Computing the Losses in a Sinusoidal Controlled PWM Inverter

The basic structure of a sinusoidal pulse width modulation (PWM) inverter driving a
motor is shown in Fig. 1. The inverter produces the three voltages Va, Vg, and V¢
relative to the negative side of the DC bus which is taken as ground in Fig. 1. The
motor’s line to line voltage is just the difference between the inverter output voltages.
Thus the peak line to line voltage is Vpc and the peak to peak line to line voltage is
2Vpe.

| Semiconductor losses

The semiconductor losses are the sum of the individual IGBT and diode losses.
Averaged over one cycle, the losses in each of the IGBTs are equal and averaged over
one cycle the losses in each of the diodes are equal. It typically is the device loss
averaged over one cycle that is required for the thermal calculations since the thermal
system is a low pass filter with a very long time constant. Using the average power in
the thermal calculations is valid as long as the motor is turning fast enough that the
period of one electrical cycle is much less than each thermal time constant. Ultimately
the thermal time constants must be calculated to determine the motor speeds for which
using the average power is valid.
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Figure 1 IGBT inverter driving a PM synchronous motor

The diode losses have predominately conduction losses. The average diode losses are
computed by averaging the average diode losses in each switching cycle.
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where here N is the number of switching cycles in one motor electrical cycle, T is the
switching period, Ii(t) is the diodes forward current which is equal to the phase current
when the diode is conducting, and Vi(t) if the diodes forward current when it is
conducting. The diode’s forward voltage when it is conducting can approximated very
well as

Vi=Vi+Rr o Iy (1.2)

A particular diode is on when its opposite IGBT is off. Thus if Q; conducts, D, conducts
when Qq turns off. Also, if Qi conducts, the diode D1 does not conduct. Vice versa, if Dy
conducts Q4, does not conduct even if it is on. Thus Qs and D, take turns conducting for
one motor half cycle while D1 and Q; take turns conducting for the other motor half
cycle. Substituting this expression for the forward voltage in Eq. 1.2 into Eq. 1.1 with the
above considerations gives

(Paioae) = %Zl j L) (Vi + Rily (1) Mt (1.3)
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Here the IGBT is on for D, T of the nth switching cycle and its opposite diode is on for
(1-Dn)T of the nth switching cycle. The integral in Eq. 1.3 can be evaluated if the
inverter’s switching frequency is high enough that the motors phase current and thus
the diode’s current is constant during a switching cycle.

( Piode) :%vao(l — Du)ly(nT) +%2Rf(1— Du)Ilr(nT)? (1.4)

Thus the average power has two parts that can be evaluated separately. One is due to
the diode’s offset voltage Vi, and the other is due to the diode’s resistance R;. Again if
the switching frequency is high enough T small enough) the sums in Eq. 1.4 can be
approximated with integrals
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In Eq. 1.5 the fact that the diode’s forward current is equal to the motor’s phase current
while it is conducting has been used. The integrals in Eqg. 1.5 are over only one half of a
cycle because during the other half cycle the current flows in the IGBT in parallel with
the diode rather than the diode. Thus the above result requires that the current be the
reference waveform since the sign of the phase current determines if the current flows
in the diode or the IGBT.



16(t) = Ippsin(comt) (1.6)
The phase voltage averaged over one switching cycle is
Ve(t) = Dg(t)VpC (1.7)

The duty cycle is constrained to between zero and one so that to obtain a sinusoidal
voltage across the motor from line to line the duty cycle for a phase must be

Dy(t) :%+ Dy sin(amt + @y) (1.8)

Here 0 < Dp < 2 and ¢, is either 0, -120, or 120 degrees depending on the phase 6.

The line to line voltage for phases a and b of the motor is

Var = Vpc(% + Dy Sil’l(a)mt)j —VDC(% + Dy sin(@mt — 120)) = VocDy(sin(@nt ) — sin(@mt —120))
(1.9)

which is a sine wave that can be written in phasor form as

Vao = VocDp —VocDyexp(— j27/3) = Vapexp(ja) = Vapexp(j(a - 27/ 3)) (1.10)

In Eqg. 1.10 the line to line voltage for phases a and b of the motor has been written in
terms of the AC part of the inverter voltage line to ground and in terms of the motor
voltage line to neutral. The voltages are assumed to be balanced three phase and (to
be general) the motor’s line to neutral voltage is assumed to be out of phase with the
AC part of the inverter voltage line to ground. Simplifying Eq. 1.10 gives

Vo = VocDp(1 —exp(—= j272/3)) = Van(1 —exp(= j27/3))exp(j)
VDCDp:VanpeXp(ja/) (111)

Since the left side of Eqg. 1.11 is real « must be zero and Van, = VpcDp. The AC part of

the inverter’s line to ground voltage is equal to the motor’s line to neutral voltage. From
Eqg. 1.7 the AC part of a given phase of the inverter has the same phase as the motor’s
line to neutral voltage which is the reference waveform. Thus Eq. 1.5 can be written as
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In Eq. 1.12 the line to neutral voltage leads the phase current by the positive angle 6 or
equivalently the phase current lags the line to neutral voltage by the angle positive 6.
Thus 6 is the motor’s power factor angle and a plus angle is a lagging power factor
(inductive load). Doing the integrals in Eq. 1.12 gives

<Pfo> = I@J‘/fo( 217[ —%COS(Q)) (1.13a)
(Pu)= m& -2 cos(e)j (1.13b)

Thus the average loss in one diode in the sinusoidal PWM inverter is
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Since the cos(0) is the motor’s power factor (PF) Eq. 1.14 can be written as

(Paodd) = 1o 224 280 ) _popy| Ve g 1R A ppe (1.15)
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A similar procedure can be followed to find the losses in the IGBTs. Starting with
the IGBT’s conduction losses

nDnT
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Turning the sum into an integral and substituting for the current and duty cycle gives
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The average conduction losses in the IGBT are found from doing the integrals in Eq.
1.17
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The average switching losses in the IGBT are computed using
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The switching energy as a function of time is found assuming
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The switching energy is assumed proportional to the DC voltage and the IGBT current.
This assumes the switching time is independent of the current or voltage. This
assumption is reasonable put not exact. Substituting Eqg. 1.20 into Eqg. 1.19 gives

1 V I on T V I off T
<Psw> = —Z Eonfrest e < (n ) + onfﬁtesr e Cﬁ(n ) (1 21 )
N T n VDC teston I Cteston VDC testoff I Ctestoff

If the switching frequency is high enough the collector turn on and turn off currents can
be approximated by the fundamental of the motor’s phase current during the switching
interval. Further if the switching frequency is high enough (the switching period T small
enough) Eq. 1.21 can be approximated with an integral. Multiply the numerator and
denominator by T, the switching period, to approximate the sum in Eq. 1.21 with the
integral

Timl2
j sin(@nt)dt (1.22)
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Again the integral is only done for the half of the motor’s period when the phase current
is positive because the current is only carried by the IGBTSs for the half of the motor’s
period when the current is positive. For the other half of the motor’s period when the
current is negative it flows the diodes in parallel with the IGBTs. Doing the integral in
Eq. 1.22 gives

<wa> = M(E{m test VDC I¢P + E()ﬂ _test VDC IW) j (1 23)
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Il DC Link Capacitor RMS Current

The link capacitor filters the ripple current generated by the inverter. The ac
ripple current flows through the capacitor’s equivalent series resistance (ESR)
producing losses. The capacitors cannot get too hot with the losses it experiences.
Typically the manufacturer specifies a maximum ripple current rating for its capacitor,
which if the user stays below this rating the capacitor does not get too hot. Thus the rms
value of the current in the link capacitor must be computed.

The link current is the sum of the current in the three upper switched and diodes.
For any switch the current is in the IGBT for the first half cycle and in the diode for the
second half cycle. The rms ripple current in the link capacitor is equal to the rms value
of the AC part of the link current. The rms value of the AC part of the link current is
related to the total rms value of the link current and the average value of the link current
by Parsaval’s theorem.

2 2 2
Ilinkrms = Ilinkdc +Ilinkac

Ilinkac = Ilinkrms2 - Ilinkdc2 (21 )

The link current is given by
Link (1) = Tinka (1) + Liinks (1) + Llinkc (1)

The average value of the link current is

nT nT 1 nT

Liinkac = <i1mk> = %Z% J-ilinkA(t)dl + %Z% J-izka(t)dt + NZ% J-izmkc(t)dt (2.2)

n (n-)T n (n-)T n (n-)T

Now both the current in the IGBT and the diode are included in the sum so that both half
cycles of the phase current sine wave are included in the sum. The average link current
in each phase is the same so only one integral in Eqg. 2.2 must be done. Further, during
the interval an IGBT or diode is on, the individual phase link currents are equal to the
motor phase current otherwise they are zero. Thus, with the assumption that the phase
current does not change much during a switching cycle
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Again the sum can be approximated with an integral to obtain
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Liinkde =§Dpl¢pcos(9) (2.4)

This result could be found more simply by setting the average DC link power to the
average motor power but the procedure used to obtain the average link current is the
same procedure used to obtain the rms value of the link current.

To find the rms value of the link current, the mean value of the square of the link
current must be computed. Again both half cycles of the phase current are included in
the sum.

nT
Liinkims™ = <izmk2> = %Zl I(ilinkA(t) + ink (1) + ilinkC(t))zdt
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During the interval the IGBT or diode are on the individual phase link currents are equal
to the motor phase current.
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Due to the symmetry of the currents (they are equal except for their phase) Eqg. 2.5 can
be simplified to

nT 1 nT

Ilinkrmx2 :%Z% .[llmkA(t)zdt +NZ§ J-llmkA(t)llka(t)dt (26)
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The first term in Eq. 2.6 can be simplified since the phase A link current is equal to the
phase A current while the switch is on so that with the assumption that the phase
current does not change much during a switching cycle, the first integral in Eq. 2.6
becomes

(n—=14Dan)T
Term1=iz— Iim(t)zdtZLZ3DAn-i¢A(nT)2 (2.7)
N = (n-HT N

Following the usual procedure for approximating the sums with integrals

1 3Tm
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Tm
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It can be recognized that the first term in the integral in Eq. 2.8 is just 3/2 time the rms
phase current squared so

T‘/H
Termi = %@mﬁ 2 j Dyl” sin(mt + 0)sin’ (@) dt (2.9)
m 0

Using some trigonometric identities the last term in Eq. 2.9 integrates to zero so
3,
Term = §I¢rmx (2.10)

When computing the second term in Eq. 2.6

nT
Term:= %zg IilinkA(t)ilinkB(l‘)dt (2.11)

n (n=D)T

the contribution will be zero if either ijina(t) or iinks(t) are equal to zero or equivalently if
either of the switches (IGBT and diode) in phases A or B are off. Assuming that the
IGBTs in phases A and B are synchronized so they turn on at the same time but turn off
at different times, Eq. 2.11 can be written as

n—14+min (Dan,Dsn))T

1 6 o
Term>= N;F J-Z¢A(I)Z¢B(I)dt (2.12)

(n-1)T
Now the integral runs to the minimum of Da, and Dg, since the corresponding switch
turns off first making its corresponding link current zero. For times less than this, both
switches are on and thus the link currents are equal to their corresponding phase

currents. With the assumption that the phase current does not change much during a
switching cycle, the first integral in Eqg. 2.12 becomes

Terma = %Zmin(mn,DBn)iqﬁA(nT)wB(nT) (2.13)
Following the usual procedure for approximating the sums with integrals

Tm
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(2.14)



To do the integral in Equation 14 the minimum of the phase A and phase B duty cycle
functions must be determined at each instant of time during the cycle. These duty cycle
functions are plotted in Fig. 1 for D, = 0.25. The minimum of these two duty cycle
functions is plotted in Fig. 2 for D, = 0.25 and for D, = 0.125. From Fig. 2

D3n=%+Dpsin(a)t+0—27[/3) 0<axr+6<150°

min(Dan, Dsn) = Dan =%+ Dysin(ax+6)  150° < ax +6 <330° (2.15)

Degn =%+Dpsin(a)t+9—27[/3) 330° < ax + 8 <360°

Thus Eq.14 can be written as
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Fig. 1 Plot of the phase A and phase B duty cycle versus time for D, = 0.25.
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Fig. 2 Plot of minimum of the phase A and phase“B duty cycles v%rsus time for D, =
0.25 and D, = 0.125.
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(2.16)

In Eq. 2.16 use was made of the fact that the integral is over one cycle and its value
does not depend on where the integral starts. Doing the above integral gives

B3 5+ B3 b cos(2 0)}

Term>=061y {—g _Dp + 6_DpCOS

The rms link ripple current is thus equal to

2
Liinkrms = \/%I‘ﬁpz — 61: + 61@2Dp{4£+£00 (20)}

T 6rx

Liinkrms = \/i I@sz{z +— 3 COS(20)} (21 7)

Equation 2.17 and Eq. 2.1 can be combined to find the rms value of the ac part of the
link current, which is assumed to be equal to the rms ripple current in the link capacitor.

Liinkac = \/i I@J Dp{2 a— 3 COS(ZQ)} —%Dpzlapz COSz(H) (2 1 8)

Note that the rms value of the ripple current (ac part of the link current) is zero if D, = 0.
This occurs because if this case the IGBTs and diodes are on for half the time in each
phase. At any instant of time the link current is either equal to

Link = I+ Isp + [pc =0

if the currents are flowing through the IGBTs or

Liink = —(Im + I+ IaﬁC) =0

if the current is flowing through the diodes. In either case the link current is zero at each

instant of time if all of the devices switch at the same time.
Using a trigonometric identity to simplify the cos?(8) term gives the final result
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(2.19)

Evaluating the constants gives

Liinkac = %IWJ D,»{0.7351— Dy +(0.4901 — Dy)cos(26)} (2.20)

Because D,<0.5, the rms value of the ripple current (ac part of the link current) must be

positive for any angle 6 and thus any power factor. The current in Eqs 19 and 20 have a
maximum when the peak of the ac part of the duty cycle is equal to

> 1+gcos(26’) 1+gcos(26’)
Dy = 3 =0.3676—3 (2.21)
37 1+cos(26) 1+ cos(26)

At unity power factor Eq. 2.21 says that the maximum ripple current occurs at D, =
0.3063. Since this is larger than the physical maximum value of Dp = 12, the maximum
ripple current occurs at a duty cycle of 2. Thus for unity power factor (6 = 0) the rms
value of the ripple current is

Ilinkac = 3 I¢r1m l{i - 1} 0 335 ; I¢r1m 0 5033I¢r1m (222)

337

lll Estimating the Value of the DC Link Capacitor

The minimum value of the link capacitor depends on its ripple current at the
PWM switching frequency and at the fundamental frequency. The minimum required C
imposed by the PWM switching frequency can be estimated from the capacitor's rms
ripple current. Though this current is distributed over a spectrum of frequencies, assume
it is all at the PWM switching frequency to obtain a worst case constraint.

Clink 2 _ ke (3.1)
‘/linkac27z-F sw

Here linkac is given by Eqgs. 2.19 and 2.20, Vinkac is the specified rms ripple voltage
across the capacitor, and F, is the switching frequency.

The capacitor’s ripple current at the fundamental frequency can be found by
taking the cycle average of the link current
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Liinkfina (nT') = <izmk>cyc = z% IilinkA(t)dt + z% Iizka(l‘)dt + z% Iizmkc(t)dt (3.2)
n L ainyr n 4 iyt n L ainr

Linkfuna(nT) = Dan - iips(nT) + Dan - i198(nT) + Dcn - t1pc(nT)

Liinkfina () = Da(t) - iisa(t) + Ds(t) - igs(t) + Dc(t) - i1pc(2)

Linkguna (1) = (% + Dysin(ar + 0)) Jgpsin(ar)+ (é +Dp sin[a)t +6 —27”)] Ay sin[a)t - 2?”) +

l+ Dpsin(a)t + 0+2—7[] : I@,sin(a)t +2—Ej
2 3 3
(3.3)
The average of Eq. 3.3 has already been computed above in Eq. 2.4. It can be shown

that the AC part of Eq. 3.3 is zero, that is its rms value equals its average value. Thus
there is not ripple current in the link capacitor bank at the fundamental frequency.

IV Inverter’s Thermal Circuit

The thermal circuit for a phase leg module such as the International Rectifier
GA500TD60U mounted to the inverter’s case and the inverter mounted to another
surface is shown in Figs. 3 and 4.
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Fig. 3 Thermal circuit for a phase leg module
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Fig. 4 Thermal circuit for two of the required three phase leg modules (International
Rectifier GA500TD60U).
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Fig. 5 Basic inverter foot print using three International Rectifier GA500TD60U phase
leg modules.
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Fig. 6 Thermal circuit for two (one phase leg) of six switches (Toshiba MG800J1US51).
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Fig. 7 Basic inverter foot print using six switches (Toshiba MG800J1US51).
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Fig. 8 Thermal circuit for two (one phase leg) of six switches (Infineon Cool MOSFET).





