750 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 4, APRIL 2012

the VPP pad current (Ivpp) are therefore smaller than 1 A before two
kinds of stresses. Table III illustrates ESD testing results of two IC
pin combinations, VPP-VDD and VPP-VSS. ESD currents flow from
the VPP pad to the VDD or VSS pad (VDD and VSS in 0 V), respec-
tively. ESD testing results show this test-chip can pass human body
mode (HBM) in 2.5 kV and machine mode (MM) in 250 V without
OTP memory false-programmed issues. Finally, Table IV shows that
there are no falsely-programmed events under latch-up overstress
conditions. Regardless of whether there are positive/negative current
stresses (+IT/ — IT) 200 mA or positive voltage stress (+VT) 8.25
V, this test-chip can successfully pass the latch-up testing criteria [15],
and its power and VPP pad currents can be kept smaller than 0.2 pA.

VI. CONCLUSION

After silicon data verification, this new circuit architecture has been
proven to provide power-switch functions in one I/O pad very well.
Both functions of programming the OTP memory and processing the
I/0 signal can work well. Circuit designers can adopt this scheme to
save one bonding pad. Furthermore, the functionalities of ESD protec-
tion and latch-up prevention for the IC product can also be approached.

This architecture can be applied for all technologies, and a similar
architecture has also been proved in the micro-electro-mechanical-sys-
tems product processed in 0.18 pm.
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Analog Implementation of a Novel
Resistive-Type Sigmoidal Neuron

Golnar Khodabandehloo, Mitra Mirhassani, and Majid Ahmadi

Abstract—An important part of any hardware implementation of artifi-
cial neural networks (ANNS) is realization of the activation function which
serves as the output stage of each layer. In this work, a new NMOS/PMOS
design is proposed for realizing the sigmoid function as the activation func-
tion. Transistors in the proposed neuron are biased using only one biasing
voltage. By operating in both triode and saturation regions, the proposed
neuron can provide an accurate approximation of the sigmoid function.
The neuron circuit is designed and laid out in 90-nm CMOS technology.
The proposed neuron can be potentially used in implementation of both
analog and hybrid ANNs.

Index Terms—Activation function, analog neuron, sigmoid function, sig-
moidal neuron.

I. INTRODUCTION

Artificial neural networks (ANNs) are used in a wide range of ap-
plications from signal processing systems to miscellaneous control de-
vices [1]-[5]. Realization of activation function of neurons is one of
the major challenges in hardware implementation of ANNs.

Both digital and analog modules can be used to realize the acti-
vation function in hardware implementations depending on the type
of the neural network. Neural networks can be generally categorized
into three groups: digital, analog, and hybrid (mixed-signal) neural
networks.

In digital neural networks, both synaptic weight storage cells and
activation function are realized by digital gates such as lookup tables
(LUTs) which are generally used to approximate the activation function
[6]-[8]. In analog neural networks, on the other hand, analog circuits
are used both to estimate the activation function and to store the syn-
optic weights [1], [9]-[11].

The third group of neural networks are hybrid neural networks
(HNNs) which are a combination of digital and analog gates [4],
[51, [12]-[20]. In HNNSs, analog circuits are employed to realize the
activation function while weights are stored digitally.

Area and power consumption of analog activation functions are gen-
erally less than that of digital implementations [11], [17]-[19]. How-
ever, analog circuits are more vulnerable to mismatch and process vi-
olations. In addition, digital implementation usually results in a better
estimation of the ideal activation function. Consequently, it is impor-
tant to make analog implementation of neurons more accurate to profit
from both an area/power efficient design and an appropriate realization
at the same time.

Activation function produces the output of each layer in the feed for-
ward neural networks according to the value of its input. Several activa-
tion functions are generally used such as step function, tangent hyper-
bolic and sigmoid function. The last two ones are nonlinear functions
which generate an S shaped curve. In this work, the sigmoid function
is realized with an output between 0 and 1.
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For many years, transistor characteristics in different operating re-
gions (triode and saturation) has been used for function realization in
analog implementations [9], [21]. A previously reported neuron em-
ploys the transistor square law in saturation region to generate the sig-
moid function [4], [5], [15]-[17]. This neuron is a resistive-type neuron
as it has a current input/voltage output characteristic. However, transis-
tors are working only in off or saturation regions. Transistors jumping
from one region to the other one introduces noise spikes to the power
line. In addition, all the transistors are off for a certain range of inputs
which makes the output unreliable for that range.

In this paper, a new resistive-type neuron is designed which gen-
erates the sigmoid function based on the transistor characteristics in
both triode and saturation regions; consequently, it approximates the
sigmoid function smoother and with more precision compared to the
previous design. Furthermore, the proposed neuron offers a linear re-
lation between input current and output voltage for a certain range of
inputs which matches the linear approximation of the sigmoid function
using Taylor series.

The proposed neuron is designed and simulated in 90-nm STM
CMOS technology and simulation results are compared to those of
the previously reported neuron. Simulations show that the proposed
neuron is less sensitive to process variations, and the area consumption
of the proposed neuron is less than that of the previous design.

This paper is organized as follows. The proposed neuron specifica-
tions are discussed in Section II. Section III includes the sigmoid func-
tion approximation. In Section IV, simulation results and comparisons
are reported followed by the conclusion.

II. RESISTIVE-TYPE SIGMOIDAL NEURON

Sigmoid function is a nonlinear function which maps each input to
an output in the range of [0, 1]. The sigmoid function considered in this
paper is also known as the logistic function and is defined as follows:

1
ft)= Tt M

Analog realization of the activation function [4], [S], [12]-[17] pro-
vides a fast and power efficient realization compared to the digital re-
alization in a noticeably smaller area [11], [17]-[19]. Analog compact
realizations, however, suffer from lack of precision and are vulnerable
to mismatch and circuit variations.

Based on the resistive-type neuron introduced in [14], a resistive-
type neuron with low sensitivity to circuit variations has been employed
in [4], [5], [15]-[18] to generate a sigmoid-like function for analog
implementations of neural networks. Since the transistors are jumping
from saturation region to off region and vice versa, this neuron intrin-
sically has a spiking character. This issue increases the total noise of
the circuit specially in a system-on—chip (SoC) design with lots of neu-
rons. Furthermore, it fails to follow the sigmoid function for a range of
currents near zero where all of its transistors are off.

The proposed neuron is designed such that it can use transistors in
both triode and saturation operation regions. Fig. 1 shows the proposed
circuit to approximate the sigmoid function.

In the neuron presented in Fig. 1, the input to the neuron is the sum-
mation current from the synapses. Depending on the value of the input
current, a voltage is generated at the output node. This neuron, named
a resistive-type neuron, has a resistive-like nature.

The proposed design needs only one reference voltage to bias the
transistors as V' B is equal to V Bs. Transistors M5 and M6 are sized
to generate the biasing voltage of Va = Vdd/2 while transistors M1,
M2, M3, and M4 generate the sigmoid function. Transistor sizes are
outlined in Table I; the value for L is selected equal to 0.2 pem for all
the transistors.

b

M2 M5
Lin Vout
VB,|
M1 M6

T

Fig. 1. Schematic of the proposed resistive-type sigmoidal neuron.

il

TABLE I
TRANSISTOR SIZES OF THE PROPOSED NEURON
Transistor M1 M2 M3 M4 M5 M6
(W/L) 5.3/1 | 2.7/1 | 4/1 1.3/1 | 4/1 1.3/1
TABLE 11
OPERATING REGIONS OF THE PROPOSED NEURON
Region | I;p, Vout M1 | M2 M3 M4
I <0 0 < Vout < VB —Vin off sat sat triode
<0 VBf‘/tnSVoutSVB
II =0 Vout = Vp off off sat sat
>0 | VB < Vour S Vp+| Vip |
II7 >0 | Ve+ | Vip |< Vour < Vdd sat off triode sat

The proposed neuron of Fig. 1 operates in three regions as are sum-
marized in Table II.

Input current, I, , in each region is calculated according to the region
of operation of the transistors. For ease of calculation, threshold voltage
of NMOSs, V4, is considered to be equal to that of PMOSs, V;,, in all
the equations (V;,, = Vi, = V7). The input/output node is at the source
of M2 and M1 and the drain of M3 and A 4.

In region I, the input current sinking from the neuron causes a small
voltage in the output node. Therefore, transistor M1 turns off and M4
enters the triode region while the other two transistors are in saturation
region. Currents of transistors M 2 and A 3 enter the input/output node
while current of M4 exits the node; however, this current is smaller
than the current of the other two transistors. The Input current in this
region is defined as follows:

1 . N . .
T = = Sk S2(Ve=Vour =V V(AN Viaa = Vour))
1 ~ N i
= SHnSa(Vaa—Vi V) (1M Vag = Viour))
R e 1.,
+ kn 54 <(‘/B - ‘/f,)vout - 5"/()1#2) (2)

where S is defined as (W/L).

The output voltage increases as the input current increases which
causes a change in operating region of transistors. In region I, both
M3 and M4 are in saturation region while the other two transistors
are off. Region I can be divided into three subregions. The first sub-
region is when the current is negative. A negative current means that
the current coming from 33 to the input/output node is greater than
the current exiting through M4. As the output voltage increases, the
current of M4 increases while the current of A3 decreases. Second
subregion starts when the output voltage reaches V44 /2; in this case,
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the current is equal to zero which means that the currents of M3 and
M 4 are canceling each other. With increasing output voltage more, the
current of M4 becomes greater than that of the A/ 3, which is the third
subregion. Current in this region is approximated as follows:

1 . 2 . .
Iin = _§kpSJ ("/Ydd - VB — "/t) (]- + )\("/dd - Vout))

1 ;
+ 5]"'71 54(‘fB - ‘/rt)z(]- + )\‘/:)ut)- (3)

The input current is positive in region I1I. The corresponding value
of the output voltage makes 31 and M3 to operate in saturation and
triode regions, respectively, while the regions of operation for the other
two transistors remain unchanged. The input current in this region is as
follows:

fin = %""PSN‘/@M = Vi = Vi) (14 AVaur)

1 2 .
+ 5kn54(VB = V) (1 4+ AVou)
—kpS3((Vaa — Ve = Vi) (Vaa — Vour)

- %(Vdd = Vow)®). @

In region I, (3), in order to have Ii, equal to zero while Vo is
equal to Vdd/2, k, S3 is chosen equal to &y, S4. This will set the center
line of the output curve. Also, in Table I, S5 is equal to 254 and 35 is
equal to 4.53. These transistor ratios are necessary in order to keep the
symmetry around the center point I;;, = 0.

To solve (2)—(4) for V¢, a constant voltage, Veons, is defined as
V-V, = Viu—Vg—V; = Veons. For (2) and (4), channel modulation
effect is ignored (A = 0).

The following equations show the value of V5, in each region

H 7 e Iiu + 2k, 5 -1 .[”7;-01,52
Region(DVout = Veons — \/ ( ; kj 3, ) (®)]
: 7 _ Iin "rdd
Region(IDVout = m + > 6)
Region(IID)Voue = i"’fcons + gvdd + _GA 4+ D (7
{ q TkpS3

where D is calculated through the following equation:

J 7 A 2 7 2
D= 6‘/(:0;S‘dd (1 + ‘/ycons) _ <48‘c;ns) —12 <‘5d> . (8)

{

Equation (6) shows that Vi is a linear function of i, in region
11 where both M3 and M4 operate in their saturation regions; this
equation can be represented as follows:

1

R - A"”’cQonskl)Sg ' (9)

‘/out = RIin + -[”rb’y
Input/output characteristic of the proposed neuron is shown in Fig. 2
for input currents between —70 and 70 pA.

III. SiGMOID FUNCTION APPROXIMATION

Several approximation methods have been previously used for sig-
moid function approximation such as centered recursive interpolation
(CRI) [6], [23]. Taylor series are used in this section to approximate
the sigmoid function in order to prove that the proposed neuron in an
appropriate realization of such function. This section shows that using
the Taylor series results in an accurate approximation of the sigmoid
function with negligible error of less than 1.3%.

1.25
1.0 | I

5

z 0.0A, 605mV

>

-75 -50 -25 0 25 50 75
dc (uA)

Fig. 2. Simulation result of the proposed neuron.

Sigmoid function of (1) can be rewritten as follows for —oo < t <
+o0:

1, fort — +oo
ft) = ﬁ otherwise (10
0, for t — —oo0.

Replacing e with 1 4+ a(a > 0) for # > 0 and applying the Taylor
series expansion of 1/(1 — z) for —1 < =z < 1 will result in the
following equation:

e’ 1 a o 1 «
:1_7 1_7 —_— e | = — —_ X 1
1+l 2 ' T2t g tyford<a<
(11)
Similarly, the following equation is achieved for ¢t < 0:
! 1
- _Zfr0<a<l. (12)

14+et 2 4

According to the Taylor series expansion of ¢* for —oc < = < 400,
e' can be estimated by the following equation:

‘ t*
e:1+t+2—,+---:1+tfor|t|<<l. (13)

Recalling that e is replaced with 1 + v or 1 — o in (11) and (12), ¢
is almost equal to £« for |o| < 1.

To give an example to clarify the last statement, suppose « is equal
to +0.1. Thus, e* = a + 1 will be equal to 1.1 or 0.9. From (13), ¢ is
equal to 0.095 ~ 0.1 or —0.105 ~ —0.1 fore’ = 1.1 or e’ = 0.9,
respectively.

From (11) and (12), the sigmoid function is linear while |¢| < 1 and
can be estimated by 1/2 + t/4.

Calculations show that sigmoid function of (10) is linear for —0.6 <
t < 0.6 with an error smaller than 1.3%. In addition, the sigmoid func-
tion can be approximated outside the range of —6 and 6 by 0 and 1,
respectively, with an error less than 0.3%. Therefore, (10) can be po-
tentially estimated by the following equation:

1, 6<t
Ct
ey 06<t<6
fy={3+L -06<t<06 (14)
Ct
oy, —6<t<-06
0, t < —6.

Consequently, the linear function of (6) successfully realizes the sig-
moid function for a certain range of [;,.
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Fig.3. Comparing the (top) proposed neuron and the (bottom) saturated neuron
to the ideal sigmoid function.

IV. SIMULATION RESULTS AND COMPARISONS

The proposed resistive-type neuron has three advantages over the
previously reported resistive-type neuron [16]. First, it has no off re-
gion; off region refers to a range of input values near zero for which
the output remains unchanged. Second, it has a linear region which
matches the sigmoid function linear region. Finally, only two of the
four transistors jump from off to saturation and the other two change
gradually from triode to saturation and vice versa. Therefore, the output
curve is smoother in the proposed design which can provide a more ac-
curate estimation of the sigmoid function in its nonlinear region.

The proposed neuron is simulated in 90-nm CMOS technology using
power supply voltage of 1.2 V. The previously reported neuron [16] is
also simulated in the same technology for comparison. In the previ-
ously reported neuron, transistors are either off or in saturation region;
therefore, in this paper, it will be referred as saturated neuron.

Fig. 3 compares the output voltage of the proposed neuron and the
saturated neuron to the original sigmoid function.

The maximum error between the proposed neuron and the sigmoid
function for the current input range of —6 to 6 pA is 7.67%, while
the average error is 4.12%. For the saturated neuron within the same
input range, the maximum and average errors are 59.52% and 14.08%,
respectively.

Corner analysis for different conditions FF (Fast NMOS Fast
PMOS), SS (Slow NMOS Slow PMOS), FS (Fast NMOS Slow
PMOS), and SF (Slow NMOS Fast PMOS) are performed for both the
proposed and saturated neurons.

In the worst case scenario, corner analysis shows that the maximum
output voltage variations from TT (Typical NMOS Typical PMOS)
condition, are 5.76% and 4.86% for the proposed and saturated neuron,
respectively, for —6 pA < Iin < 6 pA. For the same range of input
currents, the maximum output voltage variations from the ideal sig-
moid function are 37.42% and 74.37% for the proposed neuron and
the saturated neuron, respectively.

Consequently, while the maximum output voltage variation of the
proposed neuron from the TT condition is slightly (less than 1%) more
than voltage variation of the saturated neuron, its maximum voltage
variation from the ideal function is almost half of the voltage variation
of the saturated neuron.

In addition, the effect of the temperature on the output voltage is
studied. The temperature is changed between —55 °C and 125 °C and
the corresponding voltages are measured. For the proposed design, the

1.25
1.04
’
75 !
s lH
> i Proposed Neuron
s
o \{
3
0L - . - -
20.0 225 25.0 275 30.0
time (ns)
ol |
75 i"
s "l
> Saturated Neuron
.54
2
20.0 22.5 25.0 275 30.0
time (ns)

Fig. 4. Transient simulation result of the proposed and saturated neurons.

voltage variations from the voltage value in 27 °C are 0.7% and 1.4%
for —55°C and 125 °C, respectively. These values for the saturated
neuron are changing to 0.5% and 0.2% for —55°C and 125 °C, re-
spectively. Although the proposed neuron shows more voltage varia-
tions with the temperature compared to the saturated one, its voltage
variations are still less than 1.4%. Consequently, the proposal works
properly in a wide range of temperatures between —55 °C and 125 °C.

A combination of temperature and corner analysis is also performed
on the both neurons. The operation of the circuits in —55 °C and 125
°C for different corner conditions is observed. Simulations show that
the proposed neuron has an average variation of 20.9% from the TT
condition in the room temperature (27 °C). This voltage variation is
equal to 13.04% for the saturated neuron. Consequently, the proposed
neuron is more vulnerable to temperature variation compared to the
saturated neuron by less than 8%.

Fig. 4 shows the transient simulations of the proposed neuron and
saturated neuron. Here, the input current changes from —30 pA to a
range of currents between —35 and 35 A with step size of 10 pA.
Therefore, in Fig. 4, for curves from bottom to top, the relevant currents
are —35, —25, —15, =5, 5, 15, 25, and 35 pA.

As is shown in Fig. 4, there are ringings in the saturated neuron at
the edges when the current is changing from one value to the other one.
These ringings are eliminated in the proposed neuron.

The proposed neuron layout is shown in Fig. 5. Area of the satu-
rated neuron is reported 36.5 pm X 19.4 pm in 1.2-pm CMOS process
[16]. However, to make it comparable with the proposed neuron, layout
of the optimized saturated neuron is extracted in 90-nm STM CMOS
technology. Table III summaries some of the comparison results, it also
shows that the proposed neuron consumes less area compared to the
saturated one.

Analog neurons are generally prone to mismatch and the proposed
resistive-type analog neuron is not an exception. Parametric analysis is
used to study the mismatch in the proposed neuron. The simulations
show that even with 20% mismatch in M1 and M2 transistor ratios,
the circuit can work properly.
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Fig. 5. Layout of the proposed neuron.

TABLE III
COMPARISON BETWEEN THE PROPOSED NEURON AND THE SATURATED NEURON
Neuron Error from Ideal Corner Analysis | Corner+Temp. Area
Structure Max. Ave. Max. Ave. Ave. Consumption
Saturated | 59.52% | 14.08% | 74.37% | 4.86% 13.04% 11.319(um)2
Proposed | 7.67% | 4.12% | 37.42% | 5.76% 20.9% 7.9576(um)?

There are some methods to reduce the vulnerability to mismatch of
the proposed neuron for implementing a neural network. One method
is to use a current buffer as an interface for the synapse output current
before entering the neuron. This buffer will prevent the feedback from
the neuron to the synapse output. Another method is to use the differ-
ential structure [12], [13], [17].

V. CONCLUSION

A sigmoidal I-to-V neuron is proposed which makes use of only one
biasing voltage. Nevertheless, it uses transistors in both triode and sat-
uration region to realize the sigmoid function. The simulation results
show that the new design approximates the sigmoid function more ac-
curately compared to the previous design specially in its linear region,
while it consumes less area. The proposed sigmoidal neuron can be
used in analog implementation of activation functions for both pure
analog neural networks and HNNs.
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