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Abstract— The need for equalization in an OFDM/OQAM
system is studied. Analytical expressions for MMSE are expressed
as a function of the number of subchannels, the order of equalizer
and the channel noise level.
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I. I NTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is most often designed using QAM modulation

of the subchannels, rectangular pulses with a guard interval
to avoid intersymbol interference (ISI) and interchannel
interference (ICI).

This scheme has a couple of drawbacks. First the insertion
of guard interval reduces spectral efficiency since less time
is available for transmission of useful information. This also
leads to a lower power efficiency since the receiver filter is
not matched to the transmitted pulseshape. Furthermore, the
large sidelobe level makes the system spectrally incompact.
To counteract these drawbacks, OFDM with band-limited
shaping pulses was first suggested by Chang [1]. To satisfy
orthogonality, offset QAM (OQAM) is used as modulation in
the subchannels.

The lack of guard interval makes OFDM/OQAM more
spectrally efficient, but multipath effects must be eliminated
by an equalizer. Hirosaki [2] has proved that a single branch
fractionally spaced equalizer is sufficient to eliminate ISI and
ICI simultaneously. Tu [3] independently explored the MMSE
equalization problem for single carrier OQAM transmission
systems, which can be regarded as a special case.

In this paper, we first present the discrete baseband model
for OFDM/OQAM systems with a single branch equalizer
in section II. Then, in section III, we derive the real-valued
objective function of a single branch equalizer for general
OFDM/OQAM systems. Initially, we treat the in-phase and
quadrature components separately, resulting in real-valued co-
efficients similar to Hirosaki’s approach [2]. Next, we find that
for non-weighting OFDM/OQAM systems, the receivedT/2
spaced sequence is wide sense stationary. This is presented in
section IV.

In section V, we explore the relationship of minimum
mean square error (MMSE) versus equalizer length. Using
the stationarity result above we derive a normal equation
similar to the one for a single carrier QAM transmission
system. Some earlier results have been published on this
problem [4][5], but only for special cases where the correlation

matrix can be easily inverted. Some authors use gradient meth-
ods to find the optimal equalizer length for LMS equalizers
dynamically [6][7]. To our knowledge, the explicit closed-
form expression of MMSE versus equalizer length for general
cases has not earlier been published. Since the implementation
complexity and system latency are directly related to equalizer
length, this result has both theoretical and practical value.

The general expressions found involve the frequency re-
sponses of both transmitter and receiver filters, as well as the
channel, and will be extremely difficult to establish on closed
form for actual cases. Instead, we propose an approximation
which agrees well with numerical results.

II. BASEBAND MODEL FOROFDM/OQAM SYSTEM WITH

SINGLE BRANCH EQUALIZER

The time discrete baseband model for an OFDM/OQAM
system withN subchannels is shown in Figure 1.

Fig. 1. Baseband model for OFDM/OQAM with equalizer

Usually the shaping pulses are band-limited to[−1/T, 1/T ].
Then in the absence of carrier frequency offset, there exists
overlap only between adjacent subchannels. Thus it is suffi-
cient to consider one subchannelk and its adjacent subchan-
nelsk± 1. EachT seconds, the transmitter takesN complex



QAM symbols

ak[n] = aR k[n] + j aI k[n], k = 0, 1, · · · , N − 1,

and generates an OFDM/OQAM waveform

s[l] =
N−1∑
m=0

∞∑
n=−∞

(
aR m[n] g[l − nN ]

+ j aI m[n] g[l − nN −N/2]
)
ej( 2π

N l+ π
2 )m

that is input to the channel. The transmitter filerg[l] operates
with a sampling intervalT/N , which is also the sampling
interval of the receiver filterf [l]. Assuming a linear time
invariant channel, this can thus be modelled as a discrete LTI
system with impulse responseh[l] with the same sampling
interval. We have also included an additive noiseν[l] in the
channel. Thus the received signal can be written as

r[l] =
N−1∑
m=0

∞∑
n=−∞

ym,n[l] ej( 2π
N l+ π

2 )m ∗ h[l] + ν[l],

whereym,n[l] = aR m[n] g[l−nN ]+j aI m[n] g[l−nN−N/2].
In the receiver, for subchannelk, the signal is demodulated,

filtered by the receiver filterf [l] and down-sampled to yield
a sequence with a sampling intervalT/2:

u[m] = r[l] e−j( 2π
N l+ π

2 )k ∗ f [l]
∣∣∣
l=m N

2

=

(
k+1∑

s=k−1

j(s−k)
∞∑

n=−∞
ys,n[l] ej 2π

N l(s−k)

)

∗ h[l] e−j 2π
N kl ∗ f [l] + ν[l] e−j( 2π

N l+ π
2 )k ∗ f [l]

∣∣∣
l=m N

2

.

(1)

Here, and in the rest of this paper, we omit the subscriptk,
since we only need to analyze one subchannel.

III. O PTIMAL EQUALIZER

For the equalizerW (z) in Figure 1, we will assume a single
branch, two-sided transversal filter with coefficientsw∗k, k =
−K, · · · ,K. We will refer to the constantK as theequalizer
order. Then the received symbols before the detector can be
written as

ã[n] = Re
{
wHu2n

}
+ j Im

{
wHu2n+1

}

= wT
r u2n,r + wT

i u2n,i + j
(
wT

r u2n+1,i −wT
i u2n+1,r

)
,

(2)

where{·}H represents the conjugate-transpose, and

un =
[
u[n + K] · · · u[n−K]

]T

un,r = Re{un} , un,i = Im {un}
w =

[
w−K · · · wK

]T

wr = Re{w} , wi = Im {w} .

The target of the equalizer will be to reduce disturbances
to a minimum. This requirement can be formulated as a

mean square error (MSE) minimization problem with objective
function

J(w) = E
[∣∣e[n]

∣∣2] = E
[∣∣a[n]− ã[n]

∣∣2]. (3)

Then substituting (2) into (3), we can rewrite the objective
function as

J(w) =
[
wT

r wT
i

] [
A1 −B
−BT A2

] [
wr

wi

]

− 2
[
pT

1 pT
2

] [
wr

wi

]
+ σ2

a, (4)

where

A1 = E
[
u2n,ruT

2n,r + u2n+1,iuT
2n+1,i

]

A2 = E
[
u2n,iuT

2n,i + u2n+1,ruT
2n+1,r

]

B = −E
[
u2n,ruT

2n,i − u2n+1,iuT
2n+1,r

]

p1 = E [u2n,r Re{a[n]}+ u2n+1,i Im {a[n]}]
p2 = E [u2n,i Re{a[n]} − u2n+1,r Im {a[n]}]
σ2

a = E
[
|a[n]|2

]
. (5)

These expressions are valid both for single carrier [3]
and multicarrier [2] systems. The latter ones can even have
frequency weighting, i.e. different transmitted signal power in
each subchannel. For the rest of this paper we will assumenon-
weightingsystems, i.e. each subchannel has the same signal
power.

IV. COMPLEX-VALUED OBJECTIVE FUNCTION

In the following we assume (as is common for
OFDM/OQAM systems) that the shaping filterg[l] and re-
ceiver filterf [l] are band-limited to[−1/T, 1/T ], and defined
by identical real-valued symmetric pulses, i.e.f [l] = g[l] =
f [−l]. Thus ICI comes only from adjacent subchannels. We
further assume that

E [aR m[n1] aR k[n2]] = E [aI m[n1] aI k[n2]]

=
{

σ2
a/2, if m = k andn1 = n2

0, otherwise,

E [aR m[n1] aI k[n2]] = 0, ∀ m, k, n1, n2, (6)

whereσ2
a is the average power of the sent QAM symbols.

Without loss of generality, we may assume thatσ2
a = 1. The

additive noise is assumed white, zero-mean with varianceσ2
ν .

Note that we don’t make any assumption about the distribution
of additive noise and sent QAM symbols.

Then based on (1) and (5), after some derivation, it can be
proved mathematically thatA1 = A2 andBT = −B (cf. [8]
for more details), and we can rewrite the objective function (4)
in a complex-valued form as

J(w) = wHRw − 2Re
{
pHw

}
+ 1. (7)

The correlation matrixR is Toeplitz-shaped and given by

R =




R[0] · · · R[−2K]
...

. . .
...

R[2K] · · · R[0]


 .



Here

R[τ ] = E [u[m] u∗[m + τ ]]

=
1
2

∫ 1

−1

G2(f) |Hk(f)|2 e−jπfτ df + σ2
ν pt [

N

2
τ ],(8)

andp =
[
p[K] · · · p[−K]

]T
, where

p [τ ] = E [u[2n + τ ] Re{a[n]} − j u[2n + 1 + τ ] Im {a[n]}]
=

1
2

∫ 1

−1

G2(f)Hk(f) ejπfτ df. (9)

We have also definedpt [l] as the overall response of the
cascade ofg[l] and f [l], i.e. pt[l] = g[l] ∗ f [l], while G(f)
is just the frequency response of the down sampled shaping
filter, i.e.

G(f) =
∞∑

s=−∞
g[s

N

2
] e−jπfs, (10)

and Hk(f) is the equivalent channel response of subchannel
k, which can be formulated as

Hk(f) =
∞∑

l=−∞
h[l] e−j 2π

N (f+k)l. (11)

We note that the objective function (7) now has a form
similar to the single carrier QAM case.

V. MMSE VERSUS EQUALIZER LENGTH

In order to minimize the implementation complexity and
system latency, the equalizer order should not be larger than
necessary. Thus it is important to know the minimum equalizer
length for a given interference level.

By setting∇J(w) = 0, we obtain the normal equation

Rw = p. (12)

For R nonsingular, the optimal coefficient vector can be
expressed aswo = R−1p and the corresponding minimum
mean square error (MMSE) is

Jmin = 1− pHwo. (13)

The further analysis is more conveniently performed in
frequency domain. We note thatRw is a column vector with
entries that can be viewed as the inner products between the
rows ofR andw. Then by using Parseval’s relation to rewrite
these inner products in frequency domain, and taking DTFT
of both sides of (12), we have

PK(f) =
1
2

∫ 1

−1

RK(f, f ′)W ∗
K(f ′) df ′, (14)

where

PK(f) =
K∑

m=−K

p [−m] e−jπfm

RK(f, f ′) =
K∑

m=−K

K∑

n=−K

R[m− n] e−jπf ′n e−jπfm

WK(f) =
K∑

n=−K

w∗n e−jπfn. (15)

Note thatRK(f, f ′) is actually the two-dimensional DTFT
of the correlation matrixR, and (14) is a Fredholm integral
equation of the first kind.

Based on Parseval’s relation, we can also rewrite (13) in
frequency domain as

Jmin(K) = 1− 1
2

∫ 1

−1

PK(−f)WK(f) df. (16)

A. MMSE for one-tap equalizer

The simplest possible equalizer has only a single tap. This
corresponds to settingK = 0. In this case,R = R[0] is
a scalar and can thus be easily inverted. Then based on (8)
and (9), the optimal coefficient of one-tap equalizer can then
be written as

w0 =
p[0]
r[0]

=

∫ 1

−1
G2(f)Hk(f) df

∫ 1

−1
G2(f) |Hk(f)|2 df + 2 σ2

ν

, (17)

and using (13), we get

Jmin(0) = 1−

∣∣∣
∫ 1

−1
G2(f) Hk(f) df

∣∣∣
2

2
∫ 1

−1
G2(f) |Hk(f)|2 df + 4 σ2

ν

. (18)

B. MMSE for infinite-tap equalizer

At the other extreme, we now consider the case of an
infinite-tap equalizer. Substituting (9) into the expression for
PK(f) in (15) and taking the limit, we have

P∞(f) =
1
2

∫ 1

−1

G2(f ′)Hk(f ′)

×
(

lim
K→∞

K∑

m=−K

e−jπ(f ′+f)m

)
df ′

= G2(f)Hk(−f). (19)

Similarly by using (8), we write the two-dimensional DTFT
of R for K →∞ as

R∞(f, f ′) = 2 G2(f ′)
(|Hk(f ′)|2 + σ2

ν

)
δ(f + f ′). (20)

Then substituting (19) and (20) into (14), we have

W∞ (f) =
H∗

k (f)
|Hk (f)|2 + σ2

ν

. (21)

At last by substituting (19) and (21) into (16), we obtain

Jmin(∞) = 1− 1
2

∫ 1

−1

G2(f) |Hk(f)|2
|Hk(f)|2 + σ2

ν

df. (22)

We can see that forK → ∞, the optimal equalizer is not
related to the shaping pulseG(f), but the MMSE is still
affected by different shaping pulses.



C. MMSE for finite-tap equalizer

Having found closed-form expression for the two extreme
casesK = 0 and K = ∞, we will now attack the more
difficult problem of finding a general expression forJmin(K).
Intuitively, WK(f) should be close toW∞(f), thus we define

∆WK(f) = WK(f)−W∞(f). (23)

Similarly, we further define

∆PK(f) = PK(f)− P∞(f)
∆RK(f, f ′) = RK(f, f ′)−R∞(f, f ′). (24)

Then based on the definitions in (23) and (24), the expression
of MMSE in (16), and omitting the second order small term
∆PK(−f)∆WK(f), we have

Jmin(K) ' Jmin(∞)− 1
2

∫ 1

−1

(
∆WK(f) P∞(−f)

+ ∆PK(−f)W∞(f)
)
df. (25)

Note that in (25), only∆WK(f) is unknown. Substituting (23)
and (24) into (14), then subtractingP∞(f) from both sides,
and using (20) and (21), we have

∆WK(f) =
∆P ∗K(−f)− 1

2

∫ 1

−1

∆R∗K(−f,f ′) H∗
k(f ′)

|Hk(f ′)|2+σ2
ν

df ′

G2(f) (|Hk(f)|2 + σ2
ν)

.

(26)

Then substituting (19), (21) and (26) into (25), after some
tedious but straightforward derivation, we find

Jmin(K) ' Jmin(∞) + J1 + J2, (27)

where

J1 = Re





∞∑

|m|=K+1

p∗ [m]
∫ 1

−1

Hk(f) ejπfm

|Hk (f)|2 + σ2
ν

df





J2 = −1
4

Re





K∑

m=−K

∞∑

|n−m|=K+1

R∗[n]

×
(∫ 1

−1

Hk(f) e−jπfm

|Hk (f)|2 + σ2
ν

df

)

×
(∫ 1

−1

H∗
k(f) e−jπf(n−m)

|Hk(f)|2 + σ2
ν

df

)}

− 1
2

∞∑

m=K+1

Re

{(∫ 1

−1

Hk(f) cos(mπf)
|Hk (f)|2 + σ2

ν

df

)

×
(∫ 1

−1

G2(f) H∗
k(f) cos(mπf) df

)}

+
1
2

∞∑

m=K+1

Re

{(∫ 1

−1

Hk(f) sin(mπf)
|Hk (f)|2 + σ2

ν

df

)

×
(∫ 1

−1

G2(f) H∗
k(f) sin(mπf) df

)}
. (28)

We have now got an approximate formula of MMSE for a
finite-tap optimal equalizer. We can see that the MMSE for
1 ≤ K < ∞ is composed of three terms. The first term is

the MMSE of the infinite-tap equalizer. The second and third
terms are related top [τ ] andR[τ ] respectively.

D. Example: MMSE for two-path transmitting channel

As an example, we will consider a two-path transmitting
channel with impulse responseh[l] = δ[l] + α e−jϕ δ[l − ε],
where α is the amplitude attenuation factor,ϕ is the phase
shift, andε is the delay of the second path respectively. Here
we assume0 ≤ α < 1, andε is a positive integer much smaller
than N . The equivalent frequency response of subchannelk
can thus be written as

Hk(f) = 1 + α e−j( 2π
N εf+ϕk), (29)

where
ϕk =

2π

N
ε k + ϕ. (30)

The transmitter and receiver filtersg[l] andf [l] are square
root raised cosine pulses with a roll-off factor equal to one,
i.e. G(f) =

√
2 cos

(
πf
2

)
. By substituting (29) into (18), we

have

Jmin(0) =
σ2

ν

[
1 + (ε/N)2 C1 + O

(
(ε/N)4

)]

1 + α2 + 2 α cos (ϕk) + σ2
ν

, (31)

where

C1 = α
(
4 π2/3− 8

)

× (
α/σ2

ν −
cos (ϕk)

1 + α2 + 2 α cos (ϕk) + σ2
ν

)
. (32)

Then substituting (29) into (22), we have

Jmin(∞) =
σ2

ν

[
1 + (ε/N)2 C2 + O

(
(ε/N)4

)]

1 + α2 + 2 α cos (ϕk) + σ2
ν

, (33)

where

C2 = α
(
4 π2/3− 8

)
/

(
1 + α2 + 2 α cos (ϕk) + σ2

ν

)2

× [
cos (ϕk)

(
1 + α2 + 2 α cos (ϕk) + σ2

ν

)

+ 4 α sin2 (ϕk)
]
. (34)

By omitting the high order termO
(
(ε/N)4

)
, we can write the

maximum gain that can be acquired by increasing the number
of equalizer taps as

Gmax
def=

Jmin(0)
Jmin(∞)

' 1 +
ε2 (C1 − C2)
N2 + ε2 C2

. (35)

First we note thatGmax is decreasing withN , approaching 1
(0 dB) asN →∞. This is expected since a largeN implies al-
most flat response in each subchannel, requiring only a one-tap
equalizer. We also find that the numerator of (35) is increasing
with decreasing noise powerσ2

ν , whereas the denominator is
almost constant. This means that the convergence towards 0dB
with increasingN is slower for lowerσ2

ν . In other words, the
gain of using a multi-tap equalizer decreases with increasing
σ2

ν .
An example will illustrate this. In Figure 2, we show the

behavior ofGmax for subchannelk = N
2 for a case with

α = 0.5, ε = 1, and ϕ = 0. Three different noise levels
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Fig. 2. The maximum gain acquired by multi-tap equalizer.

are used,σ2
ν = 0, -30 and -60dB. In the figure, the curves

obtained by (35) are plotted together with exact curves found
by numerical evaluation of the integrals in (18) and (22). We
see that (35) gives a good approximation toGmax, especially
for largeN .

The quantityGmax is useful for determining when it is
worthwhile to use multi-tap equalizer. To assess how large
equalizer order is needed in a given situation, an expression
for the MMSE vs.K is needed. An approximate value for this
quantity can be found by first finding expressions forR[τ ] and
p [τ ] by substituting (29) into (8) and (9) respectively. Then
substituting this result into (27), and after some approximation
(cf. [8] for more details), we get

Jmin(K) ' Jmin(∞) +
B

K (K + 1) N2
, (36)

where

B =
4 ε2 α2

π (1 + α2 + 2 α cos (ϕk) + σ2
ν)4

× [
1 + α2 + 2 α cos(ϕk)

(
1 +

2
(
2− π2/3

)
ε2

N2

)

+ σ2
ν

] [(
1 + α2 + 2 α cos (ϕk) + σ2

ν

)2

− 4 sin2(ϕk) σ2
ν

]
. (37)

The constantB is independent ofK, giving an inverse
quadratic convergence towardsJmin(∞) with increasingK.
This behavior is illustrated in Figure 3 where the number of
subchannels is set to 16 and the other conditions are identical
to the ones used in Figure 2. In the figure, the approxima-
tion (36) is shown together with exact curves obtained by
numerical inversion of the correlation matrixR. Note that for
K = 0, the MMSE is calculated by formula (31).

We can see that forσ2
ν = 0 and -30 dB, the approximate

MMSE matches well with the exact value. Forσ2
ν = −60 dB,

the approximation can be used as an upper bound onJmin(K).
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Fig. 3. MMSE versus equalizer orderK (the curves for0dB are overlapped).

VI. CONCLUSION

We have shown how to formulate the equalization problem
for OFDM/OQAM in a way that gives expressions similar
to single carrier QAM. This enables us to obtain expressions
for MMSE as a function of the number of subchannelsN ,
equalizer orderK and channel noise levelσ2

ν . These expres-
sions are useful for determining how complicated equalizers
are necessary in a given case.
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