DAG Graph for IoT performance evaluation: Task
Partitioning and Co-design Methodology

15t Radia Bendimerad

2" Kamel Smiri

3 AbderrazekJemai

E.Polytechnique, Lab SERCOM, Marsa E.Polytechnique, Lab SERCOM, Marsa E.Polytechnique, Labo SERCOM, Marsa

Tunis, Tunisie
radia.bendimerad @fst.utm.tn

Abstract—IoT systems are getting more complex with the
exponential growth of embedded applications which reduces
their robustness and compromises the quality of service. Some
solutions based on performance estimation have been proposed
to overcome this problem. However they are manually processed
and limited such as complex heuristics and random process. One
solution is to implement an automatic scheduling approach that
meets the constraints of application and making compromise
between the needs imposed by it and the offers proposed
by the target IoT in order to obtain gains in term of total
equitable distribution of workload over the various resources
available in the system, reduce processing time and achieve
performance satisfaction for a multiprocessing IoT system.
In this paper, we propose an original methodology which
deals with both Task Partitioning and CO-design Methodology
that we called (TPCOM) that allows a good scheduling from
a SDF (Synchronous Data Flow) graph of the application.
An experiment study on the MJPEG reference application is
conducted in order to illustrate the effectiveness of our approach.

Index Terms—Internet of things (IoT), Codesign, Synchronous
data flow (SDF), Directed acyclic graph (DAG), Performance.

I. INTRODUCTION

Nowadays, the Internet of Things has became more and
more useful, it improves several characteristics by defining
variant applications in different fields. Also, it encourages the
intensive use of heterogenous devices containing multiproces-
sors system on chip (MPSoCs) that enable the integration of
multiple microprocessors and allow a good treatment capacity,
they have been recognized as the most powerful and interesting
embedded systems technology for the development of the
Internet of Things as described in [1] [2]. This provides expo-
nential growth of acquired/transmitted data raises bandwidth
and latency issues as well as sufficient time data monitoring.
For applications requiring real-time data processing, such as
video surveillance, it encounters the following problems:

o The multiple constraints and QoS requirements of users

(application execution time).

o The heterogeneity of the components available to the
system (components with different resources and linked
by heterogeneous technologies of different capacities).

o The transfer of large volumes of data (resources may be
geographically distant from each other, which can cause

Tunis, Tunisie
smiri_kamel @yahoo.fr

Tunis, Tunisie
abderrazekjemai@yahoo.co.uk

problems for devices that have a large amount of data for
limited storage space).

The solution expected in the perspective to ensure the proper
running of applications and therefore the system performance
is based on task partitioning methods as in [3]. and can be sum-
marized in the optimization of the execution time. For this end,
many previous research has focused on the hardware and soft-
ware co-design, where the two parts design are jointly linked
as well as the partitioning and scheduling application tasks
as notified in [4][5]. In [6], they propose an optimization of
the hardware/software partitioning of very low-power wireless
receiver digital signal processing operators (parts of the DSP
chain of the transceiver), defined by software, designed for IoT
applications using an open-source 32-bit RISC-V. Reference
[7] aimed to enable their heterogeneous IoT system, consisting
on processor and reconfigurable hardware, transmitter-receiver,
to achieve high data rates with low power consumption. The
approach consists in creating Simulink model variants for the
transmitter and receiver: Rx (receiver) which each implement
a different number of functional blocks in HW and SW
where data is moved manually from the Software part to
the Hardware part. For each processing chain receiver (Rx)
and Transceiver (Tx), the HW-SW Co-design is explored by
creating a number of variants Tansceiver. Also, as defined in
[8] the use of different manual configurations to finally select
the best one in order to optimize a flexible hardware/software
co-design for the implementation of a gateway at the Edge
of the network, for simultaneous compression and encryption
with DCT method plus spectral filtering of images on a Zynq
platform in the context of IoMT (Internet of Multimedia
Things).

Most of the existing work in IoT systems that we briefly review
here provides solutions for manual HW/SW partitioning based
on the system. Also, the problem of partitioning and schedul-
ing tasks in an application has been the subject of several
studies on multiprocessor systems but has not been studied in
detail other systems such as IoT (Internet of things). So that,
the proposed contributions of this paper are listed as follows:

1) Modeling the application and target platform via SDF
graphs as explained in[10]

2) Transform the SDF graph into DAG (directed acyclic
graph).

3) Propose labeling and Classification of tasks into two
groups for pure SW scheduling and SW/HW scheduling.

4) Identify the priority between tasks in the graph.

5) Distribute tasks over available resources under several
execution constraints.

6) Check the constraints at each partitioning and update
the storage space allocations.

The Table I prensents a synthesis of previous works belonged
to our field. We take some references that we introduced in the
state of art. The synthesis is based on the following elements:

« target architecture: IoT or MPSoC.

o data volume.

In this work, we introduce a new task partitioning approach
called TPCOM (task partioning and co-design mothodology)
for scheduling in SDF graph-based IoTs using the modeling,
co-design and partitioning techniques in order to have an
automatic configuration and processing of data in real time.
We experiment this approach to test, validate results and
demonstrate the effectiveness and robustness of our strategy
in term of execution time and better system performance.
The remainder of this paper is organized as follows: Section
II surveys problematic formalization and nominates solution.
Section IIT discusses the contribution overview and proposed
strategy. Section IV considers a case study with obtained gains.
Section V concludes with a discussion of future works.

II. FORMALIZATION OF APPROACH

In this section, we describe what is the Internet of things by
modeling formally all its constituents : the hardware architec-
ture supporting the execution with its different components and
the application with its constraints, in addition to introducing
some concepts such as application techniques modelling in
order to better understand our methodology. The Internet
of things is, as its name implies, a set of heterogeneous
objects communicating through the Internet via guidelines,
protocols and standards that simplify the implementation of
IoT applications as shown in [11]. Fig. 1 illustrates an example
of the IoT system with different components.

An IoT system is a combination of a hardware platform and
a software application.

A. Hardware architecture

Our IoT system includes a set of electrical components
that we call board with B = {B1,...,Bm} such as SoC
(Sytem On Chip) connected to each other via communication
networks. A communication C is annotated by Cn which
designs the bandwidth and whose rate differs between each
pair of Board. We assume that devices are heterogenous i.e
the components are grouped into categories. Each category

o7 Devices

L

Daetl | (Decemt) - | Devien |

Envirornent Sensars

I

¥ Actuators

A J
Mobile Agp Intemet

Fig. 1. Transformation of SDF graph into a DAG

has its own characteristics such as execution time, processor
behaviour : in fact, some processors of our components
system are composed of software behaviour only and others
composed of software and hardware behaviour which means
that there is Hardware tasks and they are generally provided
as IPs (Intellectual Property) written in a hardware description
language (e.g., VHDL, verilog) and implemented by FPGAs.
The proposed methodology remains valid with homogenous
components too.

B. Application

The application is a set of tasks to be executed and
modeled by Synchronous Data Flow (SDF) graphs used to
design simultaneous multimedia applications implemented on
multiprocessor-on-chip systems as noticed in [12]. A common
way to schedule SDF graphics tasks on multiple processors
is to first convert the SDF graph into a directed acyclic
precedence graph called DAG as in [13]

1) Synchronous Data Flow (SDF): SDF is a graph with
actors as vertices and channels as arcs. Actors represent the
basic parts of an application that must be executed. Channels
represent the data dependencies between actors. The execution
of an actor is designed by an actor who fires tokens[4].
The SDF can be classified into main categories, among
which we mention the one that we are using in this work
: HSDF (homogeneous SDF) is an SDF where each actor
produces and consumes exactly one token as indicated in [14].
Gs(V, E, E,p, c) represent the SDF graph where each of these
parameters is explained below:

o V is the set of tasks noted by the nodes in the graph.

o E is the set of arcs that connect the nodes. They deter-

mine the dependencies between tasks.

« p(e) is the number of data tokens produced by the source

node of arc e.
e c¢(e) is the number of data tokens consumed by the
destination node of arc e.

2) Directed Acyclic Graph (DAG): An oriented graph is a
graph in which each pair of nodes is connected by a directed
arc. each actor consumes and produces a single data token. It
can be represented by a notation Gp(V, E) where :

TABLE I
SYNTHESIS TABLE

data volume | Processors number FPGA Processors size | Co-design performance | Communication
[6] IoT Not mentioned Not mentioned Yes Lack of model Not mentioned
[7] IoT Not mentioned Not mentioned Yes Lack of model Not mentioned
[8] IoT No Yes No Lack of model Yes
9] IoT No Not mentioned No Lack of model Yes
[18] TIoT Yes Yes Yes Lack of model No

o V is a set of nodes representing the processes

e« F is a set of directed arcs connecting the nodes. They
describe a dependency relationship, i.e. a node connected
to its predecessor cannot run unless the parent process is
completed.

In the aim of transforming the SDF into a DAG graph we
need :

o The topological matrix: which stores the information of
each arc in the synchronous data flow graph : is the
size matrix, where each row corresponds to an arc (e) in
the SDF graph and each column corresponds to a node
(v).The values on each arc indicate the tokens produced
and consumed by each vertex or node i on arc j as in
[15].

« The BVR (Basic Vector Repetition) repetition vector:
number of copies for an actor (node) to be scheduled
for each iteration. as in [16].

C. Objective function

is to optimize the overall execution time generated by the
allocation of available resources so that the value is minimal
while respecting functional and non-functional constraints and
taking into account:

o Software SW and Hardware HW execution time ET
of existant tasks, as in Equation (1).

ET = Hgr + Sgr (1)

where Hgr refers to HW execution time and Sgr refers
to SW execution time.

o Transfer time due to data exchanges between the
different electronic boards used during the assignment
of DAG tasks or data exchanges between the SW and
HW parts. The transfer time TT(B(t;), B(t;)) is given
by the following equation reported in [17], as defined in
Equation (2).

datali, j|

TT(B(t:), B(t;)) = C[B(t), B(t;)]

(2)
where datali, j] refers to the amount of data to be
transfered from ¢ to j and C is the bandwidth allowed

between two electronic boards B(t;) and B(t;) that
execute task ¢; and task ;.

As a result, the objective function is the sum of task execution
time and all transfers performed on the tasks executed as in
Equation (3).

min{ET(t;)} if TT=0

else (3)
min{ET(t;) + TT(B(t;), B(t;))}

F(ET) =

The goal of the current paper is to provide a solution that
places the tasks in the related devices under functionnal and
non functionnal constraints. Those must be considered by the
objective function :

o Functional constraints : whose source constraints are
directly related to the operation and behavior of the
application.

o Non functional constraints : where the sources of con-
straints are related to standardizations and hardware ar-
chitectures.

Problem : face to the platform of the 10T system considered
with its different boards, their software or software/harware
behaviour, arises the problem of resource allocation (determin-
ing the number of resources to be used to perform each task)
and task scheduling (determining the order in which tasks are
performed on each resource) of an application represented with
a SDF graph that is a NP-difficult problem. Therefore, most of
the proposed solutions are heuristics that produce good results.
However, they are more expensive in terms of execution time
and algorithmic complexity since they are not linear problem’s
resolution.

III. CONTRIBUTION OVERVIEW

In this section, we present an overview about the proposed
methodology based on two concepts : Task Partitioning and
CO-design Methodology (TPCOM). We first present the first
part of the methodolody then we show how the co-design
TPCOM improves the performance.

A. Task Partitioning:
It consists on three main phases.

1) Phase 1 (Application and hardware platform modelling)
: firstly, we represent of the IoT system and application
according to the SDF model [10].

2) Phase 2 (Transformation of SDF graph into a DAG) :
Directed Acyclic Graph DAG is very useful for schedul-
ing tasks in iterations without violating dependencies

between them because in a SDF, each actor is able
to produce and consume several data tokens, which

c) DAG

Fig. 2. Transformation of SDF graph into a DAG

makes this operation difficult. For transition from
SDF to DAG.The first step of transformation of
the SDF graph [15] is a conversion of the SDF
into an HSDF, for this purpose we associate to
the SDF graph the topology matrix from which
we construct the HSDF graph (positive value corre-
sponds to the number of child nodes, the negative
value corresponds to the arcs from the parent nodes.
The second step is the generation of the DAG by
removing redundant arcs as shown in [16]. The last
step is to ignore FIFOs with the initial tokens in the
SDF single rate graph.

39 Phase 3 (Ressource selection) : tasks at each level are
assigned to the available resources according to the
estimated time required to perform each task on each
available component.

The test performed on this method has given satisfying
results regarding the optimization of the execution time. How-
ever, we noticed a lack of exploitation of the resources. Indeed,
hardware accelerators that can further optimize execution time
were not used. This is why we expect better performance when
introducing co-design.

B. Task partitioning and Co-design Methodology TPCOM:

In this part, we keep the phases 1 and 2 of Task Partitionning
method, add three more phases after phase 2 and modify the
last phase which consists on resource selection. The goal of
our methodology is to achieve a good distribution of the ap-
plication tasks on the different resources available and within
these resources in order to obtain automatic scheduling and
optimal execution time, so that all the system requirements and
the design constraints are respected. To do this, we combine
the use of task parallelism with hardware execution to further
accelerate the process by applying loop-level partitioning. The
idea is to classify tasks into several groups. Tasks with loops
of high execution time require a hardware accelerator and
must run on the component with an FPGA part. Tasks whose
loops do not consume much time for execution do not require
a hardware accelerator and will therefore be performed in
the order of priority. All the phases of our methodology are
depicted in Figure 4.

In detail, the phases 3, 4, 5 and 6 are :

o Phase 3 (Controller unit): The SDF transformed into a
DAG will pass through the controller unit, the latter will
allow the classification of the different tasks into two
groups: the tasks requiring a hardware accelerator and
the second group which includes the rest of tasks. The
controller operation consists mainly on:

— Loop partitioning : divide the graph into several
distinct levels. The principle is to go through the
graph from top to bottom in order to have different
levels so that the tasks belonging to each level are
independent of each other but remain identical for
each level. Example for the graph in figure 3.b the
different levels are [; containing tasks t; are:

Iy ={t}

ly = {t215t22}

I3 = {ta1;ta2; ta3; taa}
ly = {tar; taz}

— Tasks classification : Split tasks into subtasks in order
to extract loops and profile candidate [20] from a
single node per level (nodes of the same level are
identical in the case of transformed SDF into DAG)
to identify and select those that increase the appli-
cation’s execution time. With this controller, we will
increase the occupancy time of IoT components via
hardware accelerators in order to deploy resources
more optimally. As a result we obtain two groups:

* Group 01: tasks performed on components incor-
porating hardware accelerators.
* Group 02: the rest of the tasks.

At the time of allocation, the priority of the com-
ponent selection is given to group 01 containing the
tasks requiring a hardware accelerator.
o Phase 4 (Labeled DAG) : Return to the original DAG and
label tasks according to their membership in one of the
two groups.

Step 01:

Application

[

1- Functional

-C1: SW execution
-C2: HVW execution
-C3: DSP
execution

Target application and loT sytem meodeling with SDF graph

constraints: x (nbr -
rps)

2- Non functional oy
constraints:

/

SDF

o

modeling

SDF graph

— —~
Transformation

SDF to DA
—

G
—=

Step 02: .sDFEgraph. S
- Topology matrix. T =
e = =
-Delete reundant. DAG graph T S T
edges.
-DAG graph. e @ @ @y
-~ T <<
<T41> (—raz)
Transform the SDF into DAG
1-Split DAG gra DAG graph
algorithm
2-Loop extraction -
3-Execution time o — @
estimation ontroller
4-Task - unit L
Step 03: classification: —_— 22 ‘:-vc;'?ll;
-C1: SW
execution -
-C2: HW o -
execution Classification
-C3: DSP
execution et [FeE S [FeR o7 [FeR S
Tl c1 cz2 c2
Split DAG, loop extraction and task classification
Task™s groups =
. ey
Step. 04 T oA
mes oac ,. @ D
labelling Py Pt
™~ — - _a” . _a” -
— g (1‘31 (Tsz) ws.> 1—34>
r: Grz. Grz Grz.
DAG graph e e
labeled il Car
New labeled
-Browse the DAC graph in DAG
depih.
-Calculate the length of all
possible paths in the graph from
the firse vertex.
-Select the longest path whose o — —
step 0s: | [CRIITL D RaTir i ~(Eeneration tasi:
selected path introduce the tasks | list
in the vrder described by the — _——
Aependency refarsonships. -
Diotere modes oI JE T | T2 TSa
from paths already traversed. RS cry Sz Sz tan
- Repeat the
operation until all nodes are Tasks-list oz | gz || 94
sclected = o
AR SR cra
Tasks-list generation
Tasks list
Step 6:
— P
— Scheduling tasks —
C based on board's D
~— execution time e
—_exec e
- Board 3 EEE R
Board 2 T21 [[T=21 Ta1 |
Scheduling [Boara 1 T Toz|| w2 |
diagram

Task scheduling scenarios

Fig. 3. TPCOM flow diagram

o Phase 5 (List scheduling and Task prioritization): In this
step, we again explore our labelled DAG and create lists
where we order the tasks of the labelled DAG. To do this,
we proposed a strategy consisting of the following steps:

— Browse the DAG graph in depth.
— Calculate the length of all possible paths in the graph

from the first vertex.
— Select the longest path whose nodes have at most

one parent: if a node is connected to two or more

parent nodes, this will cause confusion because it
must be checked that all predecessor nodes have been
selected as well.

Create FIFO lists for each selected path and in-
troduce the tasks in the order described by the
dependency relationships.

Delete nodes from paths already traversed.

Repeat the operation until all nodes are selected.

After exploring the entire graph, we obtain several lists,

each containing at least one labelled task.

« Phase 6 (Selection of adequate resources for tasks) : The
choice of resources is not random but consists in choosing
from the FIFO lists the one whose first task has the TEM
(minimum execution time) via an estimated matrix of the
execution time of the tasks on each available resource
by considering the labelling of the tasks, also via the
flow matrix in case of data transfer from one resource to
another.

The following algorithm 1 implements the described approach
by considering the objective function:

Algorithm 1: TPCOM algorithm

1 Model the SDF graph;

2 Transform the SDF into DAG;
3 Split the graph into levels;

4 for Level=1 To | do

5 consider one node only;
6 Split the task’s node into sub-tasks;
7 foreach SubTask do
8 Extract loops;
9 calculate the execution time;
10 if Time > x then
11 ‘ Node assignment to Grgy;
12 else
13 ‘ Node assignment to Gro1;
14 end
15 Label the DAG (Grg; or Grg»);
16 Transform the DAG in FIFO list for scheduling;
17 end
18 end
19 foreach Element € List do
20 Extract the element label;
21 if Grg; then
22 ‘ execute Hardware accelerator,
23 else
24 estimate the minimal execution;
25 if Blocked Component then
26 Transfert to another component using
equation (2);
27 else
28 ‘ execute;
29 end
30 end
31 end

32 forall tasks t; do

33 ‘ Assign task using equation (3);
34 end

35

IV. IMPLEMENTATION AND EXPERIMENTATION
A. Case study

The obtained results from the proposed strategy are illus-
trated by a case study that we prensent. We consider for our

IoT hardware architecture three different electrical boards and
the MJPEG application as follows:

1) Hardware IoT platform: We consider three heterogenous
boards, these boards are these components are of the type :
Xilinx, Arduino and Rasbperry Pi, as shown in the figure 4.

2) MJPEG application: The Motion-JPEG or MIPEG
decoder is a multimedia application whose components are
used in many image and video processing algorithms. It is a
video codec that compresses images one by one into JPEG.
The first functional block, DEMUX, sends the input flow
to the other blocks. VLD performs variable length Huffman
decoding. ZZ reorganizes the flow of coefficients. IQ performs
the reverse quantification. IDCT performs the inverse discrete
cosine transform. LIBU is not a JPEG operation, but it is
necessary to adapt the pixel stream to a given RAMDAC
device controller output.

In this paper, MJIPEG application that is shown in the figure
5 is choosen to evaluate our approach. It consists in finding
a solution for optimizing execution time while respecting the
constraints related to the application and those related to the
hardware architecture.

of 25
time of

o application constraint The constraint
frames/second decoding means that the
decoding of an image must be less than 40 ms.

o Hardware platform constraint : CPU number and capacity,
hardware accelerator presence or not.

3) Validation of TPCOM approach : After the application
and system are modeled in phase01 we illustrate the approach
in next phases.

o Phase 2 (Transform the SDF graph into a DAG) : The
second phase of our approach is the transformation of
the SDF model into a DAG model. Then it is a matter of
split the graph into levels, and extracting the set of loops
from the application. Since most nodes for the same level
are identical, it is sufficient to extract loops from a single
node. We then evaluate the execution time of each loop
according to which a controller will classify the tasks in
the corresponding group. The figure 6 shows the SDF
model transformation of MJPEG into a DAG and loop
extraction.

o Phase 3 (loops synthesis): The second column of Table II
shows the number of loops from which we profile the exe-
cution time. The third column shows the number of loops
that contribute more than 1% of the total execution time
of the program. The fourth column shows the percentage
contribution of these loops to the total execution time.
Among these loops we choose those whose execution
time is greater than x (with x is the umber of frames
per second or 25 fps), then we obtain two groups :

— Group 01: concerns tasks whose execution time is
greater than z.
— Group 02: the rest of the tasks.

Xillinx
Zynq

C=2.4
MB
C.,=6 MB C3=12
C=3 MB MB
Raspberr Ci=1.8 MB .
P ; Y e Arduino

Pi

Fig. 4. IoT architecture example

Continuous C afficients

> pPeM [
H i Decoded
4‘ I =i o
/' Alternatif frames

coefficient

N

Huffman Quantification
Table Table

Fig. 5. MJPEG decoder

We found that these loops with high execution time were
mainly concentrated in the IDCT task.

o Phase 4 (Labled DAG) : the old DAG is browsed to make
a label for ech task.

o Phase 5 (Task list priority) : From the classification
obtained previously, we start by building the labelled
graph in order to extract the task lists necessary for
scheduling. The figure 7 shows the labelled DAG and
the order of execution list of tasks.

o Phase 6 (Resource selection): for the selection of
resources, Table III is used to estimate the execution
time of tasks on each component, so for each task
not belonging to Group 01, we choose the component
according to the minimum execution time and its
availability. Taking into account the estimated execution
time and the DAG labelling, the obtained scheduling
diagram is presented in the figure 8:

B. Performance Evaluation

In this section our main objective is to evaluate our
experiences and their results. Indeed, our approach to the
performance analysis of IoT systems based on SDF graphs is
interesting because it allows us to take advantage of resources
in a more optimal way, taking into account the constraints
imposed by the application and the platform. In addition, this
approach gives more precise results in the execution time
calculated in relation to the simulation results since we have
exploited each of the components’ functionalities (SW for
components that have processors only or SW and HW for IoT
components that have the FPGA part) and dynamic scheduling
has allowed us to obtain a minimum execution time.

Level 0:

Level 1:

Level 2

Level 3;

Subtasks
example

MJPEG DAG divided on levels to extract subtasks

loop exiraction

Fig. 6. transformation of SDF into DAG and loop’s extraction

TABLE II
LOOP’S PROFILING

Loop | Loop * % | Total (%) 1%
MIJPEG encoder 165 14 65

V. CONCLUSION

In this work, we present a method for performance analysis
based on SDF graphs. It is a method for modeling, co-
design partitioning and scheduling the tasks of an application
within an [oT system called TPCOM methodology. Our new
approach thant contains our original contributions have been
presented in previous sections. This new approach is based on
6 steps:1) system specification and application modeling with
SDF graph, 2) transformation of the SDF graph to the DAG
graph, 3) classification tasks onto several groups, 4)labelling
the DAG 5) generation on task-list and 6) selection of a
scheduling scenario for the complete IoT system (application
and hardware architecture). With this technique we offer an
optimal use of the IoT components. We can determine at an
early stage for a given task the appropriate resource and when
it should migrate into the hardware. This technique allows
an improvement in the performance of the overall execution
time, as well as Software/Hardware partitioning and optimal
scheduling of tasks in IoTs, taking into account the constraints
described by the application and the target platform. An
experiment is done on the MJPEG decoder to illustrate the
effectiveness of our technique.

In this paper, we study the problem of task scheduling in

Demuy| VLD | 122
Grg Grg Gf;
VLD | 22 | 1 |jpcT|UBU
Iz Gry | Gry | Gry | Gr1 | Gry
sz
72 | 1
Gry | Gy
1zz
Gf;

a) labeled dag b) task-list scheduling

Fig. 7. Labeled DAG and task list scheduling

TABLE III
ESTIMATED TIME TO COMPLETE MJPEG TASKS (TIME IN SEC)

Zedboard | Raspberry Pi | Arduino
DEMUX Gro 1 2 4
VLD Gr2 15 10 16
177 Gro 9 7 5
1Q Gr2 2 5 4
IDCT Gr1 20 23 18
LIBU Gr2 3 5 6

the context of IoT systems in order to find a better schedul-
ing taking into account the resources and the constraints at
hardware and software levels.

However, our approach has some limitations that we will
try to improve in future work: - Graphical modeling of the
application via DAGs can become complex in the case of
massive data. - The degree of complexity of the applications
considered for our approach is of medium complexity. - Our
solution targets static order scheduling. As perspectives, we
plan to focus on problems that components may encounter as
failure problem. We also plane to improve our method and
extend it to intelligent and more complex IoT systems such as
smart buildings, smart grids...etc.

REFERENCES

[1] F. Samie, L. Bauer, and J. Henkel, ” IoT technologies for embedded
computing: a survey” IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, New York, NY,
USA, Article No. 8, October 2016.

Arduino grzz L{I3B.—2L|
= VLD IZZ L]
RaspberryPi Gry Gra Grp
Demux VLD 12z 1IDCT IDCT

ZEDBOARD Gra Gry | Gra Gr1 | Gr1 |
—
Execution
time (sec)

Fig. 8. scheduling diagram

(2]

(3]

(4]

(5]

[6

—_

(71

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

(18]

[19]

P. D. Rosero-MontalvoEmail, V. F. Lépez, B. A. RoseroEdgar, D.
JaramilloJorge, A. Caraguay, J. Pijal-RojasD, and H. Peluffo-Ordéiiez.
”I’Intelligence in Embedded Systems: Overview and Applications” Vol-
ume 1. Intelligence in Embedded Systems, 2019.

R. Zaman Khan, J. Ali. "Task Partitioning Strategy with Minimum Time
(TPSMT) in Distributed Parallel Computing Environment”. International
Journal of Application or Innovation in Engineering and Management
(IJAIEM), 2013.

M. Ammar, G. Russello, B. Crispoa. ”Internet of Things: A survey on
the security of IoT frameworks”. Journal of Information Security and
Applications. Vol. 38, pp. 8-27, 2017.

R. Kramer, R. Gupta, and M.L. Soffa. ”The combining DAG: a technique
for parallel data flow analysis”. IEEE Transactions on Parallel and
Distributed Systems (TPDS). Vol. 5, Issue. 8 , 1994.

H. Belhadj Amor, and C. Bernier. ”Software-Hardware Co-Design of
Multi-Standard Digital Baseband Processor for IoT”. Design, Automa-
tion and Test in Europe Conference, and Exhibition. IEEE, Florence,
May 2019.

B. Drozdenko, M. Zimmermann, T. Dao, K. Chowdhury, and M.
Leeser. "Hardware-Software Codesign of Wireless Transceivers on Zynq
Heterogeneous Systems”. IEEE. Vol. 6, January 2017.

Mabher Jridi, T. C. ”SoC-Based Edge Computing Gateway in the Context
of the Internet of Multimedia Things: Experimental Platform”. Low-
Power Electronic Circuits for Monolithic Smart Wireless Sensors. Vol.
8, 2018.

T. Adegbija, A. Rogacs, C. Patel, and G. Ross. "Microprocessor Opti-
mizations for the Internet of Things: A Survey”. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. vol. 37, pp
7-20, 2018.

K. SMIRI, and A. Jemai. "NoC-MPSoC Performance Estimation with
Synchronous Data Flow (SDF) Graphs”. Autonomous and Intelligent
Systems. vol. 6752, pp 406-415, 2011.

A. Al-Fuqaha, M. Guizani and M.Mohammadi. "Internet of Things: A
Survey on Enabling Technologies, Protocols, and Applications”. IEEE.
vol. 17, pp. 2347 - 2376, 2015.

A.H. Ghamarian, M. G., Basten, T., Theelen, B., Mousavi, M., and S.
Stuijk. “Liveness and Boundedness of Synchronous Data Flow Graphs”.
IEEE, 2006

R. Tariq, F. Aadil and Muhammad.F.M. "Directed Acyclic Graph Based
Task Scheduling Algorithm for Heterogeneous Systems”. Proceedings
of SAI Intelligent Systems, vol. 869, pp 936-947, 2018.

K. Desnos, M. Pelcat, JE. Nezan, S Aridhi. Memory Analysis and
Optimized Allocation of Dataflow Applications on Shared-Memory
MPSoCs. Journal of Signal Processing Systems. vol. 80, pp 19-37, 2014.
Pullaguntla, R. Krishna. ROTATION SCHEDULING ON SYN-
CHRONOUS DATA FLOW GRAPHS, 2008.

D Li, J Wu. Energy-Aware Scheduling for Acyclic Synchronous Data
Flows on multiprocessors. Interconnection Networks. vol. 14, 2014.
Kahina Bessai, and F. Charoy. Business Process Tasks-Assignment and
Resource Allocation in Crowdsourcing Context. IEEE . 2016.

DG Costa, C Duran-Faundez. Open-Source Electronics Platforms as
Enabling Technologies for Smart Cities: Recent Developments and
Perspectives. electronics. vol.7, 2018.

I Ghribi, RB Abdallah, M Khalgui. R-Codesign: Codesign
MethodologyforReal-Time Reconfigurable Embedded Systems Under
Energy Constraints, IEEE, 2018.

