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Sidelobe Reduction in Array-Pattern
Synthesis Using Genetic Algorithm

Keen-Keong Yan and Yilong Lu,Member, IEEE

Abstract—A simple and flexible genetic algorithm (GA) for
pattern synthesis of antenna array with arbitrary geometric
configuration is presented. Unlike conventional GA using binary
coding and binary crossover, this approach directly represents
the array excitation weighting vectors as complex number chro-
mosomes and uses decimal linear crossover without crossover
site. Compared with conventional GA’s, this approach has a
few advantages: giving a clearer and simpler representation of
the problem, simplifying chromosome construction, and totally
avoiding binary encoding and decoding so as to simplify software
programming and to reduce CPU time. This method also allows
us to impose constraints on phases and magnitudes of complex
excitation coefficients for preferable implementation in practice
using digital phase shifters and digital attenuators. Successful
applications show that the approach can be used as a general
tool for pattern synthesis of arbitrary arrays.

Index Terms—Antenna arrays, genetic algorithms.

I. INTRODUCTION

I N array-pattern synthesis, the main concern is to find an
appropriate weighting vector to yield the desired radiation

pattern. Various analytical and numerical techniques have
been developed to meet the challenge. Examples of analytical
techniques include the well-known Taylor method and Cheby-
shev method [1]. In recent years, numerical approaches have
become more popular as they are applicable not only to regular
arrays (such as linear arrays and circular arrays) but also to
arrays with complicated geometry layout and radiation pattern
requirement. Examples of numerical techniques include the
linear or nonlinear optimization methods [2], [3] and adaptive
methods [4], [5]. However, all these methods are limited to
relatively simple and ideal arrays without mutual coupling.
The proposed genetic algorithm (GA) may be used as a simple
and flexible alternative to achieve the same objectives which
other methods can do and, more importantly, it has unique
features to treat some complicated problems (such as arbitrary
geometric layout, including mutual coupling) which cannot be
done by other methods.

GA’s [6] are search and optimization algorithms which have
very wide applications. Recently, GA’s have been applied to
the field of array-pattern synthesis. Reference [7] uses a GA
to optimize a thinned array and a planar array to produce
patterns with the lowest sidelobe level, while [8] demonstrates
its use in null steering in phased and adaptive array. Reference
[9] applies a GA to determine the excitation coefficients for

Manuscript received June 12, 1995; revised October 22, 1996.
The authors are with the School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore 639798.
Publisher Item Identifier S 0018-926X(97)04892-8.

a linear array connected with four-bit infinity digital phase
shifters. All these applications use binary coding and binary
genetic operation. Conventional GA’s with binary coding and
binary genetic operation are inconvenient and inefficient for
array pattern synthesis problems to optimize real or complex
numbers.

We propose here a simple and flexible GA for pattern
synthesis of arbitrary arrays. This approach avoids coding and
directly deals with real or complex weighting vectors. Using
this approach, constraints on the phases and magnitudes of
the complex coefficients can be easily imposed for practical
implementation of digital phase shifters and digital attenuators.

II. THE GENETIC ALGORITHM

The flow of this approach is similar to that of a standard
GA [10], [11]. But, unlike a conventional GA using binary
coding and binary genetic operations, the proposed approach
avoids encoding/decoding and uses decimal genetic operations
treating directly real/complex array weighting vectors.

A. Construction of Chromosomes

Using GA’s for array-pattern synthesis, radiation patterns
correspond to living beings and array-weighting vectors cor-
respond to chromosomes. GA’s were invented to manipulate
a string of binary coding. Conventional GA’s encode the
parameters in binary chromosomes and perform binary genetic
operations. In this approach, chromosomes are represented
directly by real/complex weighting vectors

(1)

where (known as a genetic material in a GA) represents the
excitation of the th radiator and is the set or a subset of
all complex numbers. In other words, can be a set of some
integers or real numbers or complex numbers or their mixed
combination. is the length of the weighting vector. This
simple representation explicitly shows the relation between
chromosomes in GA and array-excitation weighting vectors
and, therefore, it is easier to understand and to implement in
computer programs.

B. Initial Population

For fast convergence of GA iteration, the initial population
can include approximate excitations by other simple tech-
niques (such as minimization of mean square errors (MMSE)
method [12], etc.) and excitations by guess based on experi-
ence and/or at random.
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Fig. 1. Example of the decimal linear crossover.

The MMSE method finds a weighting vector yielding a
pattern which is as close as a reference pattern by minimizing
the errors between the actual and reference response. The
reference pattern is usually a rectangular pulse whose unity
gain is located in the direction of the main beam of the desired
pattern. Different sets of weights can be obtained by simply
varying the pulse width of the reference pattern.

C. Reproduction

The reproduction processing consists of three basic genetic
operations:mating, crossover, andmutation. There are many
mating techniques available to pick twoparentchromosomes
to producechild chromosomes. Proportionate reproduction,
ranking selection, tournament selection and genitor selection
are some of the examples of the techniques used [10], [11]. In
general, the more highly fit chromosomes should have higher
chances to be selected and mated for producing children for
the succeeding generation so we can use ranking selection to
mate the couples.

Crossover is another process that involves exchange of
genetic materials between two parent chromosomes to make
child chromosomes. Unlike conventional binary crossover
with one or more random crossover sites, we use more
logical decimal linear crossover. For example, from two parent
chromosomes and , three new child chromosomes can
be produced from crossover I: ; crossover II:

; and crossover III: . Crossover I
gives the (average) “midpoint” of and , and crossover
II and III give two extrapolation “points” from the midpoint.
If the two corresponding genetic materials and in
and , respectively, are identical, the corresponding materials
in the three new child chromosomes will remain same as
or . This is an important function for children to keep good
features of their parent. Furthermore, we find that there is no
need here to choose crossover site to perform partial crossover
of genetic materials, adopted in conventional binary cross over.
In this approach, we choose to perform crossover on all genetic
materials and this will reduce the number of children so as to
reduce the CPU time. Fig. 1 illustrates how the three child
chromosomes and are produced after the linear
crossovers from two parent chromosomes and .

Mutation plays a secondary role in GA. Mating and
crossover effectively search and recombine extant useful ge-
netic materials and occasionally they may become overzealous
and lose some of these potential materials, so mutation is
needed to protect against such an irrecoverable loss. Mutation
is carried out by intentionally altering one or more genetic

Fig. 2. Radiation pattern of the broadside linear array using the best set of
initial coefficients by the MMSE method.

materials in a chromosome. In optimization, it corresponds to
prevention of the algorithm of being stuck in a local minimum.
Mutation is only carried out when a chromosome passes a
probability check. When it does, one or a few randomly
selected genetic materials of the chromosome are replaced
with other randomly generated genetic materials.

D. Survival Selection

Once all the new child chromosomes are produced and their
fitnesses corresponding to sidelobe levels are evaluated for
selection of suitable chromosomes to compete for the next
generation. The evaluation can be done by an ideal pattern
function or by an accurate and realistic electromagnetic field
computational simulator that can take into account the mutual
coupling and environment effects.

There are a few selection techniques available. In this
approach, both the child and parent populations are ranked
together in the ascending order (for example, from the lowest
sidelobe level to the highest sidelobe level). Then, based on
the principle of survival of the fittest, those producing superior
output survive, while those producing inferior output die off.
Please note that the competitors for survival selection include
both parents and their children so that the members of next
generation may include members of the previous generation.
This guarantees that the newer generation performs no worse
than old ones. In other words, the error versus generation curve
decreases monotonically.

E. Stopping Criteria

The progress of reproduction and survival selection con-
tinues until a satisfied result is obtained or preset maximum
number of iteration is reached.

F. Comments on Convergence

We have found that it is much faster to achieve the desired
result by having several shorter trials than a single longer
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TABLE I
RELATIVE SIDELOBE LEVELS (RSLL’S) OF THE INITIAL POPULATION AND TEN GA RUNS FOR THE LINEAR ARRAYS

TABLE II
RELATIVE SIDELOBE LEVELS (RSLL’S) OF THE INITIAL POPULATION AND TEN GA RUNS FOR THE CIRCULAR ARRAYS

run. This is because when the progress sticks in somewhere
(for example, a local minimum) it may take a long time to
jump out. In general, the results from different runs are not
identical due to different search routes caused by randomness
of mutation. Therefore, performing another run increases the
possibility of finding a better search route for a faster solution.
In our implementation, if the satisfactory result is not achieved
after a certain number of iterations, the program will restart the
optimization. In our experience, 100 generations (iterations)
are sufficient for each trial and more iteration will not help
much to converge. Of course, the maximum number of trials is
also required to stop the computing in case there is no solution.

III. EXAMPLES

To illustrate the effectiveness of the proposed approach,
two examples are presented here. In the examples, the GA
are carried out in ten runs of 100 iterations each. For these
two examples, the CPU time for 100 iterations is about 120 s
using MATLAB software on a 486/33MHz PC. All the initial
weighting vectors of the following examples, except randomly
generated ones, are produced by the MMSE method [12].

A. Linear Arrays

A broadside linear array of 30 isotropic elements, equally
spaced at half wavelength, is used. The initial parent popu-
lation consists of six sets of positive excitation amplitudes.
Symmetric excitation is assumed, the crossover is done on
half of the chromosome followed by copying it to the other
half in the mirror image format.

As shown in the first column of Table I, the lowest sidelobe
level achieved from the initial population is about25 dB.
After going through ten runs, the relative sidelobe levels
obtained are between31.05 and 36.02 dB. Comparing the
solid line curves in Figs. 2 and 3, it can be seen that the
sidelobes close to the main beam are lowered. At the same
time, the leveled sidelobes in Fig. 3 indicates that the result
is close to optimum solution for that particular beamwidth.
This can be confirmed by comparing the solid line pattern
by the GA and the dotted line pattern by Chebyshev method
[1] in Fig. 3. Although Chebyshev method is able to generate
perfectly leveled sidelobes, it is only applicable to uniform
spaced linear arrays with isotropic elements. As for the GA, it
is more flexible and versatile and it can be applied to arbitrarily
spaced arrays.
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Fig. 3. Comparison of the radiation patterns of the broadside linear array
with excitation coefficients by the GA (solid line) and by Chebyshev method
(dotted line).

Fig. 4. Radiation pattern of the linear array with main beam steered to 60�

using the best set of initial coefficients by the MMSE method.

The second column of Table III lists the normalized weight-
ing vectors for the lowest relative sidelobe level obtained from
the ten trials. For the broadside linear array, the coefficients
are symmetrical and positive real values. To demonstrate that
the algorithm can also be used for complex numbers, the main
beam of the linear array is steered to .

Another six weighting vectors are prepared as the initial
population. The solid line curves in Figs. 4 and 5 show
the radiation patterns before and after the GA operation,
respectively. Again the leveled sidelobes in Fig. 5 indicate
that the result obtained is closed to the optimum shown by the
dotted line curve by Chebyshev method in Fig. 5.

B. Circular Array

In the second example, a circular array of 30 isotropic
element with half-wave spacing is considered. In this example,

Fig. 5. Radiation pattern of the linear array with main beam steered to 60�.
Solid line: by the GA, Dotted line: Chebyshev method.

Fig. 6. Radiation pattern of the circular array using the best set of initial
coefficients by the MMSE method.

symmetric excitation is assumed. The radiation pattern of a
circular array can be evaluated by (2) assuming that
and [1]:

(2)

The resulting sidelobe levels are shown in Table II. There is a
sidelobe level reduction from 21.25 dB (the best pattern of
initial population) to 29.16 dB (the best pattern among the
ten trials of the GA). The two patterns are also shown as the
solid line curves in Figs. 6 and 7, respectively. The weighting
vector of the solid line pattern in Fig. 7 is listed in the fourth
column of Table III, showing that the excitation coefficients
are with irregular phases.

To facilitate the practical implementation by-bit digital
phase shifters, the GA is modified to restrict the phase of
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TABLE III
NORMALIZED EXCITATION COEFFICIENTS OF THELOWEST RSLL FOR THE FOUR ARRAYS BY THE GA

Fig. 7. Radiation patterns of the circular array by the GA. Dotted line:
without phase constraint; solid line: with phase constraint to multiples of
11.25�.

coefficients to multiples of . This can be achieved by
rounding up the phase of the newly generated chromosomes
to a specified value after the crossover. A test is conducted
to restrict the phase of the coefficients to multiple of 11.25
corresponding to the five-bit digital phase shifter. Same initial
population as for the previous example is used. As shown in
the third column of Table II, the best obtainable solution is
about 24.88 dB. The corresponding radiation pattern and
its weighting vector are shown by the dotted line curve
in Fig. 7 and the fifth column of Table III, respectively.
As expected, the overall results are not as good as the
previous example due to the phase constraint on the excitation
weighting vectors. However, the capability of imposing phase
or magnitude constraints is very useful in designing practical

arrays to use preferable digital phase shifters and digital
attenuators.

IV. CONCLUSION

A simple and flexible GA is proposed as a general pur-
pose tool for array-pattern synthesis of arbitrary arrays. This
approach avoids coding and directly works with real/complex
numbers so as to simplify computing programming and to
speed up computation. Although only linear and circular arrays
are used to demonstrate the effectiveness of the method, the
GA can be applied to arbitrary arrays.
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