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Application Note Abstract 
This Application Note describes how to control a PCD8544-based graphics LCD in a PSoC® project. 

 

 

Introduction 
In most applications there is a need to display information 
to the user. A graphics LCD is a powerful, easy-to-control 
solution. It can provide both text and graphical illustration 
to an application. This Application Note shows how to 
control a graphics LCD using a PSoC device. The project 
has a software library for write text and a graphics drawing 
on LCD and PC software to build a font generator and 
bitmap-to-C-array converter.  

Graphics LCD 
In this application, I used a 48x84 graphics LCD with 
Philips PCD8544 controller/driver. You may find the data 
sheet for this controller under Reference [1]. Devices 
similar to the PCD8544 are listed at Reference [2].  

Many manufacturers make displays based on the 
PCD8544 or compatible controllers. This very low-cost 
LCD controller has memory bits, each of which represent 
one pixel on the LCD. This memory allows only writes. It is 
not possible to read from this memory, which can create 
some difficulties with building routines for the smaller 
memory versions of PSoC.  

Data are downloaded in bytes into the 48x84-bit RAM data 
display matrix of PCD8544, as indicated in Figure 1. The 
columns are indicated by the address pointer. The address 
ranges are: X 0 to 83 (1010011), Y 0 to 5 (101). 
Addresses outside these ranges are not allowed. The X 
addresses increment after each byte. After the last X 
address (X = 83), X wraps around to 0 and Y increments 
to the address in the next row. After the very last address 
(X = 83 and Y = 5), the address pointers wrap around to 
address (X =0 and Y =0). 

 

Figure 1. LCD RAM Format, Addressing 
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Circuit Schematic 
The LCD connects to the PSoC by four wires. Two wires 
are for one-direction SPI, one wire is for data/control 
switching, and one wire is for the reset signal. The 
PCD8544 needs one external capacitor for an internal bias 
voltage generator. Figure 2 shows the schematic when 

PSoC is powered by 3.3V. Figure 3 shows the schematic 
when PSoC is powered by 5V. Some applications only 
allow use of 3.3V supply. Some require 5V and therefore 
need an additional level translator to be added. 

 

 
 

Figure 2. Circuit Schematic for 3.3V Powered PSoC 
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Figure 3. Circuit Schematic for 5V Powered PSoC 
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Software Library 
For the simplified drawing on this LCD, I wrote a software 
library that can work in two modes: drawing over 
background (when C-compiler directive, 
DRAW_OVER_BACKGROUND, is defined) and drawing 
without background (in other cases).  

Because the LCD internal memory is write only and some 
PSoC devices have too little memory to build a cache, all 
drawing routines output immediately on the LCD. 

The software library has two low-level functions that are 
hardware dependent (see Table1). If you want to port this 
library onto a similar LCD controller with another physical 
connection (for example, use of BF9864AFPH with I2C 
interface), you must rewrite only these two functions. 

 

Table 1. LCD Controller Low-Level, Hardware-Dependent Functions 

LcdSendData(char data) Send byte of data to LCD. For more information, see the LCD driver data 
sheet. 

LcdSendCommand(char data) Send command byte to LCD. For more information, see the LCD driver 
data sheet. 

  

High-level functions that may be used with 
DRAW_OVER_BACKGROUND are listed in Table 2. They 
differ from the functions that may be used without 
DRAW_OVER_BACKGROUND (see Table 3) by dt 
parameter, which can take the following values:  

 DRAW_OR – Text or graphics draw over background 
with using Logical OR operator under drawn and 
background pixels. 

 DRAW_XOR – Similar to DRAW_OR but uses XOR 
instead OR operator. 

 DRAW_CLEAR – Does not draw pixels, only restores 
background. Erases drawn pixels. 

 

Table 2. High-Level Functions used when DRAW_OVER_BACKGROUND is Defined 

LcdInit(const char * dataPtr) Performs LCD initialization, draws background. 
Parameters: dataPtr – pointer to array in Flash memory that contains 
background. 

LcdSetBackground ( 
     const char * dataPtr) 

Allows pointer to change to current background. Does not perform 
repaint. Only the pointer changes. 
Parameters: dataPtr – pointer to array that contains background. 

LcdClear() Clears display and only shows background. 

LcdContrast(char contrast) Allows contrast change. No visible result at ambient temperature. High 
temperature allows decrease contrast. Low temperature allows increase 
contrast. 
Parameters: contrast – byte describes contrast (higher value means 
higher contrast).  

LcdGoTo(char x, char y) Changes current text position. 
Parameters: x – X- coordinant of text position. 
                    y – Y- coordinant of text position. 
Y- coordinant means not quite a pixel, but an 8-pixel bank (e.g., display 
has 6 bank by height). 

LcdImage ( 
     char x,  
     char y,  

     char xsize,  
     char ysize,  

     const char * dataPtr) 

Draws image. 
Parameters: x,y – coordinants of image top-left corner. 
                     xsize, ysize – image width and height. 
                     dataPrt – pointer to the array that contains image. 

LcdChr ( 
     char ch,   

     draw_type dt) 

Draws single character (by the small font) starting from current text 
position (see LcdGoto function above). 
Parameters: ch – character. 
                     dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR). 
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LcdStr ( 
     char *dataPtr,  
     draw_type dt) 

Writes string (by the small font) starting from current text position from 
data memory. 
Parameters: dataPtr – pointer to the string in the data memory. 
                     dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR). 

LcdCStr ( 
     const char *dataPtr,  

     draw_type dt) 

Writes string (by the small font) starting from current text position from 
program memory. 
Parameters: dataPtr – pointer to string in the program memory. 
                     dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR). 

LcdBigChr ( 
     char x,  
     char y,  

     char ch,  
     draw_type dt) 

Draws single character by the big font. 
Parameters: x,y – coordinants of character. 
                     ch – character. 
                     dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR). 

LcdBigStr ( 
     char x,  
     char y,  

     char *dataPtr,  
     draw_type dt) 

Draws string from data memory by the big font. 
Parameters: x,y – coordinants of string begin. 
                     dataPtr – pointer to the string in data memory. 
                     dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR). 

LcdBigCStr ( 
     char x,  
     char y,  

     const char *dataPtr,  
     draw_type dt) 

Draws string from program memory by the big font. 
Parameters: x,y – coordinants of string begin. 
                     dataPtr – pointer to the string in program memory. 
                     dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR). 

LcdVBargraph ( 
     char x,  

     char ystart,  
     char yend,  

     char yposition,  
     draw_type dt) 

Draws vertical bar graph. 
Parameters: x – coordinate of left bar graph. 
                     ystart – coordinant of top bar graph (8-pixel bank). 
                     yend – coordinant of bottom bar graph (8-pixel bank). 
                     yposition – current bar graph position, by pixels.                
(yposition <=(yend-begin)*8). 
                     dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR). 

LcdHBargraph ( 
     char y,  

     char xstart,  
     char xend,  

     char xposition,  
     draw_type dt) 

Draws horizontal bar graph. 
Parameters: y – coordinant of the top bar graph (8-pixel bank). 
                     xstart – coordinant of the left bar graph.  
                     xend – coordinant of the right bar graph. 
                     xposition – current bar graph position, by pixels. (xposition 
<=xyend-xbegin). 
                     dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR). 

void LcdLine ( 
     char xb,  
     char yb,  
     char xe,  
     char ye,  

     draw_type dt); 

Draws line. 
Parameters: xb,yb – coordinants of where the line begins. 
                     xe,ye – coordinants of where the line ends. 
                     dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR). 
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Table 3. High-Level Functions used when DRAW_OVER_BACKGROUND is Undefined 

LcdInit() Performs LCD initialization. 

LcdClear() Clears display and shows blank. 

LcdContrast(char contrast) Allows contrast change. No visible result is observed at ambient temperature.  
Parameters: contrast – byte describes contrast (higher value means higher 
contrast).  

LcdGoTo(char x, char y) Change current text position. 
Parameters: x – X-coordinant of text position. 
                    y – Y-coordinant of text position. 
Y- coordinant means not quite a pixel, but an 8-pixel bank (e.g., display has 6 
bank by height). 

LcdImage ( 
     char x,  
     char y,  

     char xsize,  
     char ysize,  

     const char * dataPtr) 

Draws image. 
Parameters: x,y – coordinants of image top-left corner. 
                     xsize, ysize – image width and height. 
                     dataPrt – pointer to the array that contains image. 

LcdChr (char ch) Draws single character (by the small font) starting from current text position 
(see LcdGoto function above). 
Parameters: ch – character. 

LcdStr (char *dataPtr) Writes string (by the small font) starting from current text position. 
Parameters: dataPtr – pointer to the string in the data memory. 

LcdCStr (const char *dataPtr) Writes string (by the small font) starting from current text position. 
Parameters: dataPtr – pointer to the string in the program memory. 

LcdBigChr ( 
     char x,  
     char y,  

     char ch) 

Draws single character by the big font. 
Parameters: x,y – coordinants of character. 
                     ch – character. 

LcdBigStr ( 
     char x,  
     char y,  

     char *dataPtr) 

Draws string from data memory by the big font. 
Parameters: x,y – coordinants where string begins. 
                     dataPtr – pointer to the string in data memory. 

LcdBigCStr ( 
     char x,  
     char y,  

     const char *dataPtr) 

Draw string from program memory by the big font. 
Parameters: x,y – coordinants where string begins. 
                     dataPtr – pointer to the string in program memory. 

LcdVBargraph ( 
     char x,  

     char ystart,  
     char yend,  

     char yposition) 

Draws vertical bar graph. 
Parameters: x – coordinant of left bar graph. 
                     ystart – coordinant of top bar graph (8-pixel bank). 
                     yend – coordinant of bottom bar graph (8-pixel bank). 
yposition – coordinate of current bar graph position, by pixel. (yposition 
<=(yend-ybegin)*8). 

LcdHBargraph ( 
     char y,  

     char xstart,  
     char xend,  

     char xposition) 

Draws horizontal bar graph. 
Parameters: y – coordinant of the top bar graph (8-pixel bank). 
                     xstart – coordinant of the left bar graph.  
                     xend – coordinant of the right bar graph. 
xposition – current bar graph position, by pixels. (xposition <=xyend-xstart). 

void LcdLine ( 
     char xb,  
     char yb,  
     char xe,  
     char ye); 

Draws line. 
Parameters: xb,yb – coordinants of where the line begins. 
                     xe,ye – coordinants of where the line ends. 
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PC Utilities  
The software library contains two fonts. Both big and small 
fonts have been written as separate header files 
(big_font.h and small_font.h). To simplify font building, I 
wrote a utility for the PC that facilitates the font building 
process (see Figure 4).  

In the left side of the form, you may draw a character and 
give its hexadecimal representation in the text editor. You 
may also write hexadecimal code and get a character 
picture. 

 

 

 

 

Figure 4. Font Building Utility  

 
 

Another utility (Figure 5) converts bitmaps to C-language 
header files. Users must choose the path to the bitmap. 
Only black-and-white bitmaps with a height divisible by 
eight are supported (which is a consequence of using LCD 
controller page organization).  

Also, users must choose a target file. If a target file exists, 
the utility rewrites it. The name for the hexadecimal array 
will be built from the file name but can be changed. By 
pressing the Convert button, the bitmap converts to a 
constant array of hexadecimal values. A file with 
conversion results is also generated.  

 
Figure 5. Utility for Bitmap-to-C-Array Conversion 

 

 

Demonstration Applications  
The demonstration application consists of a few screens 
that show display output possibilities. The first 
demonstration screen shows big and small text writing on 
the LCD. The second screen shows a text drawing using 
the DRAW_XOR parameter.  

The third and fourth screens show horizontal and vertical 
drawings of bar graphs, respectively. The fifth screen 
shows a bitmap drawing. And the sixth screen is an 
example of an analog gauge showing line drawings with 
DRAW_OR and DRAW_CLEAR parameters. 
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Figure 6. Screenshots from Demo Application 
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