

PIC Microcontroller Data Acquisition System

EE3780 Final Project

Mark Panzer
Gang Feng
5-09-2005

 1

Abstract
 A data acquisition system was developed as a final project for the microcontroller design course at
UW-Platteville. This system was developed to monitor power supplies and aid as a development tool for the
design of a 200 W switch-mode power supply. A PIC microcontroller from Microchip was used as the heart
of the data collection system. Internal analog to digital converters acquired data from an analog interface.
The analog subsystem gathered data from temperature, voltage, and current sensors. Data was recorded
through HyperTerminal in Windows. Once the data was gathered MS Excel was used to convert, scale, and
plot the data.

Introduction
 Measurement of the three basic quantities: voltage, temperature, and current can
provide enough information to allow for debugging of almost any electrical circuit. During the
development of a switch-mode power supply it was determined that some sort of data logging
was necessary to protect the supply and determine if the supply was operating properly. Out of
this need a data acquisition system was developed. The data acquisition system measures one
channel of voltage from 0 to 20 volts, one channel of current from –50 to +50 amps, and two
channels of temperature (one ambient and one load). This amount of data is enough to
determine supply efficiency and temperature rise. With additional channels or faster sampling
rates it would be possible to measure and calculate inrush current, supply stability, and transient
response.

Implementation options
 Two options were initially considered to implement the data logger. First, adding an
outboard analog to digital converter (ADC) to the 8052 board used for development in class was
considered. This approach had the advantage of allowing me to use a known good development
system, software toolset, and the ability to get support from teachers and other students.
Unfortunately, I had a difficult time finding multi-channel ADC converters featuring parallel
interfaces to 8-bit busses that could resolve more than 8 bits. Most modern ADCs found used a
serial interface. This was a problem on the 8052 board as the serial port was tied up for
communication to the PC. Also fully developing a software-based serial protocol on a relatively
slow processor like the 8052 could be difficult. Figure 1 shows the proposed block diagram for
the 8052 based data acquisition system.

Figure 1, data acquisition system using 8052 board

 The second option considered the use of an altogether different processor, the Microchip
PIC controller. PICs are self-contained microcontrollers often including clock, I/O, and a host of
peripherals on-chip. The great advantage seen by adopting the PIC was a chip with onboard

 2

analog to digital converters was available in a small 14-pin DIP package. In addition a serial port,
and multiple timer/counters were available. A low-cost ($35) development kit is available from
Microchip to try out any of the 14-pin series of micrcontrollers. Additionally, for the intended
application a low-power small form factor device was a plus. Essentially all the PIC needs to
create the system is the analog interface and a voltage regulator. Just the 8052 board requires 2
to 3 times the space of the board designed for the PIC controller and analog board. The
downside of this approach hinged around learning a new assembly language for the PIC
microcontroller and learning a new development environment and device programmer. Figure 2
shows the block diagram for the PIC data acquisition system.

Figure 2, PIC processor based data acquisition system

PIC selection and setup
 There are literally hundreds of PIC microcontrollers to pick from. The programmer I had
already purchased narrowed this selection down to 8 or 14 pin devices. At minimum 4 ADC
channels, a UART, and one counter timer were needed. The first device found to meet these
specifications was the PIC16F688. The ‘688 contains 8 channels of 10-bit AD converters, an
enhanced UART, two timer counters, analog input comparison modules, an internal 32kHz to
8MHz clock, and flash program memory.
 In order to use the PIC, settings for all the internal registers needed to be determined or
calculated via the datasheet. The internal oscillator was used and set to 4MHz. Next, the serial
port was configured. The enhanced UART (EUSART) has an internal baud rate generator (no
external timer is needed). The EUSART was setup to communicate at 9600 bps, 1 stop bit, 8 data
bits, and no parity. This seemed to be a common serial data rate that was easily achieved with
little error in bit-rate on the PIC (about 0.16%). The commonly used baud rates were all
available in tables in the ‘688 datasheet. After the serial port was configured the analog to digital
converter was set-up. A conversion time of 4.0us as dictated by the datasheet was selected.
Then, registers were set up to use the positive supply as the ADC reference voltage along with
selecting the location of the most significant bit of the result. Finally, a timer was set up to
control the rate of data sampling. The timer values were set to allow for maximum delay that
turned out to be around ¾ of a second. The timer overflow bit was checked via polling. This
approach was used because exact time intervals were not needed and quick response was not
necessary.
 Microchip provides an integrated development environment (IDE) called MPLAB for
coding, compiling, setting up, and controlling programmers for the PIC series of microcontrollers.
Included in the IDE is a debugger and compiler. The debugger worked well until additional
peripherals were initialized and used which then caused the debugger to crash the IDE. Thus, all
further testing needed to be conducted on actual hardware. A simple USB powered programmer
interfaced to the IDE and reprogrammed the flash program memory in PIC controllers.

 3

Microcontroller Firmware
 After configuration of peripherals the microcontroller firmware consisted of a simple loop
that acquired samples, converted them to a format acceptable to HyperTerminal, and echoed
them to the serial port. Code is attached to the end of this document in listing 1. Peripherals
were first initialized as described in the previous section. Following this a timer set to
approximately one second would overflow triggering a capture event. The capture event consists
of setting ADC registers, then waiting for the conversion to be completed. These events are
repeated four times to cover all the input channels. The results are then converted to a three
digit octal number via shifts and bit masks. Only 8 bits of the 10-bit result are converted to octal,
as it appeared the lower value bits only added noise to the acquired signal. Finally, the converted
values were output on the serial port to HyperTerminal in ASCII format delimited with commas.
Figure 3 shows the block diagram for the microcontroller firmware.

Figure 3, A block diagram of the PIC’s firmware

Hardware
 The high integration of the PIC controller leads to a very simple hardware solution. On
the digital side the PIC controller is connected to a MAX232, RS-232 to logic-level converter. A 5
V power supply and some supply decoupling capacitors round out the digital section of the
hardware. Figure 4 shows the implementation of the digital board that was constructed on the
PICKit-1 development board.

 4

Figure 4, the digital section of the data acquisition system

Highly integrated sensors reduced the difficulty of implementing an analog interface
board. The LM35 temperature sensor features a conditioned output with a 10mV/C output slope.
It was decided to use the LM35’s output directly, without amplification, with slightly reduced
resolution. A hall-effect current sensor the ASC750SCA-050 made by Allegro was chosen as an
easy integrated solution for current sensing. The current sensor is capable of resolving –50 to
+50 A and outputs a 0 to 5 V signal corresponding to the current through the device. In the
original application it was expected to see load currents up to 30 A. However, when
demonstrating the device it was not possible to find power supplies capable of supplying more
than 2.5A, thus the captured waveforms appear very noisy due to the small currents measured.
Figure 5 shows the schematic of the analog board.

Figure 5, analog interface section of the data acquisition system

 The physical hardware is shown in photo 1. Two LM35 temperature sensors are attached
via twisted cable, enabling them to be clamped onto heatsinks to measure power supply
temperatures. A set of binding posts is provided for voltage measurement and current
measurement input. The 9 pin serial port hangs off the left side of the development board (black
PCB on top). Unregulated (9 to 37 VDC) DC input is supplied via two wires exiting the back of the
board.

 5

Photo 1, physical realization of the data acquisition system

Results
 To test the data acquisition system an unregulated power supply was used. Real power
supplies have internal resistance that can be demonstrated if the load of the supply is varied. The
circuit in figure 6 was built to show the effect of loading the supply under various conditions.

Figure 6, an unregulated power supply loaded with various power resistors

The output voltage, current, ambient temperature, and temperature of the load resistor were all
monitored via the data acquisition system. After logging the octal numbers to a text file via
HyperTerminal, the data was scaled and plotted in MS Excel.

 6

Plot 1, result of power supply testing, showing voltage, current, and two temperatures

Plot 1 shows the results of loading the supply with three different values of load resistors. As
expected the supply voltage sags with decreasing resistance. The output current changes from
400mA to about 1A over the three different resistors. Finally, the temperature of the load resistor
peaks at about 55 degrees Celsius. This simple application example shows the utility and some of
the capabilities of the data acquisition system.

Conclusions and Future Work
 The data acquisition system proved to be a successful, yet challenging final project.
Choosing a different microcontroller platform on which to base the project made hardware design
much simpler. However, using the PIC controller greatly increased the difficulty of software
design. A new assembly language was learned to take advantage of the PIC. Additionally, it was
necessary to learn the development environment, compiler, and device programmer. Hardware
design went relatively smoothly. Highly integrated sensors made the analog interface a snap. For
some sensors such as the current sensor and to a lesser degree the temperature sensors the
data acquired was of low resolution. Ideally, a higher resolution ADC converter would be needed
to take better data, or a variable gain amplifier could be used. The primary problem with the
current sensor was because it was intended for a 0 to 50 A range. In the original application this
high current sensor was fine. Under testing, low-current supplies were used that showed the low
resolution of the ADC. This combined with using a very small region of the current sensors range
resulted in noisy captured data.
 This data acquisition system, while functional, could be improved. Primarily, the
improvements are centered on the lack of resolution of the ADC in the PIC controller and the
need for better PC interface software. Other microcontrollers such as the MSC series from Texas
Instruments have on-board ADC converters with up to 24 bits of resolution. These
microcontrollers also feature programmable gain amplifiers, which effectively increase the
dynamic range of the ADC and thus further increase resolution. An improved voltage
measurement input is also desired. Currently, the system can only measure positive ground
referenced voltages. With a true differential amplifier input, positive and negative voltages could
be read without the fear of shorting a measurement channel to ground. On the software side two

 7

major improvements are warranted. First, the capability to display real-time values of the
captured data would greatly increase the utility of the data acquisition system. Next, an
integrated capture and display program would greatly simplify data capture. The current system
requires capturing data via HyperTerminal to a text file. This text file then is updated in an excel
spreadsheet. Excel’s update feature works most of the time, however, trouble was occasionally
experienced resulting in Excel crashing. The current solution is far from a one-click data capture.
With dedicated software it is possible that a single click would enable a user to view live data and
concurrently save the trend data to a file.

 8

Listing 1, PIC16F688 assembly code for the data acquisition system

 list p=16f688 ; list directive to define processor
 #include <P16F688.inc> ; processor specific variable definitions

 __CONFIG _CP_OFF & _CPD_OFF & _BOD_OFF & _PWRTE_ON & _WDT_OFF &
_INTRC_OSC_NOCLKOUT & _MCLRE_OFF & _FCMEN_OFF & _IESO_OFF

; '__CONFIG' directive is used to embed configuration data within .asm file.
; The labels following the directive are located in the respective .inc file.
; See respective data sheet for additional information on configuration word.

;***** VARIABLE DEFINITIONS
w_temp EQU 0x71 ; variable used for context saving
status_temp EQU 0x72 ; variable used for context saving
pclath_temp EQU 0x73 ; variable used for context saving

ADCH0 EQU B'00000001' ;setup ch 0, Vdd for Vref, and left justified result
ADCH1 EQU B'00000101' ;set to Ch1 same settings as above
ADCH2 EQU B'00001001' ;set to Ch2 same settings as above
ADCH3 EQU B'00001101' ;set to Ch3 same settings as above
COUNTER EQU 0x60 ;counter variable
TXPREBUF EQU 0x61 ;A buffer for the serial transmit buffer (a prebuf)
OCTTOVERT EQU 0x20 ;stores the a/d value when it's being converted to
octal

;**
 ORG 0x0 ; processor reset vector
 goto main ; go to beginning of program

main

;***
;Setup For 9600 bps tx serial interface
;***
 bsf STATUS, RP0 ;bank 1
 movlw B'00111111' ;setup RC0-5 as inputs for serial i/o and A/D
 movwf TRISC
 bcf STATUS, RP0 ;bank 0
 bsf RCSTA, SPEN ;serial port enable
 bsf BAUDCTL, BRG16 ;use 16 bit baudrate generator
 bcf TXSTA, BRGH ;use low baudrate speed
 movlw d'25'
 movwf SPBRG ;setup baudrate generator
 bcf TXSTA, SYNC ;asynchronous serial i/o
 bsf TXSTA, TXEN ;enable transmission

;***
;Setup A/D converter
;***
 bsf STATUS, RP0 ;bank 1
 movlw B'00011111' ;Setup all of port A as inputs for A/D
 movwf TRISA
 movlw 0xFF
 movwf ANSEL ;Enable all available Analog channels
 movlw B'01010000'
 movwf ADCON1 ;Set 4uS conversion time w/ 4MHz internal clk
 bcf STATUS, RP0 ;bank 0
 movlw ADCH0
 movwf ADCON0 ;AD: right justified result, ch 0, VDD ref. voltage
 call WaitForAD

;***

 9

;Setup Timer1 for 1/10 second wait period
;***
 movlw B'00110001'
 movwf T1CON ;load timer1 config register

GoAgain:
 movlw 0x01 ;set to max for approx 1 sec delay
 movwf TMR1L
 movlw 0x00
 movwf TMR1H
 ;bsf T1CON, TMR1ON ;start timer
 bcf PIR1, TMR1IF ;clear overflow flag

;This is the delay between sample periods from the analog inputs
Wait:
 btfss PIR1, TMR1IF ;check if timer has overflowed
 goto Wait

 call GetADValues

; loop through 4 values here and print them out
 movlw 0x4 ;loop 4 times
 movwf COUNTER
 movlw 0x21 ;point to first a/d value
 movwf FSR ;data pointer

 OutLoop:
 movf INDF, W ;getting indirect data
 movwf OCTTOVERT ;store a/d value we need to convert

 call TO_OCTAL ;convert currently selected A/D Channel to octal

 movf 0x30, W ;output all bytes
 movwf TXPREBUF
 call SENDBYTE

 movf 0x31, W
 movwf TXPREBUF
 call SENDBYTE

 movf 0x32, W
 movwf TXPREBUF
 call SENDBYTE

 movlw ',' ;do checking on this one to see if we're at the last byte
 movwf TXPREBUF
 call SENDBYTE

 incf FSR ;goto next a/d value
 decfsz COUNTER ;is counter zero yet? if so skip goto
 goto OutLoop
; end of above loop

 movlw 0x0A ;Line Feed (newline, hopefully)
 movwf TXPREBUF
 call SENDBYTE

 ;movlw 0x0D ;carridge return
 ;movwf TXPREBUF
 ;call SENDBYTE

 goto GoAgain ;Reset the timer for another go around

;***
;Subroutines
;***

WaitForAD: ;wait 44us to init, 176 instruction cycles
 movlw D'176' ;really only need 1/2 this many cycles due to test and set
 movwf COUNTER

 10

FourFourWait:
 decf COUNTER
 bnz FourFourWait ;keep decrementing until we reach 0

 return

;get a/d values for 4 ch
GetADValues:
 movlw 0x21 ;start of free ram
 movwf FSR ;setup indirect addressing register

 movlw ADCH0 ;goto channel 0
 movwf ADCON0
 bsf ADCON0, GO ;start conversion
 btfsc ADCON0, GO ;conversion done?
 goto $-1 ;keep looping
 movf ADRESH, W ;get high byte into acc W
 movwf INDF ;store adresh to 21h
 incf FSR ;move ptr to 22h

 call WaitForAD

 movlw ADCH1 ;goto channel 1
 movwf ADCON0
 bsf ADCON0, GO ;start conversion
 btfsc ADCON0, GO ;conversion done?
 goto $-1 ;keep looping
 movf ADRESH, W ;get high byte into acc W
 movwf INDF ;store adresh to 22h
 incf FSR ;move ptr to 23h

 call WaitForAD

 movlw ADCH2 ;goto channel 2
 movwf ADCON0
 bsf ADCON0, GO ;start conversion
 btfsc ADCON0, GO ;conversion done?
 goto $-1 ;keep looping
 movf ADRESH, W ;get high byte into acc W
 movwf INDF ;store adresh to 23h
 incf FSR ;move ptr to 24h

 call WaitForAD

 movlw ADCH3 ;goto channel 3
 movwf ADCON0
 bsf ADCON0, GO ;start conversion
 btfsc ADCON0, GO ;conversion done?
 goto $-1 ;keep looping
 movf ADRESH, W ;get high byte into acc W
 movwf INDF ;store adresh to 24h

 return

;convert to 3 octal bytes in ASCII
;stores bytes in 0x30 to 0x32, w/ lsb in 0x32 msb in 0x30
;input value stored in 0x20, ie OCTTOVERT
TO_OCTAL:
 clrc ;clear carry
 movlw B'00000111' ;bit mask field
 andwf OCTTOVERT, W ;and with ADRESH
 addlw 0x30 ;make this into an ASCII number
 movwf 0x32 ;store result away
;octal byte 2
 movlw B'00111000' ;bit mask field
 andwf OCTTOVERT, W ;get 2nd set of 3 bits
 movwf 0x31 ;place back into file
 rrf 0x31 ;rotate to LSB, need 3x
 rrf 0x31
 rrf 0x31

 11

 movf 0x31, W ;now get it back
 addlw 0x30 ;and add 30h to make a ascii number
 movwf 0x31 ;store again
;octal byte 3
 clrc ;clear carry
 movlw B'11000000' ;bit mask field
 andwf OCTTOVERT, W ;get last 2 bits
 movwf 0x30
 rrf 0x30
 rrf 0x30
 rrf 0x30
 rrf 0x30
 rrf 0x30
 rrf 0x30
 ;btfsc 0x21, 0 ;check the LSB value from the last byte
 ;bsf 0x31, 2
 movf 0x30, W ;get value back
 addlw 0x30 ;convert to ASCII
 movwf 0x30 ;store it

 return

;transmit data on serial port
SENDBYTE:
 btfss TXSTA, TRMT ;check tx buffer ready bit
 goto SENDBYTE ;try again, keep polling

 movf TXPREBUF, W ;get data from pre-buffer
 movwf TXREG ;move data to tx register and start transmission

 return

 ORG 0x2100 ; data EEPROM location
 DE 1,2,3,4 ; define first four EEPROM locations as 1, 2, 3, and 4

 END ; directive 'end of program'

	PIC Microcontroller Data Acquisition System
	Introduction
	Implementation options
	Figure 1, data acquisition system using 8052 board
	Figure 2, PIC processor based data acquisition system

	PIC selection and setup
	Microcontroller Firmware
	Figure 3, A block diagram of the PIC’s firmware

	Hardware
	Figure 4, the digital section of the data acquisition system
	Figure 5, analog interface section of the data acquisition system

	The physical hardware is shown in photo 1. Two LM35 temperature sensors are attached via twisted cable, enabling them to be clamped onto heatsinks to measure power supply temperatures. A set of binding posts is provided for voltage measurement and cu...
	Results
	Figure 6, an unregulated power supply loaded with various power resistors

	Conclusions and Future Work

