
Understanding the Modbus Protocol

@version@ (@date@)

by Dieter Wimberger

Table of contents

1 About..2

2 Modbus Protocol Basics.. 2

2.1 Modbus Functions... 3

2.2 Exceptions... 3

2.3 Modbus Data Model.. 3

3 Modbus Implementations...4

3.1 Serial Modbus Implementations..4

3.2 IP based Modbus Implementations... 6

4 Critical Evaluation of the Specification(s)...6

Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

1. About

This document introduces the reader to the Modbus protocol. It presents a basic protocol
description and discusses the serial and the TCP based implementations.

2. Modbus Protocol Basics

Basically Modbus is an application layer protocol (see Figure 1) for communication between
devices, mainly to exchange data typical for the field of automation.

Modbus in the ISO/OSI Schema

Table 1: Figure 1: ISO/OSI Context
At this level Modbus is a stateless client-server protocol (e.g. much like HTTP), based on
transactions, which consist of a request (issued by the client) and a response (issued by the
server). In the field where this protocol is usually applied, there exists a concept that is one of
the possible schemas governing the lower level communication behavior on a network using
a shared signal cable: Master-Slave. To prevent confusion, the following directed relations
describe Master-Slave in terms of the Client-Server paradigm:

• the Master is a Client
• the Slave is a Server

A transaction and it's context is visualized in Figure 2.

Modbus Transaction

Table 2: Figure 2: Modbus Transaction
The stateless communication is based on a simple package, that is called Protocol Data Unit
(PDU). The protocol specification defines three types of PDU's:

• Request PDU, consisting of:
1. a code specifying a function (Function Code, 1 byte)
2. and function specific data (Function Data, varying number of bytes)

• Response PDU, consisting of:
1. the function code corresponding to the request (Function Code, 1 byte)
2. and response specific data (Response Data, varying number of bytes)

• Exception Response PDU, consisting of:
1. the function code corresponding to the request + 0x80 (128), (Error Code, 1 byte)
2. and a code specifying the exception (Exception Code, 1 byte)

Figure 3 presents a visualization of these packages.

Modbus PDU's

Understanding the Modbus Protocol

Page 2
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

Table 3: Figure 3: Modbus Protocol Data Units (PDU)

2.1. Modbus Functions

The specification defines a certain number of functions, each of which is assigned a specific
function code. These are in the range 1-127 (decimal), as 129(1+128)- 255(127+128)
represents the range of error codes. While the first published version of the specification
defined different classes of functions (e.g. Class 0, Class 1, Class 2), the newly released
specification (from http://www.modbus.org; see Knowledge Base Index (../kbase/index.html)
) defines categories of function codes:

• Public
Are guaranteed to be unique and specify well defined functions that are publicly
documented. These are validated by the community and a conformance test exists.

• User-Defined
Are available for user-defined functions, thus their codes might not be unique. The
specification defines the code ranges 65-72 and 100-110 for user-defined functions.

• Reserved
These are currently used by some companies for legacy products and are not available for
public use (these are not discussed any further in the specification).

The documentation for a function consists of:

1. a description of the function (i.e. what it is good for), it's parameters and return values
(including possible exceptions).

2. the assigned Function Code
3. the Request PDU
4. the Response PDU
5. the Exception Response PDU

The specification further documents defined and assigned public functions.

2.2. Exceptions

In certain cases, the response from a slave will be an exception. The primary identification of
an exception response is the error code (function code + 128), which is further specified by
the exception code. Assigned codes and descriptions can be found in the specification.

2.3. Modbus Data Model

The basic public functions have been developed for exchanging data typical for the field of
automation. Table 1 contains the basic Modbus data types defined by the specification.

Name Type Access Visual

Understanding the Modbus Protocol

Page 3
Built with Apache Forrest
http://forrest.apache.org/

../kbase/index.html
http://forrest.apache.org/
http://forrest.apache.org/

Discrete Input single bit read-only Discrete Input

Discrete Output (Coils) single bit read-write Discrete output/Coil

Input Registers 16-bit word read-only Input Register

Holding Registers
(Registers)

16-bit word read-write (Holding) Register

Table 1: Table 1: Modbus Data Types

Note:
The specification does not define the ways of organizing the related data in a device. However, the organization has a direct
influence on the addresses used in basic access functions. (Thus always consult the device's documentation to learn about
addressing in basic access functions!)

3. Modbus Implementations

Basically Modbus has been implemented and used over all types of physical links (wire, fiber
and radio) and various types of lower level communication stacks. However, we will
concentrate on the two basic types of implementations (which are supported by jamod):

1. Serial: Asynchronous Master/Slave
2. IP: Master/Slave

3.1. Serial Modbus Implementations

Modbus started it's life in form of an implementation for asynchronous serial network
communication. The application level protocol operates directly on top of a serial interface
and serial communication standards. The most common ones (over wire) are:

• RS232 (EIA232):
see The RS232 Standard
(http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html)

• RS422/RS485:
see Introduction to RS422 and RS485 (http://www.hw.cz/english/docs/rs485/rs485.html)

RS232 is used for short distance point-to-point communication, the same is valid for RS 422,
which is a bidirectional extension of RS232 for industrial environments, that also supports
longer distances.
RS485 can be used for multipoint communication (i.e. multiple devices connected to the
same signal cable), employing the Master-Slave paradigm (one master and n fixed address
slaves). Figure 4 visualizes the possible network setups.

Serial Network Architectures

Understanding the Modbus Protocol

Page 4
Built with Apache Forrest
http://forrest.apache.org/

http://www.camiresearch.com/Data_Com_Basics/RS232_standard.html
http://www.hw.cz/english/docs/rs485/rs485.html
http://forrest.apache.org/
http://forrest.apache.org/

Table 1: Figure 4: Serial Network Architectures
To enable the actual communication for this setups, the implementation extends the PDU
with additional fields, better said, it wraps the PDU into a package with a header and an
error checksum (see Figure 5). The resulting package is defined by the protocol specification
as Application Data Unit (ADU), that has a maximum package size of 256 bytes.

Note:
The maximum package size limitation of 256 bytes applies for all existing Modbus protocol implementations!

Modbus Serial ADU

Table 2: Figure 5: Serial ADU
The header is composed of an address field (1 byte) and the tail is an error checksum over the
whole package, including the address field (i.e. header). For transmission the Modbus
message (i.e. ADU) is placed into a frame that has a known beginning and ending point,
allowing detection of the start and the end of a message and thus partial messages. There
exist two transmission modes, which differ in encoding, framing and checksum:

1. ASCII
Frames are encoded into two ASCII characters per byte, representing the hexadecimal
notation of the byte (i.e. characters 0–9, A–F). The error checksum is represented by a
longitudinal redundancy check (LRC; 1 byte) and messages start with a colon (':', 0x3A),
and end with a carriage return – line feed ("CRLF", 0x0D0A). Pauses of 1 second
between characters can occur.

2. RTU
Frames are transmitted binary to achieve a higher density. The error checksum is
represented by a cyclic redundancy check (16 bit CRC; 2 byte) and messages start and
end with a silent interval of at least 3.5 character times. This is most easily implemented
as a multiple of character times at the baud rate that is being used on the network. The
maximum pause that may occur between two bytes is 1.5 character times.

jamod is designed to support both transmission modes, using an implementation which is
based on the javax.comm API.

Warning:
The RTU implementation does only support the Master side. It is working by the best effort principle, which means it might
not work in a reliable way in a low-lantency real-time context.

It is indeed possible to implement the serial transport based on other serial stack
implementations (i.e. replacements for the Java Comm API implementation) like for example
SerialPort (http://www.sc-systems.com/products/serialport/serialport.htm
(http://www.sc-systems.com/products/serialport/serialport.htm)). According to the product

Understanding the Modbus Protocol

Page 5
Built with Apache Forrest
http://forrest.apache.org/

http://www.sc-systems.com/products/serialport/serialport.htm
http://forrest.apache.org/
http://forrest.apache.org/

info it supports around 20 platforms and it has been successfully used to implement the two
serial transmission modes in Java (Master only, see Field Talk/Java
(http://www.focus-sw.com/FTMP_MBJV.html) , a commercial Master protocol pack from
Focus Engineering).

3.2. IP based Modbus Implementations

A TCP/IP based Modbus protocol implementation (Modbus/TCP) has been recently
committed as an RFC draft to the IETF. It uses the TCP/IP stack for communication
(registered port is 502) and extends the PDU with an IP specific header (see Figure 6).
The possible network setups are not governed by the specification; it is possible to setup
multi-master systems or realize bidirectional communication (i.e. have nodes that are master
and slave at the same time). However, the user should be well aware that there are
implications from deviations of the Master/Slave schema.

Modbus TCP ADU

Table 1: Figure 6: Modbus/TCP ADU
The IP specific header (called MBAP in the specification) is 7 bytes long and composed of
the following fields:

1. the invocation identification (2 bytes) used for transaction pairing; formerly called
transaction identifier

2. the protocol identifier (2 bytes), is 0 for Modbus by default; reserved for future
extensions

3. the length (2 bytes), a byte count of all following bytes
4. the unit identifier (1 byte) used to identify a remote unit located on a non-TCP/IP

network

4. Critical Evaluation of the Specification(s)

There are a few points regarding the specification, which are definitely discussable:

1. The specification does not present a consistent naming for all of the basic simple data
types. This propagates to the naming of a number basic data access functions. Probably it
would be good to elaborate one consistent naming schema, to avoid confusion and allow
better mind mapping.

2. The Modbus Encapsulated Interface (MEI) is exposed through a documented public
function, without being further explained.

3. The properties of the protocol are perfectly suited for the use of UDP/IP as transport layer
protocol:
1. it is stateless,
2. transaction oriented

Understanding the Modbus Protocol

Page 6
Built with Apache Forrest
http://forrest.apache.org/

http://www.focus-sw.com/FTMP_MBJV.html
http://forrest.apache.org/
http://forrest.apache.org/

3. and the package size is limited to 256 bytes, which should be easily transferable over
any IP capable link (including IP over Serial) without the necessity to split the
package.

Especially if a real-time communication has to be achieved, it might be of interest to
investigate in a Modbus/UDP implementation.

Note:
For learning more about Modbus/UDP, please see: Modbus/UDP Specification (modbus_udp.html) .

Understanding the Modbus Protocol

Page 7
Built with Apache Forrest
http://forrest.apache.org/

modbus_udp.html
http://forrest.apache.org/
http://forrest.apache.org/

	1 About
	2 Modbus Protocol Basics
	2.1 Modbus Functions
	2.2 Exceptions
	2.3 Modbus Data Model

	3 Modbus Implementations
	3.1 Serial Modbus Implementations
	3.2 IP based Modbus Implementations

	4 Critical Evaluation of the Specification(s)

