {(start_path end_path)+} (start_end_diff)
{(start_end_diff)+})}
{(ARRIVAL {(edge port)} port_name early_rise late_rise early_fall late_fall)}
{(DEPARTURE {(edge port)} port_name early_rise late_rise early_fall
late_fall)}
{(SLACK port rise_setup fall_setup rise_hold fall_hold { clk_period })
{(WAVEFORMport wave_period (edge num1 { num2}) + (edge num1 { num2})+)
)

Constraint entries provide information about the timing properties that a design is required to
have to meet certain design objectives. A tool that is synthesizing some aspect of the design
(logic synthesis, layout, and so on) will.

PATHCONSTRAINT Keyword

The PATHCONSTRAINTkeyword specifies the maximum allowable delay for a path, which is
typically identified by the two ports at each end of the path. Path constraints are the critical
paths in a design identified during timing analysis. You can also specify intermediate ports to
January 2001 72 Product Version 3.2

SDF Annotator Guide
Using the SDF File
uniquely identify path(s). Layout tools use these constraints to direct the physical design. The
syntax is as follows:

(PATHCONSTRAINT {" path_name "} start_path { int_path +} end_path max_rise max_fall)

The following table describes the arguments of the PATHCONSTRAINT keyword.

The following example shows how to use the PATHCONSTRAINT keyword:

(INSTANCE x)
(TIMINGENV (PATHCONSTRAINT y.z.i3 y.z.o2 a.b.o1 (25.1) (15.6)))

The following example shows a cell entry specifying a path constraint.

(CELL (CELLTYPE “DFF”)
(INSTANCE a.b.c)
(TIMINGCHECK

Keyword
Argument Description

path_name Optional symbolic or actual name of the path.

start_path Start of port path. Where applicable, a port path can have array index
(for example, x.y[3].p).

int_path Intermediate points to describe the path. You can have multiple
int_path arguments. Where applicable, a port path can have array
index (for example, x.y[3].p).

end_path End of port path. Where applicable, a port path can have array index
(for example, x.y[3].p).

max_rise Maximum rise delay between the start and end path points.

max_fall Maximum fall delay between the start and end path points.

i1

i2

o1

i1

i3

o1
i2

o2

z

x

b

y a
January 2001 73 Product Version 3.2

SDF Annotator Guide
Using the SDF File
(PATHCONSTRAINT y.z.i3 a.b.o1 (25)(15))
)

)

PERIODCONSTRAINT Keyword

The PERIODCONSTRAINTkeyword specifies the maximum time allowable for one complete
cycle of the signal. The syntax is as follow:

(PERIODCONSTRAINTedge_clk max_period {(EXCEPTION (INSTANCE path+))})

The following table describes the arguments of the PERIODCONSTRAINT keyword.

Note: You must specify the PERIODCONSTRAINT keyword at a code-hierarchy level that
includes the cell instance that drives the common clock inputs of the flip-flops and any cell
instances to be placed in the exception list.

The following example shows how to use the PERIODCONSTRAINTkeyword.

(INSTANCE x)
(TIMINGENV

(PERIODCONSTRAINT bufa.y (10)
(EXCEPTION (INSTANCE dff3))

)

SKEWCONSTRAINT Keyword

The SKEWCONSTRAINTkeyword specifies the clock event signal which is constrained against
the associated port signals. For example, in a chain of devices such as counters that are
connected to the same clock signal, the clock ideally changes at exactly the same time at all
counters. However, there is some delay between the change at one device and the change
at another. If this delay exceeds the signal skew limit, the data passed along the chain is
unreliable. The syntax is as follows:

(SKEWCONSTRAINTport_path max_skew)

Keyword Argument Description

edge_clk Edge-triggered clock event.

max_period Maximum period for complete signal cycle.

EXCEPTION A list of one or more cell instances to be excluded from the
group.

INSTANCE Cell instance.
January 2001 74 Product Version 3.2

SDF Annotator Guide
Using the SDF File
The following table describes the arguments of the SKEWCONSTRAINT keyword.

The following example shows how to use the SKEWCONSTRAINT keyword:

(INSTANCE z)
(TIMINGENV (SKEWCONSTRAINT (posedge i2) (7.5)))

SUM Keyword

The SUM keyword specifies the maximum sum of two or more path delays. The syntax is as
follows:

(SUM (start_path end_path) {(start_path end_path)+}
(start_end_sum) {(start_end_sum)+}

)

The following table describes the arguments of the SUM keyword.

Keyword
Argument Description

port_path Port that drives the net. Where applicable, a port path can have array
index (for example, x.y[3].p).

max_skew Maximum skew between signals is identified as a design constraint by
timing analysis tools. This information can be passed through the SDF
file to layout tools to ensure that the physical design is laid out within
these constraints.

Keyword Argument Description

start_path Start of port path. Where applicable, a port path can have array
index (for example, x.y[3].p).

end_path End of port path. Where applicable, a port path can have array
index (for example, x.y[3].p).

i1
i2

i1
i2

z
x y
January 2001 75 Product Version 3.2

SDF Annotator Guide
Using the SDF File
Note: You can specify additional paths by using additional pairs of start_path and
end_path arguments with corresponding start_end_sum arguments.

The following example shows how to use the SUM keyword:

(INSTANCE x)
(TIMINGENV

(SUM (m.n.o1 y.z.i1) (y.z.o2 a.b.i2) (67.3))
)

DIFF Keyword

The DIFF keyword specifies the maximum allowable difference between the delays of two
paths in a design. The syntax is as follows:

(DIFF (start_path end_path) {(start_path end_path)+}
 (start_end_diff) {(start_end_diff)+}

)

The following table describes the arguments of the DIFF keyword.

start_end_sum Sum of the individual delays associated with each start and end
port pair. The sum of all port pair delays must be less than the
value of start_end_path .

Keyword Argument Description

start_path Start of port path. Where applicable, a port path can have array
index (for example, x.y[3].p).

end_path End of port path. Where applicable, a port path can have array
index (for example, x.y[3].p).

Keyword Argument Description

i1

i2

o1

i1

i3

o1
i2

o2

z
b

y an

o1i1

i2

m
x

January 2001 76 Product Version 3.2

SDF Annotator Guide
Using the SDF File
Note: You can specify additional paths by using additional pairs of start_path and
end_path arguments with corresponding start_end_diff arguments.

The following example shows how to use the DIFF keyword:

(INSTANCE x)
(TIMINGCHECK

(DIFF (m.n.o1 y.z.i1) (y.z.o2 a.b.i2) (8.3))
)

ARRIVAL Keyword

The ARRIVAL keyword specifies the time when a primary input signal is applied during the
intended circuit operation. You use this keyword to analyze the timing behavior for a circuit
and to compute logic constraints for logic synthesis and layout. The syntax is as follows:

(ARRIVAL {(edge port)} port_name early_rise late_rise early_fall late_fall)

The following table describes the arguments of the ARRIVAL keyword.

start_end_diff Maximum difference between two path delays. The difference
of the individual delays in the two circuit paths must be less
than the value of start_end_diff .

Keyword Argument Description

edge Either posedge or negedge .

port The input port from which the time reference is specified. This is
the required primary input signal is a fan-out from a sequential
element (usually an active edge of a clock signal).

port_name The input or inout port for which the arrival time is to be defined.
This port must be a primary (external) input of the top-level
module.

early_rise Earliest rise value relative to the time reference. This value must
be less than the late_rise value.

late_rise Latest rise value relative to the time reference. This value must
be greater than the early_rise value.

early_fall Earliest fall value relative to the time reference. This value must
be less than the late_fall value.

Keyword Argument Description
January 2001 77 Product Version 3.2

SDF Annotator Guide
Using the SDF File
The following example shows how to use the ARRIVAL keyword. It applies rising transitions
at D[15:0] no sooner than 10 and no later than 40 time units after the rising edge of the
reference time MCLK. It applies falling transitions no sooner than 12 and no later than 45 time
units after the edge.

(INSTANCE top)
(TIMINGENV

(ARRIVAL (posedge MCLK) D[15:0] (10) (40) (12) (45))
)

DEPARTURE Keyword

The DEPARTUREkeyword specifies the time when a primary output signal is applied during
the intended circuit operation. You use this keyword to analyze the timing behavior for a circuit
and to compute logic constraints for logic synthesis and layout. The syntax is as follows:

(DEPARTURE {(edge port)} port_name early_rise late_rise early_fall late_fall)

The following table describes the arguments of the DEPARTURE keyword.

late_fall Latest fall value relative to the time reference. This value must be
greater than the early_fall value.

Keyword Argument Description

edge Either posedge or negedge .

port The input port from which the time reference is specified. This
is the required primary input signal is a fan-out from a
sequential element (usually an active edge of a clock signal).

port_name The output or inout port for which the departure time is to be
defined. This port must be a primary (external) output of the
top-level module.

early_rise Earliest rise value relative to the time reference. This value
must be less than the late_rise value.

late_rise Latest rise value relative to the time reference. This value must
be greater than the early_rise value.

early_fall Earliest fall value relative to the time reference. This value must
be less than the late_fall value.

Keyword Argument Description
January 2001 78 Product Version 3.2

SDF Annotator Guide
Using the SDF File
The following example shows how to use the DEPARTURE keyword. It applies rising
transitions at A[15:0] no sooner than 8 and no later than 20 time units after the rising edge
of the reference time SCLK. It applies falling transitions no sooner than 12 and no later than
34 time units after the edge.

(INSTANCE top)
(TIMINGENV

(DEPARTURE (posedge SCLK) D[15:0] (8) (20) (12) (34))
)

SLACK Keyword

The SLACK keyword compares the calculated delay over a path to the delay constraints
imposed upon the path and determines the available slack or margin in the delay path.
Positive slack indicates that the constraints are met with additional time units to spare.
Negative slack indicates a failure to construct a circuit according to the constraints. The
syntax is as follows:

(SLACK port rise_setup fall_setup rise_hold fall_hold { clk_period })

The following table describes the arguments of the SLACK keyword.

late_fall Latest fall value relative to the time reference. This value must
be greater than the early_fall value.

Keyword Argument Description

port Input port that provides the slack or margin information.

rise_setup Additional rise delay that can be tolerated in all paths ending at
the port without causing the design constraint to be violated.

fall_setup Additional fall delay that can be tolerated in all paths ending at
the port without causing the design constraint to be violated.

rise_hold Reduction of rise delay that can be tolerated in all paths ending
at the port without causing the design constraint to be violated.

fall_hold Reduction of fall delay that can be tolerated in all paths ending at
the port without causing the design constraint to be violated.

clk_period Optionally represents the clock period on which the slack or
margin values are based. The clock period is specified by the
WAVEFORM keyword construct.

Keyword Argument Description
January 2001 79 Product Version 3.2

SDF Annotator Guide
Using the SDF File
Note: You can specify multiple SLACKkeyword constructs for the same port and are distinct
as long as the value of clk_period is different.

The following example shows that the signal arrives at port macro.AOI6.B in time to meet
the setup time requirement of a flip-flop down the path with 3 time units to spare. Therefore,
the delay of any and all paths leading to port macro.AOI6.B can be increased by an
additional 3 time units without violating a setup requirement. The example also shows that
the delay of any data paths leading to port macro.AOI6.B can be decreased by 7 time units
without violating a hold requirement.

(CELL
(CELLTYPE "cpu"
(INSTANCE macro.AOI6)
(TIMINGENV

(SLACK B (3) (3) (7) (7))
)

)

WAVEFORM Keyword

The WAVEFORMkeyword specifies a periodic waveform that is applied to a circuit during its
intended operation. Typically, you use this to define a clock signal. You use this keyword to
analyze the timing behavior for a circuit and to compute logic constraints for logic synthesis
and layout. The syntaxes are as follows:

(WAVEFORMport wave_period (posedge num1 { num2})
(negedge num1 { num2}))

(WAVEFORMport wave_period (negedge num1 { num2})
(posedge num1 { num2}))

Note: Specifying posedge or negedge first determines the direction of the transition.

The following table describes the arguments of the WAVEFORM keyword.

Keyword
Argument Description

port Input or inout port where the waveform will appear.

wave_period Number that specifies the waveform which repeats indefinitely at the
interval.

num1 When specified alone, defines the transition offset.

When specified with num2, defines the beginning of the uncertainty
region in which the transition takes place.
January 2001 80 Product Version 3.2

SDF Annotator Guide
Using the SDF File
If the port is not a primary input of the circuit, (if it is driven by the output of some other circuit
element in the scope of the analysis), then the signal driven in the circuit should be ignored
and the specified waveform should replace it in the analysis.

The following example shows the specification of a waveform of period 15 to be applied to
port top.clka . Within each period, a rising edge occurs at somewhere between 0 and 2 and
a falling edge somewhere between 5 and 7.

(CELL (CELLTYPE "cpu")
 (INSTANCE top)
 (TIMINGENV (WAVEFORM clka 15 (posedge 0 2) (negedge 5 7))
)

)

The following example shows the specification of a waveform of period 25 to be applied to
port top.clkb . Within each period, a falling edge occurs at 0, a rising edge at 5, a falling
edge at 10, and a rising edge at 15.

(CELL (CELLTYPE "cpu")
(INSTANCE top)
(TIMINGENV (WAVEFORM clkb 25 (negedge 0) (posedge 5) (negedge 10) (posedge 15))
)

)

The following example shows negative numbers in defining a waveform.

(CELL (CELLTYPE "cpu")
(INSTANCE top)
(TIMINGENV (WAVEFORM clkb 50 (negedge -10) (posedge 20))
)

)

num2 Defines the end of the uncertainty region in which the transition takes
place.

Keyword
Argument Description
January 2001 81 Product Version 3.2

SDF Annotator Guide
Using the SDF File
SDF File Examples

Example 1

The SDF file example that follows is based on the following schematic
.

(DELAYFILE
(SDFVERSION "2.1")
(DESIGN "system")
(DATE "Saturday December 14 08:30:33 PST 1996")
(VENDOR "Cadence")
(PROGRAM "delay_calc")
(VERSION "1.5")
(DIVIDER /)
(VOLTAGE 4.5:5.0:5.5)
(PROCESS "worst")
(TEMPERATURE 55:85:125)
(TIMESCALE 1ns)

(CELL (CELLTYPE "system") (INSTANCE block_1)
(DELAY (ABSOLUTE

(INTERCONNECT P1/z B1/C1/i (.145::.145) (.125::.125))
(INTERCONNECT P1/z B1/C2/i2 (.135::.135) (.130::.130))
(INTERCONNECT B1/C1/z B1/C2/i1 (.095::.095) (.095::.095))
(INTERCONNECT B1/C2/z B2/C1/i (.145::.145) (.125::.125))
(INTERCONNECT B2/C1/z B2/C2/i1 (.075::.075) (.075::.075))
(INTERCONNECT B2/C2/z P2/i (.055::.055) (.075::.075))
(INTERCONNECT B2/C2/z D1/i (.255::.255) (.275::.275))
(INTERCONNECT D1/z B2/C2/i2 (.155::.155) (.175::.175))
(INTERCONNECT D1/z P3/i (.155::.155) (.130::.130)))))

i1z

P1

i1
i2

z

C2z

C1

i

P2

i
i2

z
i1
i2

z

C2z

C1

ii1

i2
z

z
D1
i

P3

i

B1

B2
January 2001 82 Product Version 3.2

SDF Annotator Guide
Using the SDF File
(CELL (CELLTYPE "INV") (INSTANCE B1/C1)
(DELAY (ABSOLUTE

(IOPATH i z (.345::.345) (.325::.325)))))

(CELL (CELLTYPE "OR2") (INSTANCE B1/C2)
(DELAY (ABSOLUTE

(IOPATH i1 z (.300::.300) (.325::.325))
(IOPATH i2 z (.300::.300) (.325::.325)))))

(CELL (CELLTYPE "INV") (INSTANCE B2/C1)
(DELAY (ABSOLUTE

(IOPATH i z (.345::.345) (.325::.325)))))

(CELL (CELLTYPE "AND2") (INSTANCE B2/C2)
(DELAY (ABSOLUTE

(IOPATH i1 z (.300::.300) (.325::.325))
(IOPATH i2 z (.300::.300) (.325::.325)))))

(CELL (CELLTYPE "INV") (INSTANCE D1)
(DELAY (ABSOLUTE

(IOPATH i z (.380::.380) (.380::.380)))))
) // end delayfile

Example 2

This example shows how you can use the COND construct with the IOPATH and
TIMINGCHECK constructs.

(DELAYFILE
(SDFVERSION "2.0")
(DESIGN "top")
(DATE "Nov 12, 1996 11:30:10")
(VENDOR "Cool New Tools")
(PROGRAM "Delay Obfuscator")
(VERSION "v1.0")
(DIVIDER .)
(VOLTAGE :5:)
(PROCESS "typical")
(TEMPERATURE :25:)
(TIMESCALE 1ns)
(CELL (CELLTYPE "CDS_GEN_FD_P_SD_RB_SB_NO")

(INSTANCE top.ff1)
(DELAY

(ABSOLUTE (COND (TE == 0 && RB == 1 && SB == 1)
(IOPATH (posedge CP) Q (2:2:2) (3:3:3))))

(ABSOLUTE (COND (TE == 0 && RB == 1 && SB == 1)
(IOPATH (posedge CP) QN (4:4:4) (5:5:5))))

(ABSOLUTE (COND (TE == 1 && RB == 1 && SB == 1)
(IOPATH (posedge CP) Q (6:6:6) (7:7:7))))

(ABSOLUTE (COND (TE == 1 && RB == 1 && SB == 1)
(IOPATH (posedge CP) QN (8:8:8) (9:9:9))))

(ABSOLUTE
(IOPATH (negedge RB) Q (1:1:1) (1:1:1)))

(ABSOLUTE
(IOPATH (negedge RB) QN (1:1:1) (1:1:1)))

(ABSOLUTE
(IOPATH (negedge SB) Q (1:1:1) (1:1:1)))

(ABSOLUTE
(IOPATH (negedge SB) QN (1:1:1) (1:1:1)))

) // end delay
January 2001 83 Product Version 3.2

SDF Annotator Guide
Using the SDF File
(DELAY
(ABSOLUTE (PORT D (0:0:0) (0:0:0) (5:5:5)))
(ABSOLUTE (PORT CP (0:0:0) (0:0:0) (0:0:0)))
(ABSOLUTE (PORT RB (0:0:0) (0:0:0) (0:0:0)))
(ABSOLUTE (PORT SB (0:0:0) (0:0:0) (0:0:0)))
(ABSOLUTE (PORT TI (0:0:0) (0:0:0) (0:0:0)))
(ABSOLUTE (PORT TE (0:0:0) (0:0:0) (0:0:0)))

) // end delay
(TIMINGCHECK

(COND D_ENABLE (SETUP D (posedge CP) (1:1:1)))
(COND D_ENABLE (HOLD D (posedge CP) (1:1:1)))
(COND TI_ENABLE (SETUPHOLD TI (posedge CP)) (1:1:1)

(1:1:1))
(COND ENABLE (WIDTH (posedge CP) (1:1:1)))
(COND ENABLE (WIDTH (negedge CP) (1:1:1)))
(WIDTH (negedge SB) (1:1:1))
(WIDTH (negedge RB) (1:1:1))
(COND SB (RECOVERY (posedge RB) (negedge CP) (1:1:1)))
(COND RB (RECOVERY (posedge SB) (negedge CP) (1:1:1)))

) // end timingcheck
) // end cell

) // end delayfile

Example 3

This example shows how State Dependent Path Delays (SDPDs) can be annotated using
COND and IOPATH constructs.

(DELAYFILE

(SDFVERSION "2.0")
(DESIGN "top")
(DATE "May 12, 1996 17:25:18")
(VENDOR "Slick Trick Systems")
(PROGRAM "Viability Tester")
(VERSION "v3.0")
(DIVIDER .)
(VOLTAGE :5:) (PROCESS "typical") (TEMPERATURE :25:)
(TIMESCALE 1ns)
(CELL (CELLTYPE "XOR2") (INSTANCE top.x1)

(DELAY
(INCREMENT (COND i1 (IOPATH i2 o1 (2:2:2) (2:2:2))))
(INCREMENT (COND i2 (IOPATH i1 o1 (2:2:2) (2:2:2))))
(INCREMENT (COND ~i1 (IOPATH i2 o1 (3:3:3) (3:3:3))))
(INCREMENT (COND ~i2 (IOPATH i1 o1 (3:3:3) (3:3:3))))

)
)

)

January 2001 84 Product Version 3.2

SDF Annotator Guide
4
Annotating with Verilog-XL and
Verifault-XL

This chapter describes the following:

■ SDF-Specific Plus Options on page 85

■ Additional Plus Options that Control the SDF Annotator on page 89

■ Improving SDF Annotator Performance and Memory Use on page 91

■ Working with Verilog-XL SDF Annotator Restrictions on page 94

SDF-Specific Plus Options

Table 4-1 on page 86 shows the plus options you can use to control the SDF Annotator. The
SDF-specific plus options are described in more detail later in this section. “Additional Plus
Options that Control the SDF Annotator” on page 89 briefly describes the Verilog-XL and
Verifault-XL plus options that control the SDF Annotator. For complete information about the
plus options that control the SDF Annotator, refer to the Verilog-XL Reference or the
Verifault-XL Reference.
January 2001 85 Product Version 3.2

SDF Annotator Guide
Annotating with Verilog-XL and Verifault-XL
Table 4-1 Plus Options that Control the SDF Annotator

See “SDF Keywords for Verilog-XL” on page 35 for the OVI SDF standard keywords that
Verilog-XL uses.

See “SDF Keywords for Verifault-XL” on page 36 for the OVI SDF standard keywords that
Verifault-XL uses.

+sdf_cputime

The +sdf_cputime plus option logs the number of central processing unit (CPU) seconds
that it takes to complete the annotation. The CPU time is written to the log file.

+sdf_error_info

The +sdf_error_info plus option displays PLI error messages.

Note: SDF Annotator errors are classified as fatal and non-fatal errors. Fatal errors cause the
SDF Annotator to stop. Non-fatal errors do not stop the SDF Annotator, but cause it to skip
the action that caused the error. An example of a non-fatal error is when a condition specified
in the SDF file cannot be matched in the Verilog description.

SDF-Specific For Verilog-XL For Verifault-XL

+sdf_cputime
+sdf_error_info
+sdf_file
+sdf_ign_timing_edge
+sdf_nocheck_celltype
+sdf_no_errors
+sdf_nomsrc_int
+sdf_no_warnings
+sdf_splitvlog+splitr
ecrem
+sdf_splitvlog_splits
uh
+sdf_split_two_timing
_check
+sdf_verbose

+annotate_any_time
+maxdelays
+mindelays
+multisource_int_delays
+neg_tchk
+no_pulse_int_backanno
+notimingchecks
+pulse_e/n and +pulse_r/m
+pulse_int_e/n and
+pulse_int_r/m
+transport_int_delays
+typdelays

+annotate_any_time
+maxdelays
+mindelays
+notimingchecks
+typdelays
+vfaddtchk
January 2001 86 Product Version 3.2

SDF Annotator Guide
Annotating with Verilog-XL and Verifault-XL
+sdf_file<filename>

The +sdf_file plus option with a corresponding appended file name (no space in between)
specifies the SDF file that the SDF Annotator uses. This plus option overrides the file
specified as an argument to the $sdf_annotate system task.

+sdf_ign_timing_edge

Note: This option is applicable for Verilog-XL only.

The +sdf_ign_timing_edge plus option annotates the last edge without any extra
overheads for SETUP, HOLD and SETUPHOLD. By default, Verilog-XL generates an error
message during annotation if the verilog file contains a timing check without an edge and the
sdf file contains an edge. To facilitate annotation, you can use the +sdf_ign_timing_edge
plus option. Consider the example given below.

Verilog File:

$setup(data, clk, 2);
$hold(clk, data, 1);

SDF File:

(SETUP (posedge data) clk (3))
(SETUP (negedge data) clk (3))
(HOLD (posedge data) clk (2))
(HOLD (negedge data) clk (2))

In this example, the timing check signal data does not contain an edge in the Verilog file but
contains both a posedge and a negedge in the SDF file. Using the
+sdf_ign_timing_edge plus option, the timing check signal data will first be annotated
with a posedge and then a negedge . In effect, the last edge defined is annotated.

+sdf_nocheck_ celltype

The +sdf_nocheck_celltype plus option disables celltype validation between the SDF
Annotator and the Verilog description. By default, the SDF Annotator validates the type
specified in the CELLTYPE construct against the type of the cell instance that is specified in
the INSTANCE keyword construct.

+sdf_no_errors

The +sdf_noerrors plus option disables error messages from the SDF Annotator.
January 2001 87 Product Version 3.2

SDF Annotator Guide
Annotating with Verilog-XL and Verifault-XL
+sdf_nomsrc_int

If you have no multisource interconnect transport delays (MITDs) in the design, the
+sdf_nomsrc_int plus option increases performance and reduces memory consumption
by not maintaining information about the various interconnects that map to the same port. If
you have multiple interconnects in the design that map to the same input port, the SDF
Annotator must resolve these delays using a resolution function prior to annotating the port.
The SDF Annotator provides three resolution functions (AVERAGE, MAXIMUM, and MINIMUM).
For the SDF Annotator to correctly resolve the delays, it must maintain the interconnect
information until the end of annotation.

+sdf_no_warnings

The +sdf_no_warnings plus option disables warning messages from the SDF Annotator.

+sdf_split_two_timing_check
+sdf_splitvlog_splitsuh
+sdf_splitvlog_splitrecrem

Note: These options are applicable for Verilog-XL only.

SDF Annotator attempts to match the one-timing checks (SETUP, HOLD, REMOVAL, and
RECOVERY) to their corresponding one-timing checks in the Verilog source. If no match is
found, then the SDF annotator splits the two-timing checks ($setuphold and $recrem) in
the Verilog source into corresponding one-timing checks and attempts to match. For example,
$setuphold is split into $setup and $hold and then matched to SETUP and HOLD.

You can split SDF two-timing checks (SETUPHOLD and RECREM) using the
+sdf_split_two_timing_check plus option into their corresponding one-timing checks.
The conditions specified with SETUPHOLD and RECREM are ignored after the split.

If you have used +sdf_split_two_timing_check plus option and no two-timing checks
are found, the SDF Annotator reports errors in terms of corresponding split timing checks.

The options +sdf_splitvlog_splitsuh and +sdf_splitvlog_splitrecrem can be
used to perform splitting of SETUPHOLD only and RECREM only respectively.

+sdf_verbose

The +sdf_verbose plus option writes the following detailed information about the
annotation process to the SDF Annotator’s log file:
January 2001 88 Product Version 3.2

SDF Annotator Guide
Annotating with Verilog-XL and Verifault-XL
■ Annotated delays

■ Configuration information about the annotator

■ Assumptions made during annotation

■ Warnings or errors due to inconsistencies found during annotation

(4-1) The SDF Annotator also prints warning and error messages to standard output.

Additional Plus Options that Control the SDF Annotator

The following table briefly describes the plus options that control the SDF Annotator. For
complete information about these plus options, see the Verilog-XL Reference and the
Verifault-XL Reference. See the “SDF-Specific Plus Options” on page 85 for information
about SDF-specific plus options.

Plus Option Description

+annotate_any_time Allows SDF backannotation to occur at times other
than time 0.

+maxdelays Selects the maximum delay.

+mindelays Selects the minimum delay.

+multisource_int_delays (Verilog-XL only) Affecting only nets with more than
one source, provides transport delays with full pulse
control and the ability to specify unique source/load
delays. MIPDs are inserted on all single-source
nets. Using the +multisource_int_delays plus
option with the +transport_int_delays plus
option provides transport delays with full pulse
control for interconnect delays with one or more
sources and unique source/load delays for such
nets.
January 2001 89 Product Version 3.2

SDF Annotator Guide
Annotating with Verilog-XL and Verifault-XL
+neg_tchk (Verilog-XL only) The +neg_tchk plus option
enables negative timing check arguments in the
$recrem and $setuphold timing checks.

When you do not use the +neg_tchk plus option,
any limits that are negative, either in the description
or annotation, are set to 0, and a warning is issued.

You can specify negative time arguments for
$recrem only if you are specifying values for both
the <recovery_limit> and
<removal_limit> arguments. When either the
<recovery_limit> or <removal_limit>
argument is negative, the sum of the two limits must
be 0 or greater.

+no_pulse_int_backanno (Verilog-XL only) Prevents PLI annotation of pulse
limits for interconnect delays. Only one warning
message is issued on the first attempt.

+notimingchecks Disables all timing checks. When you disable timing
checks, processing speed improves and the circuit
data structure requires less memory.
For Verifault-XL, this is set by default.

Note: Module path delays remain active.

+pulse_e/n and +pulse_r/m (Verilog-XL only) The +pulse_e/n and
+pulse_r/m plus options control the way in which
pulse rejection and pulse error limits are annotated
to module paths. If you do not specify values for
these limits in an IOPATH construct, the SDF
Annotator applies the percentages specified in
these plus options to calculate a pulse reject and
error limit to annotate. Also, if you do not specify
these plus options, then the SDF Annotator defaults
to 100% for both the reject and error percentages.
See the Verilog-XL Reference for more
information about pulse rejection for module paths.

Plus Option Description
January 2001 90 Product Version 3.2

SDF Annotator Guide
Annotating with Verilog-XL and Verifault-XL
Improving SDF Annotator Performance and Memory Use

Annotation is an important and time consuming process for simulating designs. Because
many annotation operations are design dependant, you can optimize the annotation process
to achieve maximum performance The SDF Annotator Version 2.0 has significantly improved
its performance from the previous version. The first table summarizes some of the

+pulse_int_e/n and
+pulse_int_r/m

(Verilog-XL only)The +pulse_int_e/n and
+pulse_int_r/m plus options control the way in
which pulse rejection and pulse error limits are
annotated to interconnects. If you do not specify
values for these limits in an INTERCONNECT
construct, the SDF Annotator applies the
percentages specified with these plus options to
calculate a pulse reject and error limit to annotate.
Also, if you do not specify these plus options, then
the SDF Annotator defaults to 100% for both the
reject and error percentages. See the Verilog-XL
Reference for more information about pulse
rejection for interconnects.

+transport_int_delays (Verilog-XL only) Provides transport delays with full
pulse control for interconnect delays with one or
more sources.

Using the +transport_int_delays plus option
with +multisource_int_delays , provides
transport delays with full pulse control for
interconnect delays with one or more sources and
unique source/load delays.

+typdelays Selects typical delays.

+vfaddtchk (Verifault-XL only) Enables timing checks.

Plus Option Description
January 2001 91 Product Version 3.2

SDF Annotator Guide
Annotating with Verilog-XL and Verifault-XL
performance improvements. The first table shows the sample specifications. The second
table describes the performance improvements

Note: The information described in this section is deliberately broad and generic.
Requirements for your specific design may dictate procedures slightly different from those
described here.

Removing Module Mapping

If your design does not require module mapping, you can achieve a significant improvement
in annotation performance by removing MODULE keyword constructs.

You can map timing constructs that do not correspond exactly to the design specification.
However, for every cell encountered, the SDF Annotator determines if the cell is mapped and
if it is, performs a second check to determine the timing construct to which timing information
is mapped. In the configuration file, annotation information is retained in memory by the SDF
Annotator in an internal data structure. The retained information can get large enough to
cause swapping and affect performance.

Disabling Multisource Interconnect Timing Resolution

You should use the +sdf_nomsrc_int plus option only when you do not need to resolve
between multiple timing specifications. If you know that multisource interconnects do not exist

Design Description SDF File Description

193,343 Gates
90,873 Module Instances
51,669 Primitive Instances

78.2 MB
1,303,258 lines
331,253 IOPATHs
250,228 Interconnects
237,603 Timing Checks

Performance Improvements CPU secs Incremental
Speedup Memory

SDF Annotator 1.7 8262.9 -- 355.3 MB

SDF Annotator 2.0 2395.5 345% 19.6 MB

+sdf_nocheck_celltype 2223.3 7% --

+sdf_nomsrc_int 1510.8 37% 5.9 MB
January 2001 92 Product Version 3.2

SDF Annotator Guide
Annotating with Verilog-XL and Verifault-XL
in the design and are using MIPDs to annotate interconnect delays, you can significantly
improve performance by using the +sdf_nomsrc_int plus option.

An interconnect delay in the SDF file can be mapped to a MIPD, SITD, or MITD. When a
multisource interconnect delay is mapped to a MIPD, the SDF Annotator resolves it using
average, maximum, and minimum values. The annotator retains interconnect information in
cache memory to annotate timing information into the design after processing the SDF file.
The +sdf_nomsrc_int plus option disables the retention of interconnect information.

Using Pre-scaled Delays

You can specify scaling operations for the timing information in the SDF file before the delays
are annotated into Verilog-XL. However, you can improve performance if your design contains
prescaled delays. Because the SDF Annotator must perform floating point operations for
each delay value, scaling can affect the performance of the SDF Annotator.

Synchronizing Time Scales

When the time scales for the Verilog-XL description and the SDF file are the same, you can
improve performance. If the time scales in the SDF File and the Verilog description are
different, the SDF Annotator performs a multiplication operation for each delay to obtain the
correct scaling.

Synchronizing Precision

When the precision of the time (degree of accuracy) for the Verilog-XL description and the
SDF file are the same, you can improve performance. If the precision is different, the SDF
Annotator performs rounding operations.

Disabling Cell Type Verification

The CELLTYPE keyword specifies the type of cell that contains the timing information in the
SDF file. The SDF Annotator verifies that a type of cell in the SDF file corresponds to the type
of cell in the Verilog-XL description. If there are many cells, the verification can be time
consuming. The +sdf_nocheck_celltype plus option disables this verification.

Note: You should use the +sdf_nocheck_celltype plus option only when you are
confident that the syntax of the SDF file is correct.

This check is useful when one of the cells does not match, because the SDF Annotator will
not attempt to annotate any of the delays in the invalid cell
January 2001 93 Product Version 3.2

SDF Annotator Guide
Annotating with Verilog-XL and Verifault-XL
Processing Without Verbose Annotation

The +sdf_verbose plus option generates a detailed log about the annotated delays.
Annotating at this level of detail is I/O intensive and may generate a large log file, requiring
more disk space. Use the +sdf_verbose plus option only when necessary.

Using (INSTANCE *)

You can specify similar delays for a certain type of module using the (INSTANCE *)
construct. The SDF Annotator annotates the delays that follow (INSTANCE *) to all the
instances of the particular CELLTYPE. This is especially effective in a design with a large gate
count but with only a few unique cells.

Depending on the delay calculation algorithm, sometimes cell-specific delays (such as timing
checks and path delays) are equal for all instances of the cell. If this is the case, using
(INSTANCE *) is very effective because this annotation algorithm has been optimized in the
SDF Annotator.

Grouping Redundant Constructs

When you can group all delays of a certain type under one keyword, you reduce the parsing
of the SDF file, improving performance. For example, all timing checks should be specified in
the same block. The ABSOLUTE, INCREMENT, DELAY, TIMINGCHECK and TIMINGENV
keywords pertain to a subsequent set of timing constructs. These keywords should be
sparingly used.

Removing Zero-Delay MIPDs, MITDs, and SITDs

You can improve performance by removing interconnect or port delays that have a value of 0
from the SDF file. The SDF Annotator parses and interprets zero-delay timing information but
does not annotate it. By removing the zero-delay information from the SDF file, you eliminate
unnecessary processing of this information.

Note: This performance improvement recommendation applies only to MIPDs, MITDs, and
SITDs.

Working with Verilog-XL SDF Annotator Restrictions

The following restrictions apply between Verilog-XL and the SDF Annotator.
January 2001 94 Product Version 3.2

SDF Annotator Guide
Annotating with Verilog-XL and Verifault-XL
Reverting to Original Timing Limitation

You cannot revert to the original timing information after you perform annotation. The SDF
Annotator does not retain information that distinguishes annotated timing information from
the original timing information in the Verilog HDL source description.

To revert to original timing, you must exit Verilog-XL and compile the design again. If all of the
original timing came from an SDF file, you can annotate from that SDF file to restore the
original timing.

PATHPULSE Limitation for Interconnect Delays

You cannot use PATHPULSE to annotate interconnect delays. The SDF Annotator uses the
PATHPULSEinformation from the SDF file if the Verilog HDL description contains module path
delay timing specifications. For information about the PATHPULSE keyword, see
“PATHPULSE Keyword” on page 58.

COND Keyword Matching Condition Restriction

Whenever you specify a condition using the CONDkeyword for an IOPATHor TIMINGCHECK
construct in an SDF file, the target path or timing check in Verilog-XL must have a matching
condition for the data to be annotated.

When an IOPATHor TIMINGCHECKis specified in an SDF file without any conditions, and a
corresponding path or timing check exists in Verilog-XL, annotation is done regardless of
whether the target path or timing check has a condition specified. For information about the
COND keyword, see “COND Keyword” on page 48. For IOPATH, see “IOPATH Keyword” on
page 45. For TIMINGCHECK, see “TIMINGCHECK Keyword and Constructs” on page 60.

TIMESCALE Keyword Restriction in SDF File Header

The SDF Annotator uses and converts the timescale information in the SDF file header to the
timescales specified in the Verilog HDL source description before it annotates this
information.

The default Verilog-XL timescale is in seconds. The default SDF timescale is in nanoseconds
(ns). If the TIMESCALEspecification in the HDL source description is seconds, and if the SDF
timescale is below this resolution, the SDF delays are annotated as 0.
January 2001 95 Product Version 3.2

SDF Annotator Guide
Annotating with Verilog-XL and Verifault-XL
Edge Identifier Limitations

Verilog-XL does not support some of the edge identifiers in the SDF file. Verilog-XL only
supports the posedge and negedge edge identifiers for path delays. If an edge identifier
other than posedge or negedge (01, 10, 0z, z1, 1z, z0) is specified in an SDF file, the SDF
Annotator issues a warning and does not annotate that path delay to Verilog-XL.

An edge identifier for a timing check event in the SDF file must have a matching edge identifier
for the target timing check event in Verilog-XL.

A positive edge identifier (posedge) in the SDF file maps to any rising edge identifiers (01,
0x, x1) in Verilog-XL. A negative edge identifier (negedge) in the SDF file maps to any falling
edge identifiers (10, 1x, x0). Also, SDF does not support an edge (01,0x) specification in
Verilog-XL.

When a timing check event in the SDF file is specified without an edge identifier, and a
corresponding timing check event exists in Verilog-XL, annotation occurs regardless of the
edge specified for the target event.

Multiple Delay Data Limitations

The SDF Annotator interprets different numbers of delays in the following manner, where
each delay can be a min:typ:max triplet:

When you specify a delay with a single value, the SDF Annotator propagates the value to
min:typ:max . For example, (2) is propagated to (2:2:2) .

During annotation to Verilog-XL and Verifault-XL, only one value from each min:typ:max
triplet is annotated to the tool. Veritime uses all three values from a min:typ:max triplet.

When you specify only rise and fall delay values, the SDF Annotator maps the following:

One delay Same delay for all transitions

Two delays Rise and fall delays

Three delays Rise, fall, and turn-off delays (all transitions to and from Z

Six delays Rise, fall, 0 to Z, Z to 1, 1 to Z, and Z to 0 delays (only relevant for delays
mapped to Verilog HDL module path delays and to transport
interconnect delays)

rise maps to X1, Z1, 0X, 0Z max(rise, fall) maps to XZ
January 2001 96 Product Version 3.2

SDF Annotator Guide
Annotating with Verilog-XL and Verifault-XL
When you specify only rise, fall, and turn off delay values, the SDF Annotator maps the
following:

When you specify only the rise value, the SDF Annotator maps to all six delay values. If you
do not want the SDF Annotator to map the delay values, use placeholders.

Escape Identifier Restrictions

Identifiers that are not supported by Verilog-XL are escaped by placing a backslash (\) before
the identifier and a blank space after the identifier. Characters in identifiers that are not
supported in the SDF file are escaped by placing a backslash before each character. Instance
identifiers that start with numbers must be escaped. The SDF Annotator maps an identifier
with unsupported characters in SDF to a Verilog Family tool by removing each backslash
within the identifier and then escaping the entire identifier according to the Verilog name-
escaping convention. For example, mem_array\[01:1023].\(m1\.\) in SDF maps to
\mem_array[01:1023] .\(m1.) in Verilog.

fall maps to X0, Z0, 1X, 1Z min(rise, fall) maps to ZX

rise maps to Z1 fall maps to Z0

0Z maps to 1Z 0X maps to min(rise, 0Z)

ZX maps to 0Z 1X maps to min(fall, 0Z)

X0 maps to fall XZ maps to 0Z

X1 maps to rise
January 2001 97 Product Version 3.2

SDF Annotator Guide
A
SDF Annotator Error and Warning
Messages

This appendix describes the following:

■ Error Messages on page 99

■ Warning Messages on page 100
January 2001 98 Product Version 3.2

SDF Annotator Guide
SDF Annotator Error and Warning Messages
Error Messages

Error Message Reason

Condition cannot be matched
for IOPATH, skipping
annotation

The condition specified in (COND c (IOPATH))
construct cannot be matched to any SDPD condition in the
given instance.

Could not annotate
INTERCONNECT to cell driver
port-name due to lack of
driver in module

An INTERCONNECT is annotated to an output source port
that has no drivers in the cell.

Could not find path input-
path-name to output-
path-name in instance
instance-name

You specified a path that does not exist in the IOPATH
construct.

Failed to find HOLD
timingcheck

You specified a timing check that does not exist in a HOLD
construct.

Failed to find PERIOD
timingcheck

You specified a timing check that does not exist in a
PERIOD construct.

Failed to find RECOVERY
timingcheck

You specified a timing check that does not exist in a
RECOVERY construct.

Failed to find SETUP
timingcheck

You specified a timing check that does not exist in a SETUP
construct.

Failed to find SETUPHOLD
timingcheck

You specified a timing check that does not exist in a
SETUPHOLD construct.

Failed to find SKEW
timingcheck

You specified a timing check that does not exist in a SKEW
construct.

Failed to find WIDTH
timingcheck

You specified a timing check that does not exist in a WIDTH
construct.

INSTANCE * specified with no
CELLTYPE

There is no corresponding CELLTYPE to a CELL that
contains the (INSTANCE *) construct.

Output port port-name
encountered in PORT

You specified an output port in a PORT construct.
January 2001 99 Product Version 3.2

SDF Annotator Guide
SDF Annotator Error and Warning Messages
Warning Messages

Type of INSTANCE
instance-name
(instance-type) does not
match CELLTYPEcell-
type

The cell type in the CELLTYPE construct that does not
match the type of the cell in the INSTANCE construct.

Unable to annotate NETDELAY
net-name due to lack of
driver

A NETDELAY is annotated to an output source port that
has no drivers in the cell.

Unable to find cells of
CELLTYPEcell-type

There are no instances of the type specified in the
corresponding CELLTYPEentry when the (INSTANCE *)
construct is specified.

Unable to find PATHPULSE
path input-port-name to output-
port-name in instance
instance-name

You specified a path that does not exist in the PATHPULSE,
GLOBALPATHPULSE, or PATHPULSEPERCENT construct.

Unable to find input port
port-name

You specified an input port that does not exist in the
instance of an IOPATH, PATHPULSE,
GLOBALPATHPULSE, or PATHPULSEPERCENT construct.

Unable to find instance
instance-name

You specified the name of an instance that does not exist
in the INSTANCE construct.

Unable to find net net-name You specified a net that does not exist in the instance of a
NETDELAY construct.

Unable to find output port
port-name

You specified an output port that does not exist in the
instance of an IOPATH, PATHPULSE,
GLOBALPATHPULSE, or PATHPULSEPERCENT construct.

Unable to find port port-
name

You specified a port that does not exist in the instance of a
DEVICE or PORT construct.

Warning Message Reason

Annotating INTERCONNECT
to cell driver

The SDF Annotator attempted to annotate an
INTERCONNECT delay onto the cell that is driving the
source port.
January 2001 100 Product Version 3.2

SDF Annotator Guide
SDF Annotator Error and Warning Messages
Annotating NETDELAY to cell
driver

The SDF Annotator attempted to annotate a NETDELAY
onto the cell that is driving the net.

Illegal limit specified, setting to
0

You specified a negative limit for a SETUPHOLD or
RECOVERY construct and did not specify +neg_tchk on
the command line. This message occurs also when the
sum of the two limits to a SETUPHOLD or RECOVERY
construct was less than 0.

Timescale not specified in SDF
file, defaulting to 1ns

You did not specify a TIMESCALE construct in the header
section of the SDF file.
January 2001 101 Product Version 3.2

SDF Annotator Guide
B
Valid and Invalid Interconnect
Combinations

This appendix describes the following:

■ Overview on page 102

■ Valid Interconnect Combinations on page 102

■ Invalid Interconnect Combinations on page 115

Overview

This appendix lists the valid combinations of source and destination ports and the manner in
which the SDF Annotator performs the action for each valid combination. When annotating
interconnect delays, only certain combinations of ports are allowed by the SDF Annotator.
In addition, certain combinations of ports may be handled in different manners.

The following sections describe the valid and invalid interconnect combinations.

Valid Interconnect Combinations

The following table shows the valid interconnect combinations.

Source Port Destination Port Fanout Drivers Schematic

Output (lower) Input (lower) Yes Single Figure B-1

Output (lower) Input (lower) Yes Multiple Figure B-2

Output (lower) Input (lower) No Any number Figure B-3

Output (lower) Inout (lower) Yes Single Figure B-4

Output (lower) Inout (lower) No Multiple Figure B-5
January 2001 102 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Output (lower) Inout (lower) No Any number Figure B-6

Output (lower) Inout (same) No Any number Figure B-7

Output (lower) Output (same) No Any number Figure B-8

Inout (lower) Input (lower) Yes Single Figure B-9

Inout (lower) Input (lower) Yes Multiple Figure B-10

Inout (lower) Input (lower) No Any number Figure B-11

Inout (lower) Inout (lower) Yes Single Figure B-12

Inout (lower) Inout (lower) Yes Multiple Figure B-13

Inout (lower) Inout (lower) No Any number Figure B-14

Inout (lower) Inout (same) No Any number Figure B-15

Inout (lower) Output (same) No Any number Figure B-16

Input (same) Input (lower) Yes Single or none Figure B-17

Input (same) Input (lower) Yes Multiple Figure B-18

Input (same) Inout (lower) Yes Single or none Figure B-19

Input (same) Inout (lower) Yes Multiple Figure B-20

Inout (same) Input (lower) Yes Single or none Figure B-21

Inout (same) Input (lower) Yes Multiple Figure B-22

Inout (same) Inout (lower) Yes Single or none Figure B-23

Inout (same) Inout (lower) Yes Multiple Figure B-24

Source Port Destination Port Fanout Drivers Schematic
January 2001 103 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Figure B-1 Output (lower) -> Input (lower) with XL Fanout; Single Driver

A MIPD is placed on the destination port. However, if you specify the
+transport_int_delays plus option, then SITD is placed on the net.

Figure B-2 Output (lower) -> Input (lower) with XL Fanout; Multiple Drivers

A MIPD is placed on the destination port unless you specify the
+multisource_int_delays or +transport_int_delays plus option. If you specify the
+multisource_int_delays plus option and all destination loads are accelerated, then a
MITD is placed on the net and the delay is annotated from all sources in the source module
to the destination. If you specify the +transport_int_delays plus option, a SITD is
placed on the destination port.

Input

Hierarchical Level

Optional Hierarchical Levels

INSTANCE Cell

Optional Hierarchical Levels

Hierarchical Level

Output

Hierarchical Level

Optional Hierarchical Levels INSTANCE Cell

Hierarchical Level

Hierarchical Level

Output Optional Hierarchical Levels

Input
Optional Hierarchical Levels
January 2001 104 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Figure B-3 Output (lower) -> Input (lower); Any Number of Drivers

The delay is annotated onto the cell output corresponding to the source port, which is either
a path delay driving the port or all gates driving the port.

Figure B-4 Output (lower) -> Inout (lower) with XL Fanout; Single Driver

A MIPD is placed on the destination port. However, if you specify the
+transport_int_delays plus option, then SITD is placed on the net.

Hierarchical Level

Optional Hierarchical Levels INSTANCE Cell

Hierarchical Level

Hierarchical Level

Output Optional Hierarchical Levels

InputOptional Hierarchical Levels

Inout

Hierarchical Level

Optional Hierarchical Levels

INSTANCE Cell

Optional Hierarchical Levels

Hierarchical Level

Output
January 2001 105 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Figure B-5 Output (lower) -> Inout (lower); Multiple Drivers

A MIPD is placed on the destination port unless you specify the
+multisource_int_delays or +transport_int_delays plus option. If you specify the
+multisource_int_delays plus option and all destination loads are accelerated, then a
MITD is placed on the net and the delay is annotated from all sources in the source module
to the destination. If you specify the +transport_int_delays plus option, a SITD is
placed on the destination port.

Figure B-6 Output (lower) -> Inout (lower); Any Number of Drivers

The delay is annotated onto the cell output corresponding to the source port, which is either
a path delay driving the port or all gates driving the port.

Hierarchical Level

Hierarchical Level

Optional Hierarchical Levels INSTANCE Cell

Output

Inout

Optional Hierarchical Levels

Hierarchical Level

Optional Hierarchical Levels

Hierarchical Level

Optional Hierarchical Levels INSTANCE Cell

Hierarchical Level

Output

Inout

Optional Hierarchical Levels

Hierarchical Level

Optional Hierarchical Levels
January 2001 106 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Figure B-7 Output (lower) -> Inout (same); Any Number of Drivers

The delay is annotated onto the cell output corresponding to the source port, which is either
a path delay driving the port or all gates driving the port.

Figure B-8 Output (lower) -> Output (same); Any Number of Drivers

The delay is annotated onto the cell output corresponding to the source port, which is either
a path delay driving the port or all gates driving the port.

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels Inout

Output

Hierarchical Level

Optional Hierarchical Levels

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels Output

Output

Hierarchical Level

Optional Hierarchical Levels
January 2001 107 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Figure B-9 Inout (lower) -> Input (lower) with XL Fanout; Single Driver

A MIPD is placed on the destination port. However, if you specify the
+transport_int_delays plus option, then SITD is placed on the net.

Figure B-10 Inout (lower) -> Input (lower) with XL Fanout; Multiple Drivers

A MIPD is placed on the destination port unless you specify the
+multisource_int_delays or +transport_int_delays plus option. If you specify the
+multisource_int_delays plus option and all destination loads are accelerated, then a
MITD is placed on the net and the delay is annotated from all sources in the source module
to the destination. If you specify the +transport_int_delays plus option, a SITD is
placed on the destination port.

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels

Hierarchical Level

Optional Hierarchical Levels

Inout

Input

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels

Hierarchical Level

Optional Hierarchical Levels

Input

Inout

Hierarchical Level

Optional Hierarchical Levels
January 2001 108 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Figure B-11 Inout (lower) -> Input (lower); Any Number of Drivers

The delay is annotated onto the cell output corresponding to the source port, which is either
a path delay driving the port or all gates driving the port.

Figure B-12 Inout (lower) -> Inout (lower) with XL Fanout; Single Driver

A MIPD is placed on the destination port. However, if you specify the
+transport_int_delays plus option, then SITD is placed on the net.

Hierarchical Level

Optional Hierarchical Levels

Input

Inout

Hierarchical Level

Optional Hierarchical Levels

Hierarchical Level

Optional Hierarchical Levels

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels

Inout

Inout

Hierarchical Level

Optional Hierarchical Levels
January 2001 109 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Figure B-13 Inout (lower) -> Inout (lower) with XL Fanout; Multiple Drivers

A MIPD is placed on the destination port unless you specify the
+multisource_int_delays or +transport_int_delays plus option. If you specify the
+multisource_int_delays plus option and all destination loads are accelerated, then a
MITD is placed on the net and the delay is annotated from all sources in the source module
to the destination. If you specify the +transport_int_delays plus option, a SITD is
placed on the destination port.

Figure B-14 Inout (lower) -> Inout (lower); Any Number of Drivers

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels Inout

Inout

Hierarchical Level

Hierarchical Level

Optional Hierarchical Levels

Optional Hierarchical Levels

Hierarchical Level

Optional Hierarchical Levels

Inout

Inout

Hierarchical Level

Hierarchical Level

Optional Hierarchical Levels

Optional Hierarchical Levels
January 2001 110 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
The delay is annotated onto the cell output corresponding to the source port, which is either
a path delay driving the port or all gates driving the port.

Figure B-15 Inout (lower) -> Inout (same); Any Number of Drivers

The delay is annotated onto the cell output corresponding to the source port, which is either
a path delay driving the port or all gates driving the port.

Figure B-16 Inout (lower) -> Output (same); Any Number of Drivers

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels

Hierarchical Level

Optional Hierarchical Levels

Inout

Inout

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels Output

Inout

Hierarchical Level

Optional Hierarchical Levels
January 2001 111 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
The delay is annotated onto the cell output corresponding to the source port, which is either a
path delay driving the port or all gates driving the port.

Figure B-17 Input (same) -> Input (lower) with XL Fanout; Single or No Driver

A MIPD is placed on the destination port. However, if you specify the
+transport_int_delays plus option, then SITD is placed on the net.

Figure B-18 Input (same) -> Input (lower) with XL Fanout; Multiple Drivers

A MIPD is placed on the destination port. However, if you specify the
+multisource_int_delays plus option a MITD is placed on the destination port.

Input
Input

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels

Input
Input
January 2001 112 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Figure B-19 Input (same) -> Inout (lower) with XL Fanout; Single or No Drivers

A MIPD is placed on the destination port. However, if you specify the
+transport_int_delays plus option, then SITD is placed on the net.

Figure B-20 Input (same) -> Inout (lower) with XL Fanout; Multiple Drivers

A MIPD is placed on the destination port. However, if you specify the
+multisource_int_delays plus option a MITD is placed on the destination port.

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels

Inout
Input

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels

Inout
Input
January 2001 113 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Figure B-21 Inout (same) -> Input (lower) with XL Fanout; Single or No Driver

A MIPD is placed on the destination port. However, if you specify the
+transport_int_delays plus option, then SITD is placed on the net.

Figure B-22 Inout (same) -> Input (lower) with XL Fanout; Multiple Drivers

A MIPD is placed on the destination port. However, if you specify the
+multisource_int_delays plus option a MITD is placed on the destination port.

INSTANCE Cell

Hierarchical Level

Optional Hierarchical Levels

Input
Inout

Hierarchical Level

Optional Hierarchical Levels

INSTANCE Cell

Input
Inout
January 2001 114 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Figure B-23 Inout (same) -> Inout (lower) with XL Fanout; Single or No Driver

A MIPD is placed on the destination port. However, if you specify the
+transport_int_delays plus option, then SITD is placed on the net.

Figure B-24 Inout (same) -> Inout (lower) with XL Fanout; Multiple Drivers

A MIPD is placed on the destination port. However, if you specify the
+multisource_int_delays plus option a MITD is placed on the destination port.

Invalid Interconnect Combinations

The following table shows the combinations that are illegal or unsupported.

Source Port Driver Destination Port Fanout

Output (lower) Single Output (lower) Yes and No

Hierarchical Level

Optional Hierarchical Levels

INSTANCE Cell

Inout
Inout

Hierarchical Level

Optional Hierarchical Levels

INSTANCE Cell

Inout
Inout
January 2001 115 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Output (lower) Multiple Output (lower) Yes and No

Output (same) Single Output (lower) Yes and No

Output (same) Single Output (same) Yes and No

Output (same) Single Input (lower) Yes and No

Output (same) Single Input (same) Yes and No

Output (same) Single Inout (lower) Yes and No

Output (same) Single Inout (same) Yes and No

Output (same) Multiple Output (lower) Yes and No

Output (same) Multiple Output (same) Yes and No

Output (same) Multiple Input (lower) Yes and No

Output (same) Multiple Input (same) Yes and No

Output (same) Multiple Inout (lower) Yes and No

Output (same) Multiple Inout (same) Yes and No

Input (lower) Single Output (lower) Yes and No

Input (lower) Single Output (same) Yes and No

Input (lower) Single Input (lower) Yes and No

Input (lower) Single Input (same) Yes and No

Input (lower) Single Inout (lower) Yes and No

Input (lower) Single Inout (same) Yes and No

Input (lower) Multiple Output (lower) Yes and No

Input (lower) Multiple Output (same) Yes and No

Input (lower) Multiple Input (lower) Yes and No

Input (lower) Multiple Input (same) Yes and No

Input (lower) Multiple Inout (lower) Yes and No

Input (lower) Multiple Inout (same) Yes and No

Input (same) Single Output (lower) Yes and No

Input (same) Single Output (same) Yes and No

Source Port Driver Destination Port Fanout
January 2001 116 Product Version 3.2

SDF Annotator Guide
Valid and Invalid Interconnect Combinations
Input (same) Single Input (lower) No

Input (same) Single Input (same) Yes and No

Input (same) Single Inout (same) Yes and No

Input (same) Multiple Output (lower) Yes and No

Input (same) Multiple Output (same) Yes and No

Input (same) Multiple Input (lower) No

Input (same) Multiple Input (same) Yes and No

Input (same) Multiple Inout (same) Yes and No

Inout (lower) Single Output (lower) Yes and No

Input (same) Single Input (same) Yes and No

Input (same) Multiple Output (lower) Yes and No

Input (same) Multiple Input (same) Yes and No

Inout (same) Single Output (lower) Yes and No

Inout (same) Single Output (same) Yes and No

Inout (same) Single Input (lower) No

Inout (same) Single Input (same) Yes and No

Inout (same) Single Inout (lower) No

Inout (same) Single Inout (same) Yes and No

Inout (same) Multiple Output (lower) Yes and No

Inout (same) Multiple Output (same) Yes and No

Inout (same) Multiple Input (lower) No

Inout (same) Multiple Input (same) Yes and No

Inout (same) Multiple Inout (lower) No

Inout (same) Multiple Inout (same) Yes and No

Source Port Driver Destination Port Fanout
January 2001 117 Product Version 3.2

SDF Annotator Guide
Index
Symbols
$sdf_annotate system task 12

example 15
+annotate_any_time 89
+maxdelays 89
+mindelays 89
+multisource_int_delays 51, 53, 55, 89
+neg_tchk 64, 90
+no_pulse_int_backanno 90
+notimingchecks 90
+pulse_e/n 90
+pulse_int_e/n 91
+pulse_int_r/m 91
+pulse_r/m 90
+sdf_cputime 86
+sdf_error_info 86
+sdf_file 12, 87
+sdf_ign_timing_edge 87
+sdf_no_errors 87
+sdf_no_warnings 88
+sdf_nocheck_celltype 87, 93
+sdf_nomsrc_int 88, 92
+sdf_verbose 13, 88, 94
+transport_int_delays 50, 53, 55, 91
+typdelays 91

A
ABSOLUTE keyword 44
adding values to existing delays 44
annotating

delay values 13
example call 14
using Verilog-XL 85

annotation process 10
ARRIVAL keyword 77
asynchronous control signal

active edge of clock transition 66
limit 65

average
interconnect delay 20
turn-off delay 23

B
binary operators 33
bit-wise characters 32

C
case operators 32
CCOND keyword 64, 68
CELL keyword 41

example 42
CELLTYPE keyword

disabling to improve performance 93
example 42

characters 31, 32, 34
circuit

analyzing timing behavior 77, 78
input signal applied during intended

operation 77
output signal applied during intended

operation 78
waveform applied during intended

operation 80
clock transition

asynchronous control signal limit 65
between active edge and asynchronous

control signal 66
constraining port signals against 74
defining 80
duration between edges 69
minimum interval after 63
minimum interval before 62
nochange 71

commenting in an SDF file 33
COND keyword 48, 61

example 83
restriction 95

CONDELSE keyword 48
configuration file 16

argument 13
example 16
January 2001 118 Product Version 3.2

SDF Annotator Guide
D
DATE keyword 40
default mappings 18
DELAY keyword 43

example 44
DELAYFILE keyword 39
delays

adding values to existing delays 44
calculated over path to the delay

constraints 79
conditional 48
device 56
edge transitions 44, 45
for a complete net 54
gate 56
improving performance

grouping by type 94
removing interconnect and port

delays 94
using pre-scaled 93

interconnect 20, 49
maximum between two signals 68
maximum difference between two

paths 76
maximum sum of two or more 75
min:typ:max triplets 45
module 56
MTM keyword values 21
on a path 45
replacing values in existing delays 44
restrictions on multiple 96
syntax 43
turn-off 23
wire path 52

DEPARTURE keyword 78
DESIGN keyword 40
device delay 54, 56
DEVICE keyword 56

example 57
DIFF keyword 76
divider

hierarchical 33
DIVIDER keyword 40

E
edge identifiers

restrictions 96

error limit 46
escape character 33

G
gate delay 56
GLOBALPATHPULSE keyword 60

H
HDL module name equivalent 42
header keywords 39
hierarchical design

annotating 13
hierarchy divider 33
HOLD keyword 63

I
INCLUDE keyword 37
INCREMENT keyword 44

example 44
indicating 13
INSTANCE keyword 42
INSTANCE keyword, example 42
interconnect

disabling multi-source interconnect
timing resolution 93

interconnect delays 20
example 20
on input ports 49

INTERCONNECT keyword 52
example 52

INTERCONNECT_MIPD keyword 20
IOPATH keyword 45, 48

COND keyword restriction 95
example 44, 46, 83

K
keywords

ABSOLUTE 44
ARRIVAL 77
CCOND 64, 68
CELL 41
CELLTYPE 42
COND 48, 61
January 2001 119 Product Version 3.2

SDF Annotator Guide
CONDELSE 48
DATE 40
DELAY 43
DELAYFILE 39
DEPARTURE 78
DESIGN 40, 56
DIFF 76
DIVIDER 40
GLOBALPATHPULSE 60
HOLD 63
INCLUDE 37
INCREMENT 44
INSTANCE 42
INTERCONNECT 52
INTERCONNECT_MIPD 20
IOPATH 48
MAP_INNER 24
MODULE 24
NETDELAY 54
NOCHANGE 71
OVI SDF standard 34
PATHCONSTRAINT 72
PATHPULSE 58
PERIOD 70
PERIODCONSTRAINT 74
PORT 49
PROCESS 40
PROGRAM 40
RECOVERY 65
RECREM 67
REMOVAL 66
RETAIN 49
SCALE_FACTORS 21, 22
SCALE_TYPE 21, 22
SCOND 64, 68
SDFVERSION 40
SETUP 62
SETUPHOLD 64
SKEW 68
SKEWCONSTRAINT 74
SLACK 79
SUM 75
TEMPERATURE 41
TIMESCALE 41
TIMINGCHECK 60
TIMINGENV 72
TURNOFF_DELAY 23
VENDOR 40
Verifault-XL SDF 36
Verilog-XL SDF 35
VERSION 40

VOLTAGE 40
WAVEFORM 80
WIDTH 69

L
log file 13
logic constraints 77
logical operators 33

M
MAP_INNER keyword 24

example 25
mapping timing data

modules 24
Verifault-XL defaults 18
Verilog-XL defaults 18
Veritime defaults 19

maximum
delay between two signals 68
delay on a path 72
delay values 13
difference between delays of two

paths 76
interconnect delay 20
MTM keyword 21
signal cycle 74
sum of two or more path delays 75
time scale 14
time scaling 22
turn-off delay 23

memory
improving use 91

min:typ:max triples 44
min:typ:max triplets 45
minimum

delay values 13
interconnect delay 20
interval after a clock transition 63
interval before a clock transition 62
MTM keyword 21
time scale 14
time scaling 22
turn-off delay 23

MIPD 53, 55
MITD 50, 53
module 14
module delay 56
January 2001 120 Product Version 3.2

SDF Annotator Guide
MODULE keyword 24
example 25

module mapping
removing to improve performance 92

module path
conditional delays 48

multisource nets 50

N
negative timing check 90
net delay 54
NETDELAY keyword 54

example 54
NOCHANGE keyword 71

O
operators

binary 33
case 32
logical 33
precedence 33
relational 33
unary 33

overrides
mapping specifications 25
MTM keyword 21
SCALE_FACTORS keyword 21, 22,

23, 24, 25, 45, 48, 50, 52, 54, 57,
59, 61

SCALE_TYPE keyword 21, 22, 23, 24,
25, 45, 48, 50, 52, 54, 57, 59, 61

OVI SDF standard keywords 34

P
path

conditional module path delays 48
delays 45
limits between ports 58
maximum delay 72
maximum delay between two 76
maximum sum of two or more

delays 75
pulse control 57
timing constraints 72
wire delays 52

PATHCONSTRAINT keyword 72
PATHPULSE keyword 58, 95

example 59
limitation 95

PATHPULSEPERCENT keyword 60
Performance improvement

removing module mapping 92
performance improvement

disabling celltype verification 93
disabling multi-source interconnect

timing resolution 92
grouping delays of a certain type 94
not using +sdf_verbose 94
pre-scaled delays 93
removing interconnect or port

delays 94
synchronizing time scales 93
using INSTANCE * 94

performance improvements 91
synchronizing precision 93

PERIOD keyword 70
PERIODCONSTRAINT keyword 74
PORT keyword 49

example 44, 50
ports

invalid source and destination
combinations 115

valid source and destination
combinations 102

precision
improving performance by

synchronizing 93
PROCESS keyword 40
PROGRAM keyword 40
pulse

error limit 59
rejection and error limits 90
rejection limit 59

R
RECOVERY keyword 65
recovery timing check 65
RECREM keyword 67
reject limit 46
relational operators 33
REMOVAL keyword 66
replacing values in existing delays 44
RETAIN keyword 49
January 2001 121 Product Version 3.2

SDF Annotator Guide
S
SCALE_FACTORS keyword 21, 22

example 22
SCALE_TYPE keyword 21, 22

example 22
scaling operations 21, 22
scaling timing data 14

example 14
SCOND keyword 64, 68
SDF Annotator 10

errors 86
example call 14
restrictions 94

COND keyword 95
edge identifiers 96
escape identifier 97
multiple delay limitations 96
PATHPULSE limitation 95
revert to origianl timing 95
TIMESCALE keyword 95

system task 12
SDF file 12

cell entries 41
comments 33
concepts 30
delay entries 83, 84
example 38, 82
format 83, 84
header 39
hierarchical design 31
use of characters 32

SDF-specific plus options 85
SDFVERSION keyword 40
SDPD 84
SETUP keyword 62
SETUPHOLD keyword 64

example 64
signal

clock event versus port signals 74
defining a clock 80
duration between clock edges 69
input applied during intended circuit

operation 77
output applied during intended circuit

operation 78
single-source nets 50
SITD 50, 53
SKEW keyword 68
SKEWCONSTRAINT keyword 74

SLACK keyword 79
SUM keyword 75

example 76
syntax

conventions 8
delays 43

T
TEMPERATURE keyword 41
time scale

SDF default 95
Verilog-XL default 95

time scales
synchronizing 93

time scaling 21
TIMESCALE keyword 41
timing

analyzing behavior for a circuit 77, 78,
80

retaining port values 49
timing checks

ARRIVAL 77
DEPARTURE 78
DIFF 76
disabling 90
HOLD 63
NOCHANGE 71
PATHCONSTRAINT 72
PERIOD 70
PERIODCONSTRAINT 74
RECOVERY 65
REMOVAL 66
SETUP 62
SETUPHOLD 64
SKEW 68
SKEWCONSTRAINT 74
SLACK 79
SUM 75
WAVEFORM 80
WIDTH 69

TIMINGCHECK keyword 60
COND keyword restriction 95
example 83

TIMINGENV keyword 72
transport delays 89
TURNOFF_DELAY keyword 23

example 23
typical

delay values 13
January 2001 122 Product Version 3.2

SDF Annotator Guide
MTM keyword 21
time scale 14
time scaling 22

U
unary operators 33

V
VENDOR keyword 40
Verifault-XL

path pulse control 57
SDF file header keywords 40
SDF keywords 36

Verilog-XL
path pulse control 57
SDF file header keywords 40
SDF keywords 35
SDF-specific plus options 85

Verilog-XL restrictions 94
VERSION keyword 40
VOLTAGE keyword 40

W
warning suppression 87, 88
WAVEFORM keyword 80
WIDTH keyword 69
wildcard character 42
wire path delays 52

Z
zero-delay timing information 94
January 2001 123 Product Version 3.2

	Contents
	Preface
	About This Guide
	Finding Information in This Guide

	Other Sources of Information
	Related Manuals
	Customer Education Services

	Syntax Conventions

	Using the SDF�Annotator
	Understanding How the SDF Annotator Works
	Calling the SDF Annotator from Verilog�HDL
	$sdf_annotate System Task Syntax
	Examples: Calling the SDF Annotator

	Using the Configuration File
	Understanding the Configuration File
	Sample Configuration File

	Configuration File Keyword Syntax
	Timing Keywords
	INTERCONNECT_MIPD Keyword
	MTM Keyword
	SCALE_FACTORS Keyword
	SCALE_TYPE Keyword
	TURNOFF_DELAY Keyword
	MODULE Keyword
	MAP_INNER Keyword

	Using the SDF File
	Understanding the SDF File
	SDF File Conventions
	Using Identifiers
	Using Characters

	OVI SDF Specification Tool Compatibility
	OVI Standard SDF Keywords
	SDF Keywords for Verilog-XL
	SDF Keywords for Verifault-XL

	OVI SDF Specification Version Differences
	SDF Version 1.* Constructs
	SDF Version 2.* Constructs
	SDF Version 3.* Constructs

	SDF File Keyword Constructs
	DELAYFILE Keyword
	CELL Keyword and Constructs
	DELAY Keyword and Constructs
	ABSOLUTE Keyword
	INCREMENT Keyword
	PATHPULSE Keyword
	PATHPULSEPERCENT Keyword
	TIMINGCHECK Keyword and Constructs
	TIMINGENV Keyword and Constructs

	SDF File Examples
	Example 1
	Example 2
	Example 3

	Annotating with Verilog�XL and Verifault�XL
	SDF-Specific Plus Options
	+sdf_cputime
	+sdf_error_info
	+sdf_file<filename>
	+sdf_ign_timing_edge
	+sdf_nocheck_ celltype
	+sdf_no_errors
	+sdf_nomsrc_int
	+sdf_no_warnings
	+sdf_split_two_timing_check +sdf_splitvlog_splitsuh +sdf_splitvlog_splitrecrem
	+sdf_verbose

	Additional Plus Options that Control the SDF Annotator
	Improving SDF Annotator Performance and Memory Use
	Removing Module Mapping
	Disabling Multisource Interconnect Timing Resolution
	Using Pre-scaled Delays
	Synchronizing Time Scales
	Synchronizing Precision
	Disabling Cell Type Verification
	Processing Without Verbose Annotation
	Using (INSTANCE *)
	Grouping Redundant Constructs
	Removing Zero-Delay MIPDs, MITDs, and SITDs

	Working with Verilog-XL SDF Annotator Restrictions
	Reverting to Original Timing Limitation
	PATHPULSE Limitation for Interconnect Delays
	COND Keyword Matching Condition Restriction
	TIMESCALE Keyword Restriction in SDF File Header
	Edge Identifier Limitations
	Multiple Delay Data Limitations
	Escape Identifier Restrictions

	SDF Annotator Error and Warning Messages
	Error Messages
	Warning Messages

	Valid and Invalid Interconnect Combinations
	Overview
	Valid Interconnect Combinations
	Invalid Interconnect Combinations

	Index

