Periodic Structures EE625
Periodic Structures and Floquet’s Theorem

e Periodic Structures
O Repeated geometry, defined by a “unit
cell” and a uniform periodic spacing
e Applications
o Periodic Array antennas
o High-impedance surfaces

o Frequency Selective Surfaces (FSS)
0 Meta-Materials

= Artificial Materials

» |eft-handed materials

= Chiral materials

» Frequency selective material behavior
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Periodic Structures

1D Periodic Surface

e Consider a 1D periodic surface (in x)
o Structure is infinite in +x and periodic

o Period d o
o Letu(x) represent a field reacting withthe + 1 1+ 1 1 |
periodic surface X oxtd  x+2d  x+3d  x+4d

o0 Geometric periodicity forces the field to be periodic
u(x+d)=Cu(x)

u(x+2d)=Cu(x+d)
u(x+3d)=Cu(x+2d)

u(x+nd)=Cu(x+(n-21)d)
= C =acomplex constant
0 More generally:

u(x+nd)=C"u(x)

o For boundedness, [C|<1
o Ingeneral: C=e"" k=complex constant
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Periodic Structures EE625
Periodic Function

e We can define a periodic function P(x), where
P(x)=e"u(x)
e Consequently
P(x+d)=e*®Dy(x+d)=e**Cu(x)=e e (e*)u(x)
=e u(x)=P(x)
o Similarly:
P(x+nd)=P(x)
o P(x) IS a periodic function in x, with period d
o P(x) has the same period as the geometry
o Note that the periodic phase shift and attenuation is normalized out in P(x).
o Since P(x) is periodic in x, we can express it via a Fourier Series
expansion:

o0 JZiZ'I’]X

P(x)= > p,e °
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.2xzn

P(x) = anedx

o Substituting: P(x)=e"u(x), then
o0 27rnX

Z pnejkx
)= 2. P,

n=—

8

8

0 where
k ks 27zn
o This represents a harmonic expansion of the field u(x).
o Each term represents a spatial Floguet Harmonic
= Infinite series
= All terms propagate along the periodic axis (forward and backward
waves)

o Based on Floquet’s theorem, any planar periodic function can be expanded
as an infinite superposition of Floquet harmonics. Here it is presented for a
1D periodic structure. It can be easily generalized to higher dimensions
with more complex periodicities.
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1D Periodic Strip Grating

) E;nc

A

d

e Consider a TMz polarized plane wave incident on a co-planar periodic grating of
metallic strips. The strips have a width w. The grating has a period d.
e Incident Electric field:

E;nc (X, y) _ ejﬁ.r _ ejko(xcos¢ +ysing )

0 ¢™ = the angle of the wave off the x-axis.

e Following Floquet’s theorem, we can express the incident plane wave as a
periodic function ind

E;nc (X +d, y) _ ejko((x+d)cos¢ +ysin¢i”°) _ ejkod cos¢‘”°ejk0(xcos¢ +ysin¢i”°)

_ E;nc (X, y)ejkod cos g
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e Therefore, the complex constant C = e
o and

k =k, cosg™

e Our objective is to compute the field scattered by the periodic strip grating.
o Pose the scattered field as a function of Floquet Harmonics:

0

Ezscat (X, y) _ Z an (y)ejkxnx

N=—o0

o Each harmonic must satisfy the wave equation
o The sum of harmonics is subject to the boundary conditions on the metallic

strip surfaces E;* (x,0) =0

nd<x<nd+w
= Off the PEC surface, E, and H, are continuous
0 The coefficient of each harmonic is a function if y due to the boundary
conditionaty = 0.
0 The coefficients are independent of z since the source and the geometry are
Independent of z.
e The scattered field must satisfy the wave equation:
2 2
VZES™ +kZES™ =0, [;XZ + ;2 + k(fj EX* =0
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e Therefore, we expect a, (y) to be of the form:

a,(y)=ce™, {9 y>0(+) y<0}
e Plugging this into the wave equation:
2 2 .
62 + 9 +k2 [c e M nletr =0
ox> oy’
(kg —K? —kZ )=0

k, =1k k2

e This is referred to as the dispersion relationship.
e Therefore,

k
Escat X, y Z C e Ky, X e Jyn|Y|

e Thus, the scattered field is expanded via a plane wave expansion of upward and
downward traveling waves.
e The coefficients ¢ are yet to be determined.
0 These represent the complex amplitudes of each harmonic, are will be based
on the boundary conditions on the strip surface
o We will determine these coefficients via a method of moment procedure.
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e Note that the angular spectrum of the Floquet Harmonic expansion is
independent of the coefficients c, .

Recall that:

K =k + 2Ny cosgm + 27N
d d

Xn

2 inc 27zn i
kYn - kO - kOCOS¢ +T

e Since n varies from —oo to +o0, k, varies dramatically between —co and +co.

ek, KK
k, =1 ! !
N P R P

e Assuming k, isreal, then k, is defined by a finite set of purely propagating
modes, and an infinite set of evanescent modes.

Therefore,

Define:
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e Note that multiple propagating modes can be scattered off the periodic surface.
The angle of the propagating modes are defined as:

2
: n : n
k =k |cos¢g™ + . k. =k, |1-| cosgd™ +
a [ ? d//loj ¥ 0\/ [ 4 d/ﬁoj
K
s:tan—l Yn
¢ [kxnj

e Examples:
0 4™ =30°
d n Ky, Tko Ky Tko gt =tan™(k,, /K, )!
0.94, -1 -1.134 0.535j Evanescent
0 0.866 0.5 30°
1 2.866 2.686) Evanescent
0.53594, -1 -0.192 0.003354 179.8°
0 0.866 0.5 30°
1 2.7132 2.542] Evanescent

! The scattered angle is off the negative x-axis
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d n Ky, Tko Ky, TKs =tan”(k, /k, )

1.04, -2 -1.134 0.535j Evanescent

-1 -0.134 0.991 97.7°

0 0.866 0.5 30°

1 1.866 1.575] Evanescent
2.04, -4 -1.134 0.535 ] Evanescent

-3 -0.634 0.773 -129.3°

-2 -0.134 0.991 -97.7°

-1 0.366 0.931 68.6°

0 0.866 0.5 30°

1 1.366 -0.931 | Evanescent
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d=054 Y

o _ y
incident d =0.53594, o
Incident
m=20 m=0
\ “ V\ —
X
m=0 n_0 m=-1
d=104 Yy d=204, y
m=-1 Incident B .
m=-2 incident
m=-1 m=-3
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e Observations
o For very small cells (< 4,/2), only the specular

reflection (n = 0) will be non-evanescent.

0 As the unit cell size is increased, new propagating
modes will appear. These modes will begin
propagating along the +ve x-axis, and as frequency
Increase, will migrate towards the specular reflection.

= Note that ¢™ also impacts the frequency at which higher-order

harmonics will begin to propagate, and the reflection angle.
o0 The harmonics propagate off at discrete angles
= Practical application:
e Diffraction Grating
e Frequency selective surface
e Dichroic reflector antenna
o0 Evanescent modes are surface wave modes
= Propagate along the surface of the structure &
= Purely attenuate away from the surface N
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1D Periodic Green Function

e The total electric field must satisfy the boundary condition that E}* on the strip

surface = 0. |
o Can also be expressed that EX** = —E!™ on the strip surface

e EX* isrepresented by an infinite summation of Floquet harmonics.

0 We need to solve for the amplitudes of each harmonic to satisfy the
boundary condition.

o This can be done in the same way as performing a Fourier series expansion
of a function.

o The difficulty is the function is a rectangular pulse, which needs an infinite
number of harmonics to converge.

e An alternate approach is to derive a Green function for a 1D periodic line
source, and then pursue a method of moment solution using the EFIE.
o This is referred to as the periodic Green function (PGF).
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Periodic Green Function

= Consider an infinite 1D array of electric line sources that are illuminated by a
plane wave
o The line sources are effectively radiating a scattered field due the plane
wave illuminating the periodic structure.
o Floquet’s theorem states that all observables will have the same periodicity
as the structure, and have a cell-to-cell phase shift equal to that of the
source.

0 The phase shift will be k,d cos¢™™
= This leads to an array of infinite line sources, periodically placed with spacing

d, and with phase shift; /™ = giMedeos"™
= The periodic Green function (PGF) satisfies the wave equation:

V°G, +k,G, = —i 5(x—nd)e™

= \We can apply superposition and solve for one mode at a time:

ZH ( \/x nd) yz)ej“'”

4] =
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EFIE Solution for the Scattering by a 1D Periodic Strip Array

= Now, consider the scattering by a 1D periodic array of PEC strips co-planar in

the y = 0 plane.
= The EFIE is formulated as: / X
chat (X’ O) nd<x<nd+w - E;nc (X’ O) nd<x<nd+w
= where,
Escat JkoﬂoAz
A = _[JZ (x,y]x")dx’
0
G,(xy|x)= 4 2 H( )(ko\/(x—x’—nd)z +y* eV

» Note that the integration is only over 1 cell.

= This cell is referred to as the unit cell.

» The current from the unit cell is repeated by the PGF. Namely, the PGF
effectively radiates an infinite number of currents from all the periodic cells.
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Method of Moment Discretization

» The unit cell strip alone is discretized into N linear segments.
» The current density can be expanded using pulse basis functions over each
linear segment:

J~Za X: X, X.

LI |+1

0 Only the current over the unlt cell must be expanded
o0 The PGF effectively replicates each pulse basis function as an infinite
number that are periodically displaced
o The PGF also applies the correct phase shift to every periodically displaced
basis function.
= |t is sufficient to use delta test functions
o The test functions are located at the cell centers

T, =5(x—x‘;)
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= The EFIE becomes:

X

—EM(x° __ko770 P IR LI \/ ¢ v nd V02 |aivdy!
" (x) = . Zaij > Hj (ko (Xt =x'—nd)" +0 je dx

1=1 x; N=—o0
" Or,
E'”C( ) 0770 Za Z j H\ ( nd‘)ej”‘”dx'
» This leads to a linear system of equatlons
—|nc ZCZ
= where,

e (x)
0770 Zejnl/l J’ H (

N=—0o0

W = k ,d cosg

Joc

inc
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X] —x’—nd‘)dx’

= Observation:
o Every impedance element requires numerical integration and an infinite
summation
o The convergence of this series is extremely slow:

jim HZ (K, [x—x —nd[) ~ |2 g ke _ g L
Aim Hg (ko <= —nd]) \ 7k, |nld |

0 We need to accelerate the rate of convergence.
0 There are a number of methods to do this. We will look at one method
based on using the Spectral Periodic Green function
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Spectral Periodic Green Function

= Introduce the Fourier transform pair:
F(f(x))="f(k,)= j f (x)e **dx

F(F(k))=f(x =—j Jeldk,

= Next, consider again the infinite line source array:

o0

J,(x)=>_6(x—nd)e™

N=—o0

= We can perform the Fourier transform of J, (x):

J, (k)= j i 5(x—nd)e™e " dx

—00 N=—00

CD - -
_ Z e jnl//e— jk,nd

N=—00

= \We can prove that this is is equivalent to the Fourier series expansion:

25( _@_Zj Zejnz//e jk,nd

N=—0 N=—c0
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= Proof

T 0 T 0
J'2_7Z Z 5(kx B 27N _Kj jk,md _ J‘ Z ae iknd g j,md g
0 d N=-00 d d 0 N=—o
270
27 55 _ ;Zam
d d
a, =e'™

= Therefore,
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= Now, we can return to the spatial domain via the inverse Fourier transform:

r g ][ RS

k =—00 N=—o0

)

CL||—\ CL||—\

i

= Finally:

o0

J,(x)=> &(x—nd)e™ == _Z e’

N=—00

» Observations:
o The infinite summation of periodically displaced line sources is equal to an
infinite summation of current sheets.
o Note that:
= Each current sheet physically radiates from the y = 0 plane
= The effective wave number of the current sheets are the Floguet wave
numbers

= Each current sheet is linearly independent
» The field radiated by each current sheet is a plane wave!
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» Finding the radiated waves:
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» Finding the radiated waves:

» Boundary Condition:

—ie”‘*"xe Yy S0
H, = 2d
ie’kxnxe"kyny, y<0
. 2d
= From the dispersion relationship:
K, = kS —k?
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= Normal H can be found via Gauss’ law:

V-H =0
k -H =0
- + + kxn
k. H, Tk, H, =0 Hyn:ik H,

= We can also derive the Magnetic VVector Potential due to the plane wave:

H =VxA O XH. + yH
= X =X —n:X +
: A, 5 o . TYH,,
= Given, H, , H, from above:
AZ = — 1 ejkxnxe_jk)’n|y|
" J2dk,

» Finally, the periodic Green function is derived from the summation of all
harmonics of the vector potential:

k, X —jkyn|y|

0 eJ wa
Gp(X,y)I Z Jde
Yn

N=-—o0
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= Observations
o The spectral domain PGF is a series of Floquet harmonics!
o Each harmonic has an amplitude proportional to 1/k,

o Asymptotically, limk, =] %

27N 27N
el d e a
d7n
o Therefore, the series is converging as 1/n, rather than the spatial PGF,
which converges as 1/ Jn.
o Note, this is a dramatic improvement, however, it is still quite slow!
o Fortunately, the convergence can be accelerated
= This will happen naturally when convolving the PGF with the currents
= A number of techniques have been introduced to accelerate the

convergence even more.

olimG. =~

N>w Pn
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EFIE Solution for the Scattering by a 1D Periodic Strip Array —
Solution with the Spectral Green function

= \WWe can return to the MoM solution of the EFIE for the 1D strip array.

Y E;nc
» The EFIE is formulated as: w
scat _ __[Einc < >
EZ (X’O) nd<x<nd+w EZ (X’O) nd <x<nd+w r— _—
= where, r
Escat JkOUOAZ

A = sz G, (x,y|x")dx

o ol (X g

, e
S )= 2
Yn

N=—0o0
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= Again, we assume point basis functions and point test functions
* The EFIE becomes:

Ezinc( Jkonozaj. d Jde dx’

i=1 X n=
" Or,
_ Xi\q Wm x x)
Ezlnc(x) oﬂozaz J.
N=—o0 X;
= This leads to a linear system of equations:
—|nc Za
= where,
|nc E?nc( )
w X ka(x?—xj

B k0770 Fe ,
i Z:Oj .

» This integration can be computed analytically!

- [kxgij
_ tisinc —
7 _ kot Z 2 eJan(X?—Xf)

i od &~ k

Yn

Prof. S. Gedney

EE625

27/37



Periodic Structures EEG625

= Observation:
o The sinc function is effectively the Fourier-transform of the pulse basis
function.
o The result is effectively the product of the spectral PGF harmonic and the
Fourier harmonic of the pulse basis function
0 Due to the properties of the sinc function, the series now has an asymptotic

convergence of O(1/n?), which is much improved.
= What if we used a smoother basis how would this impact the
convergence?

o Due to the product in the spectral domain, the spectral response of the
current basis effectively filters the spectral Green function.

Prof. S. Gedney 28/37



Periodic Structures EEG625

Computing the Scattered Fields
» The method of moment solution is used to compute the unknown coefficients

of the current basis functions.
= Given the solution, we can approximate the currents, and consequently the

scattered field:

Xis1 oo - x ) _Jky |y|
scat __ 1 e " '
EZ - Jk0770 Jkonoza )_([ n;() J2dk
N Xis1 Jk, x = Jky. Y]
0770 jk X e n e n
= a. | €
2d nw[; | ;!I‘ } kyn

= where,

I ejkxnxdxr — gie_jkxnxicsinc(kxn f_zlj

X

= Therefore,

Ezscat Z |:_ 2do7k70 Zaf e—jkxnxi‘:sinc(kxn f_éj:|e ¥ X e Jkyn|Y|

N=—o0

ij .k .k||
_ jky X —Jky |y
=Y celme

N=—o0
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= The scattered electric field is thus expanded via a series of Floguet harmonics:

0
scat Ty X = iy, Y]
Ez = E C.t e
=—00

With amplitudes:

— kg, X
C, = 0770 Za smc(kXn %‘j

yn

And with:

2
inc n _ . inc n
k, =k (cos¢ d/xloj’ K, = ko\/ [cos¢ d/loj

Therefore, the scattered field are the Floguet harmonics expected, and c,

determine the amplitude of each mode.
Note that each mode carries real power away from the grating at the Floquet
angles determined by ¢"™ and d/ 4,

Evanescent modes have purely imaginary power along the y-direction
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Power Spectrum and Conservation of Power

Only propagating modes will carry power away from the plane of the strip - that
Is along the normal projection.

Compute the power density relative to the normal direction in the back scatter
region (y > 0) for propagating modes:

P> — ;R (EZnH:n):;Re[EZ (—1‘95“]}

o, oy

jky X —1] k —jke X+
:;Re(cne‘kxn c ’ky“y(ky“c:e Foa' gy yj] ey “ilsin(g,)

7T, 2 1,
where k, =k,sin(g,), and ¢, is the angle off the positive x-axis.

In the forward scattering region for n = 0 propagating modes:

szlRe(Ez Hj):lRe E, - _—1§E
Yn 2 n n 2 ay Zy

oot

1 Jhuy X iy, ky — Jky, X yn Y ‘C ‘
=R n J_In n
5 e[cne e (ko C e e j) 2 sm(¢ )

UL T
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= Note that the forward scattered power is negative, reflecting the power flow along
the negative y-direction. When n =0 the diffracted field (or transmitted field) is
actually a superposition of the incident wave and the Floquet mode:

1 N | 210 )
P =2Re(E;;HXp)=2Re{E;; -[.——E;;] j

Jou, oy
_1Re (c,+E )ejkixxe”kiyy- -, (c,+E,) g Hrg Ik :—l—‘COJFEO‘Z sin(¢i)
2 v Kolo 2 7,

= To understand this, consider the case where the periodic structure reduces to a
plane. Both the reflected and the transmitted Floguet harmonics have an amplitude
of -1. However, the transmitted field is a superposition of the Floquet mode and
the incident field and consequently has an amplitude of 0.

= The incident power is simply

pi — % Re( i i ) _ —%‘i
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= A power check simply requires that the sum of the powers carried in the Floquet

modes should sum to the incident power. Or, more appropriately:
P

P
Z Py:: B Z Py:
n=—R _ n=-—R :1
Pyll’]C
where B, and P, reflect the bounds of the propagating modes, and the minus sign
accounts for the direction of power flow.
e Note that since PyinC IS negative, we the quotient above will be positive

Note that a power check is a necessary, but not sufficient condition, that the
solution is correct.

We can also define the normalized powers of each mode:
f b

51— P

Yn Pi ! Yn Pi

y y

Then, for power conservation:

B —
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Examples
y E;nc
KR a
< X

d
d=0.84, w=041, ¢™ =30°

50 segments (way over sampled!)
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Refraction angles (off —ve x-axis):

¢, =30°
¢, =—67.42°
oo m=0 Ez-inc i
Floguet Amplitudes: m=-|
e, =0.14511-0.2285]
e, =—0.79076+0.18673 j 0
Powers: ]
P, =—6.63605x10~" W/m* sk m=0 |
P, =8.66667x10" W/m’
P, =-8.66667x10" W/m’ l , |

P, =4.38091x10" W/m? x
P, =-5.21917x10" W/m*

P P _
Power check: [Z Py; - Z Pyt:]]/ P," =1.00002

n=— Pl n:—F:’L
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