

User Interface - Graphics LCD and
PSoC Interface

July 20, 2004 Document No. 001-34580 Rev. ** 1

AN2152
Author: Svyatoslav Paliy
Associated Project: Yes

Associated Part Family: CY8C27443
GET FREE SAMPLES HERE

Software Version: PSoC Designer™ 4.0
Associated Application Notes: None

Application Note Abstract
This Application Note describes how to control a PCD8544-based graphics LCD in a PSoC® project.

Introduction
In most applications there is a need to display information
to the user. A graphics LCD is a powerful, easy-to-control
solution. It can provide both text and graphical illustration
to an application. This Application Note shows how to
control a graphics LCD using a PSoC device. The project
has a software library for write text and a graphics drawing
on LCD and PC software to build a font generator and
bitmap-to-C-array converter.

Graphics LCD
In this application, I used a 48x84 graphics LCD with
Philips PCD8544 controller/driver. You may find the data
sheet for this controller under Reference [1]. Devices
similar to the PCD8544 are listed at Reference [2].

Many manufacturers make displays based on the
PCD8544 or compatible controllers. This very low-cost
LCD controller has memory bits, each of which represent
one pixel on the LCD. This memory allows only writes. It is
not possible to read from this memory, which can create
some difficulties with building routines for the smaller
memory versions of PSoC.

Data are downloaded in bytes into the 48x84-bit RAM data
display matrix of PCD8544, as indicated in Figure 1. The
columns are indicated by the address pointer. The address
ranges are: X 0 to 83 (1010011), Y 0 to 5 (101).
Addresses outside these ranges are not allowed. The X
addresses increment after each byte. After the last X
address (X = 83), X wraps around to 0 and Y increments
to the address in the next row. After the very last address
(X = 83 and Y = 5), the address pointers wrap around to
address (X =0 and Y =0).

Figure 1. LCD RAM Format, Addressing

handbook, full pagewidth

0

5

LSB

MSB

Y-addres

0

s

X-address 83

[+] Feedback

http://www.cypress.com/samplerequest
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-34580_pdf_p_1

AN2152

Circuit Schematic
The LCD connects to the PSoC by four wires. Two wires
are for one-direction SPI, one wire is for data/control
switching, and one wire is for the reset signal. The
PCD8544 needs one external capacitor for an internal bias
voltage generator. Figure 2 shows the schematic when

PSoC is powered by 3.3V. Figure 3 shows the schematic
when PSoC is powered by 5V. Some applications only
allow use of 3.3V supply. Some require 5V and therefore
need an additional level translator to be added.

Figure 2. Circuit Schematic for 3.3V Powered PSoC

+3.3 V
3.3 V

P0[7]
1

P0[5]
2

P0[3]
3

P0[1]
4

P2[7]
5

P2[5]
6

P2[3]
7

P2[1]
8

SMP
9

P1[7]
10

P1[5]
11

P1[3]12

P1[1]13

Vss14
P1[0] 15P1[2] 16P1[4]

17P1[6]
18

XRES
19

P2[0]
20

P0[6]
27

P0[4]
26

P0[2]
25

P0[0]
24

P2[2]
21P2[4]
22P2[6]
23

VCC
28

CY26443

VDD
1

SCLK
2

SDIN
3

D/C
4

SCE
5

GND
6

VOUT
7
8

RES

LCD
C5
4.7uF

Figure 3. Circuit Schematic for 5V Powered PSoC

OE
1 LE

11

Q1
19

Q2
18

Q3
17

Q4
16

Q5
15

Q6
14

Q7
13

Q8
12

D1
2

D2
3

D3
4

D4
5

D5
6

D6
7

D7
8

D8
9

VCC
20

Vss
10

74VHC573

P0[7]
1

P0[5]
2

P0[3]
3

P0[1]
4

P2[7]
5

P2[5]
6

P2[3]
7

P2[1]
8

SMP
9

P1[7]
10

P1[5]
11

P1[3]
12

P1[1]
13

Vss
14

P1[0]
15P1[2]
16P1[4]
17P1[6]
18

XRES
19

P2[0]
20

P0[6]
27

P0[4]
26

P0[2]
25

P0[0]
24

P2[2]
21P2[4]
22P2[6]
23

VCC
28

CY26443

+3.3 V

+5 V

GND

Q1
BC817

R1
3.3k

R2
15k

+5 V

R3
10k + C3

47uF

+3.3V

VDD
1

SCLK
2

SDIN
3

D/C
4

SCE
5

GND
6

VOUT
7
8

RES

LCD
+3.3 V

C4
4.7uF

July 20, 2004 Document No. 001-34580 Rev. ** 2

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-34580_pdf_p_2

AN2152

Software Library
For the simplified drawing on this LCD, I wrote a software
library that can work in two modes: drawing over
background (when C-compiler directive,
DRAW_OVER_BACKGROUND, is defined) and drawing
without background (in other cases).

Because the LCD internal memory is write only and some
PSoC devices have too little memory to build a cache, all
drawing routines output immediately on the LCD.

The software library has two low-level functions that are
hardware dependent (see Table1). If you want to port this
library onto a similar LCD controller with another physical
connection (for example, use of BF9864AFPH with I2C
interface), you must rewrite only these two functions.

Table 1. LCD Controller Low-Level, Hardware-Dependent Functions

LcdSendData(char data) Send byte of data to LCD. For more information, see the LCD driver data
sheet.

LcdSendCommand(char data) Send command byte to LCD. For more information, see the LCD driver
data sheet.

High-level functions that may be used with
DRAW_OVER_BACKGROUND are listed in Table 2. They
differ from the functions that may be used without
DRAW_OVER_BACKGROUND (see Table 3) by dt
parameter, which can take the following values:

 DRAW_OR – Text or graphics draw over background
with using Logical OR operator under drawn and
background pixels.

 DRAW_XOR – Similar to DRAW_OR but uses XOR
instead OR operator.

 DRAW_CLEAR – Does not draw pixels, only restores
background. Erases drawn pixels.

Table 2. High-Level Functions used when DRAW_OVER_BACKGROUND is Defined

LcdInit(const char * dataPtr) Performs LCD initialization, draws background.
Parameters: dataPtr – pointer to array in Flash memory that contains
background.

LcdSetBackground (
 const char * dataPtr)

Allows pointer to change to current background. Does not perform
repaint. Only the pointer changes.
Parameters: dataPtr – pointer to array that contains background.

LcdClear() Clears display and only shows background.

LcdContrast(char contrast) Allows contrast change. No visible result at ambient temperature. High
temperature allows decrease contrast. Low temperature allows increase
contrast.
Parameters: contrast – byte describes contrast (higher value means
higher contrast).

LcdGoTo(char x, char y) Changes current text position.
Parameters: x – X- coordinant of text position.
 y – Y- coordinant of text position.
Y- coordinant means not quite a pixel, but an 8-pixel bank (e.g., display
has 6 bank by height).

LcdImage (
 char x,
 char y,

 char xsize,
 char ysize,

 const char * dataPtr)

Draws image.
Parameters: x,y – coordinants of image top-left corner.
 xsize, ysize – image width and height.
 dataPrt – pointer to the array that contains image.

LcdChr (
 char ch,

 draw_type dt)

Draws single character (by the small font) starting from current text
position (see LcdGoto function above).
Parameters: ch – character.
 dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR).

July 20, 2004 Document No. 001-34580 Rev. ** 3

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-34580_pdf_p_3

AN2152

LcdStr (
 char *dataPtr,
 draw_type dt)

Writes string (by the small font) starting from current text position from
data memory.
Parameters: dataPtr – pointer to the string in the data memory.
 dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR).

LcdCStr (
 const char *dataPtr,

 draw_type dt)

Writes string (by the small font) starting from current text position from
program memory.
Parameters: dataPtr – pointer to string in the program memory.
 dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR).

LcdBigChr (
 char x,
 char y,

 char ch,
 draw_type dt)

Draws single character by the big font.
Parameters: x,y – coordinants of character.
 ch – character.
 dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR).

LcdBigStr (
 char x,
 char y,

 char *dataPtr,
 draw_type dt)

Draws string from data memory by the big font.
Parameters: x,y – coordinants of string begin.
 dataPtr – pointer to the string in data memory.
 dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR).

LcdBigCStr (
 char x,
 char y,

 const char *dataPtr,
 draw_type dt)

Draws string from program memory by the big font.
Parameters: x,y – coordinants of string begin.
 dataPtr – pointer to the string in program memory.
 dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR).

LcdVBargraph (
 char x,

 char ystart,
 char yend,

 char yposition,
 draw_type dt)

Draws vertical bar graph.
Parameters: x – coordinate of left bar graph.
 ystart – coordinant of top bar graph (8-pixel bank).
 yend – coordinant of bottom bar graph (8-pixel bank).
 yposition – current bar graph position, by pixels.
(yposition <=(yend-begin)*8).
 dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR).

LcdHBargraph (
 char y,

 char xstart,
 char xend,

 char xposition,
 draw_type dt)

Draws horizontal bar graph.
Parameters: y – coordinant of the top bar graph (8-pixel bank).
 xstart – coordinant of the left bar graph.
 xend – coordinant of the right bar graph.
 xposition – current bar graph position, by pixels. (xposition
<=xyend-xbegin).
 dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR).

void LcdLine (
 char xb,
 char yb,
 char xe,
 char ye,

 draw_type dt);

Draws line.
Parameters: xb,yb – coordinants of where the line begins.
 xe,ye – coordinants of where the line ends.
 dt – (DRAW_OR, DRAW_XOR or DRAW_CLEAR).

July 20, 2004 Document No. 001-34580 Rev. ** 4

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-34580_pdf_p_4

AN2152

July 20, 2004 Document No. 001-34580 Rev. ** 5

Table 3. High-Level Functions used when DRAW_OVER_BACKGROUND is Undefined

LcdInit() Performs LCD initialization.

LcdClear() Clears display and shows blank.

LcdContrast(char contrast) Allows contrast change. No visible result is observed at ambient temperature.
Parameters: contrast – byte describes contrast (higher value means higher
contrast).

LcdGoTo(char x, char y) Change current text position.
Parameters: x – X-coordinant of text position.
 y – Y-coordinant of text position.
Y- coordinant means not quite a pixel, but an 8-pixel bank (e.g., display has 6
bank by height).

LcdImage (
 char x,
 char y,

 char xsize,
 char ysize,

 const char * dataPtr)

Draws image.
Parameters: x,y – coordinants of image top-left corner.
 xsize, ysize – image width and height.
 dataPrt – pointer to the array that contains image.

LcdChr (char ch) Draws single character (by the small font) starting from current text position
(see LcdGoto function above).
Parameters: ch – character.

LcdStr (char *dataPtr) Writes string (by the small font) starting from current text position.
Parameters: dataPtr – pointer to the string in the data memory.

LcdCStr (const char *dataPtr) Writes string (by the small font) starting from current text position.
Parameters: dataPtr – pointer to the string in the program memory.

LcdBigChr (
 char x,
 char y,

 char ch)

Draws single character by the big font.
Parameters: x,y – coordinants of character.
 ch – character.

LcdBigStr (
 char x,
 char y,

 char *dataPtr)

Draws string from data memory by the big font.
Parameters: x,y – coordinants where string begins.
 dataPtr – pointer to the string in data memory.

LcdBigCStr (
 char x,
 char y,

 const char *dataPtr)

Draw string from program memory by the big font.
Parameters: x,y – coordinants where string begins.
 dataPtr – pointer to the string in program memory.

LcdVBargraph (
 char x,

 char ystart,
 char yend,

 char yposition)

Draws vertical bar graph.
Parameters: x – coordinant of left bar graph.
 ystart – coordinant of top bar graph (8-pixel bank).
 yend – coordinant of bottom bar graph (8-pixel bank).
yposition – coordinate of current bar graph position, by pixel. (yposition
<=(yend-ybegin)*8).

LcdHBargraph (
 char y,

 char xstart,
 char xend,

 char xposition)

Draws horizontal bar graph.
Parameters: y – coordinant of the top bar graph (8-pixel bank).
 xstart – coordinant of the left bar graph.
 xend – coordinant of the right bar graph.
xposition – current bar graph position, by pixels. (xposition <=xyend-xstart).

void LcdLine (
 char xb,
 char yb,
 char xe,
 char ye);

Draws line.
Parameters: xb,yb – coordinants of where the line begins.
 xe,ye – coordinants of where the line ends.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-34580_pdf_p_5

AN2152

PC Utilities
The software library contains two fonts. Both big and small
fonts have been written as separate header files
(big_font.h and small_font.h). To simplify font building, I
wrote a utility for the PC that facilitates the font building
process (see Figure 4).

In the left side of the form, you may draw a character and
give its hexadecimal representation in the text editor. You
may also write hexadecimal code and get a character
picture.

Figure 4. Font Building Utility

Another utility (Figure 5) converts bitmaps to C-language
header files. Users must choose the path to the bitmap.
Only black-and-white bitmaps with a height divisible by
eight are supported (which is a consequence of using LCD
controller page organization).

Also, users must choose a target file. If a target file exists,
the utility rewrites it. The name for the hexadecimal array
will be built from the file name but can be changed. By
pressing the Convert button, the bitmap converts to a
constant array of hexadecimal values. A file with
conversion results is also generated.

Figure 5. Utility for Bitmap-to-C-Array Conversion

Demonstration Applications
The demonstration application consists of a few screens
that show display output possibilities. The first
demonstration screen shows big and small text writing on
the LCD. The second screen shows a text drawing using
the DRAW_XOR parameter.

The third and fourth screens show horizontal and vertical
drawings of bar graphs, respectively. The fifth screen
shows a bitmap drawing. And the sixth screen is an
example of an analog gauge showing line drawings with
DRAW_OR and DRAW_CLEAR parameters.

July 20, 2004 Document No. 001-34580 Rev. ** 6

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-34580_pdf_p_6

AN2152

Figure 6. Screenshots from Demo Application

References
1. Datasheet for PCD8544 can be downloaded from:

www.semiconductors.philips.com/acrobat/datasheets/
PCD8544_1.pdf

2. List similar to PCD8544 devices can be found at:
www.semiconductors.philips.com/similar/PCD8544U_
2_F1.html

July 20, 2004 Document No. 001-34580 Rev. ** 7

[+] Feedback

http://www.semiconductors.philips.com/acrobat/datasheets/PCD8544_1.pdf
http://www.semiconductors.philips.com/acrobat/datasheets/PCD8544_1.pdf
http://www.semiconductors.philips.com/similar/PCD8544U_2_F1.html
http://www.semiconductors.philips.com/similar/PCD8544U_2_F1.html
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-34580_pdf_p_7

AN2152

About the Author
Name: Svyatoslav Paliy

Title: Application Engineer
Background: Svyatoslav earned his Master of Science

diploma in 2000 from National University
“Lviv Polytechnic“ (Ukraine). His interests
include programming for embedded
systems and Windows and Linux.

Contact: You may reach him at svt@isto.lviv.ua.

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new
documentation number and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all
subsequent revisions.

PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip," PSoC Designer, and PSoC Express are
trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their
respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2004-2007. The information contained herein is subject to change without notice. Cypress
Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor
does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life
support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore,
Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably
be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the
manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to
worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby
grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the
Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product
to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification,
translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission
of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume
any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the
user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in
doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

July 20, 2004 Document No. 001-34580 Rev. ** 8

[+] Feedback

mailto:svt@isto.lviv.ua
http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=Text1&prev=docurate_001-34580_pdf_p_8

	Application Note Abstract
	Introduction
	Graphics LCD
	Circuit Schematic
	Software Library
	PC Utilities
	Demonstration Applications
	References
	About the Author

