Microblaze MCS Tutorial Jim Duckworth, WPI

Microblaze MCS Tutorial for Xilinx ISE 14.5
Rev 5 (October 2013) — updated to ISE 14.5

This tutorial shows how to add a Microblaze Microcontroller System (MCS) embedded processor to a
project including adding a simple C program. The design was targeted to a Spartan 6 FPGA (on a Nexys3
board) but the steps should be general enough to work on other platforms.

Create a new project and then select Project => New Source, and select IP (Core Generator &
Architecture Wizard) (do NOT select the Embedded Processor source type — we want the simpler MCS
version) and provide a file name (I used ‘microblaze_mcs’ in this example)

=)

Select Source Type

Select source type, file name and its location.
IP (CORE Generator & Architecture Wizard)
Schematic
Uszer Document
Verilog Module
Verilog Test Fixture
VHOL Module
VHDL Library
VHOL Package
VHDL Test Bench
Embedded Processor File name:

| microblaze_mcs

Location:

| C:\ECE3829Ymcs_w3lipcore_dir

Add to project

Microblaze MCS Tutorial Jim Duckworth, WPI

and then select Microblaze MCS under Embedded Processing:

 New Source Wizard

Select IP

Create Coregen or Architecture Wizard IP Core,

View by Function Wiew by Name

MName Version AXI4 AXHM4-Stream AXM-Lite Status License Vendor Library
[|7 BaselP
|~ Basic Elernents

|~ Communication & Networking

|~ Debug & Verification

|~ Digital Signal Processing
2|77 Embedded Processing
[|7 AXIInfrastructure
(- |7 AXT Peripheral
- |7 Processor

Production ilinx.com i

~7 FPGA Features and Design
~7 Math Functions
~7 Memories & Storage Elements
7 Standard Bus Interfaces
|~ Video 8 Image Processing

£
E
£
£
£

-
i
.
=N
=

Search IP Catalog: | | [Clear

All TP versions Only IP compatible with chosen part

Click Next and then Finish.

Note: the file name you provide in the New Source File Name Dialog box will determine the component
name. In the screen shots below this is shown as ‘microblaze_mcs’. Later in this tutorial you will need
the name you provided.

Microblaze MCS Tutorial

Jim Duckworth, WPI

View Documents
IP Symbol

legC P

MicroBlaze MCS

mcs | uart | Fr | e | ePo | GP1 | mterrupts |

xilinx. com:ip:microblaze_mecs:1.4

Component Name ‘m\crublaze_mcs |

Micro Controller System

MicrosSiaze

Instance Hierarchical Design Name mcs_0

Input Clock Frequency (MHz) 100.0

N

Memory Size IEKB
Enable 10 Bus
Enable Debug Support

Debug JTAG User-defined Register |USER2

Enable MicroBlaze Trace Bus

PlanAhead & Project Navigator Information | Software Development Information

development.

direstory/microblaze_mes_setup.telin the Td console.

file as parameter.

After generating the core, there are a few steps necessary in PlanAhead or Project Navigator, mainly to support software

*Before implementing the design, information about the generated BMM file describing the memory of the MicroBlaze MCS
core must be induded in the tool, The script microblaze_mes_setup.tclis available to do this, using source ip-

«Before generating the bitstream, tool options should be updated to include the software program for the MicroBlaze MCS
core. This can be achieved by invoking miczoblaze_mcs_datazmemin the Td Conscle, with the software program ELF

See the Product Guide for mare information and examples, including how to handle more than one MicroBlaze MCS core in a project.

[Generate] [Cancel] [Help

e Set the Input Clock Frequency to match your Nexys3 board (100MHz)

® Increase the memory size from 8KB to 16KB (allows for slightly larger C program)

® Note the Instance Hierarchical Design Name ‘mcs_0’ (we will need this later)

e Select the UART Tab and enable the receiver and transmitter and select your baud rate:

View Documents
IP Symbol

8 X

MicroBlaze MCS

mcs | uarT | P | P | GPo | GPI | nterrupts |

| lggiCPE

xilinx.com:ip:microblaze_mes:1.4

Universal Asynchronous Receiver Transmitter

Enable Receiver
Enable Transmittey
Define Baud Rate
Programmable Baud Ra
Number of Data Bits
Use Parity

Even or Odd Parity

Implement Receive Interrupt
Implement Transmit Interrupt [~]
Implement Error Interrupt =

Universal Asynchronous Receiver Transmitter Information

software, use programmable baud rate.
« Interrupts can be issued to implement interrupt driven serial I/O.

normal C/C++ standard I/O functionality.

The Universal Asynchronous Receiver Transmitter (UART) provides a standard ful duplex serial communication channel.

s Receiver and transmitter can be individually enabled to save implementation resources.
» The serial protocal is defined using baud rate, number of data bits, and parity. To be able to change defined baud rate from

The UART is automatically connected to stdout and stdin in software by the IO Module driver, which makes it possible to use the

Generate H Cancel][Help

Microblaze MCS Tutorial Jim Duckworth, WPI

Add an 8-bit GPO (we will connect to LEDs later):

View Documents

IP Symbol 8 X

logiC- 1 PE MicroBlaze MCS

| mcs | uart | Fr | P | GPo | GPr | mnterrupts |

xilinx.com:ip:microblaze_mes:1.1

Initial Valve of GPO 000000000

General Purpose Output 2
Use GFO
Number of Bits |32 -

Initial Value of GPO | 0x00000000

General Purpose Output 3

Use GPOQ

Number of Bits |32 o

Initial Value of GPO | 0x00000000

General Purpose Output 4

Use GPO
Number of Bits |32 hd

Initial Value of GPO | 0x00000000

INTG_Interny

Geverme | (ol] [

Add an 8-bit GPI (we will connect to the slider switches later):

%] MicroBlaze MCS L=l =

View Documents
IP Symbol & x

| lagiCPE MicroBlaze MCS

mes [vart | Fr [P | GPo | GPI | nterrupts |

xilinx.com:ip:microblaze_mcs:1.2

General Purpose Inpin

Use GPT

Number of Bits |32 hd

GPI Interrupt []

General Purpose Input 3

Use GPT

Number of Bits |32 ~

GPI Interrupt []

General Purpose Input 4
Use GPI

Humber of Bits |32 Z

GFI Interrupt []

INTC_nt

[Gereme] [Gonel | [t

Click on Generate — wait a few minutes (approx. 5 minutes) for the core to be created.

Microblaze MCS Tutorial Jim Duckworth, WPI

Select the microblaz-mcs core in the Hierarchy Pane then expand the CORE Generator in the Processes
pane and select the “View HDL Instantiation Template” :

r
- ISE Project Navigator (P.28xd) - CAECE3829\mes\mesise - [microblaze_mes.vea] =R
ile Edit View Project Source Process Jools Window Layout Help -e]x
Bl 0 & . T 2 = - = = I o

DAL % Xwa| [LLRER ARG =E T ER[PEL]?
Design <08 x| § 54 -
[if | View: ®@ 18k Implementation () [Simulation 5 55 // The following must be inserted into your Verilog file for this
" = 56 [/ core to be instantiated. Change the instance name and port connecti
& | Hierarchy 7 =
i 57 // (in parentheses) to your own signal names.
| 8 mes o s
— | B £ xcBskdb-2csg324 59 Begin Cut here for INSTANTIATION Template ---// INST_TAG
= .. 4§ microblaze_mcs (microblaze_mesxco) &0 TS e AgEenEa A [
= - 61 -Clk(Clk), // input Clk
g —| 2 -Reset (Reset), // input Resec
Al e .UBRT_Rx (UART_Rx), // input UART Rx
x| 6t .UART Tx (UART Tx), // output UART Tx
M 65 .GPO1(GPO1), // output [7 : 0] GEC1
pad 66 .GPI1(GPI1), // input [7 : 0] GPIl
» | ¥ Mo Processes Running x4 67 -GPI1_Interrupt (GPI1_Interrupt) // output GPI1 Interrupt
3¢ Processes: microblaze.mcs | I
¢ : = Q| 6o /s INST TAG END —————- End INSTANTIATION Template —————--—— i
Sr| =3 CORE Generstor ® 0
ey
= 7 Managae —| 71 // You must compile the wrapper file microblaze mcs.v when simulating
@ iy AEgenerate Core 72 // the core, microblaze mcs. When compiling the wrapper file, be sure |=
= g Update Core to Latest Version 73 // reference the XilinxCoreLib Verilog simulation library. For detaile|
2 + f2] View HDL Functional Model 74 // instructions, please refer to the "CORE Generator Help".
[£] View HDL Instantiation Template 75 o
g '
= st | B Nagggn | [Fles [[B) ubrares [micrablaze_mcs.veo 1|
Console 08 x
Started : "Launching ISE Text Editor to view microblaze mcs.wveo".
[l —— »
Console [O Erors | A\ wamings | (26 Find i Files Resuts
Ln1Coll Verilog

Note: we are using Verilog in this example but by changing the project settings preferred language you
can create a VHDL component instead.

Create a new top level with connections to the clock and peripherals on the Nexys board and then
instantiate the microblaze core by using the instantiation template provided.

Note: you may see a GPI1_Interrupt signal (if so you can ignore this port — just leave it open)

Important: Use the component name you used and the instance name ‘mcs_0’ mentioned earlier. In this
example the component name is ‘microblaze_mcs’ and instance name is ‘mcs_0’.

ISE Text Editor (P.28xd) - [mcs_top.v]

File Edit Yiew Window Layout Help
4= 21 -
=] 22 module mcs_top(
p— 23 input clk fpga,
24 input reset,
o 25 input rx,
26 output tx,
27 input [7:0] switch,
- 28 output [7:0] leds

microblaze mos mcs 0

A
» .Clk (clk_fpga), i X
. .Reset (reset), // inpet” Reset
% 34 CURRF—R input UART Rx
= 35 .UART_T=(tx), // output TUART Tx
@ 36 .GPC1 (1eds), // outpur [7 : 0] GPO1 E
.C) a7 .GPI1 (switch), // input [7 : 0] GPI1
— 38 .GPI1 Interrupt(} // output GPIl Interrupt
SO
40
41 endmodule TN
42 S
R —TTI— r

mes_top.v B

Microblaze MCS Tutorial Jim Duckworth, WPI

Synthesize your project and make sure there are no warnings or errors.

Note: If you are working with the older Nexys2 board (with the Spartan 3E FPGA) you will see three
warning messages similar to the following:

Analyzing top module <mcs>.

WARNING:Xst:2211 - "ipcore_dir/microblaze_mcs.v" line 36: Instantiating black
box module <microblaze_mcs>.

Module <mcs> is correct for synthesis.

WARNING:Xst:616 — Invalid property "SYN_BLACK_BOX 1": Did not attach to mcs_0.
WARNING:Xst:616 - Invalid property "SYN_NOPRUNE 1": Did not attach to mcs_O.

You can ignore these warnings but notice you should still manage to synthesize successfully:

Process "Synthesize - XST" completed successfully

Create Merged BMM and Update Tool to Use BMM:
We have to do the following step by hand.

Note: If the Tcl Console is not visible (at the bottom of the screen), select View -> Panels -> Tcl
Console in the menu.

In the Tcl Console type the following TCL script command:
source ipcore_dir/microblaze_mcs_setup.tcl

You should see:

Command>source ipcore_dir/microblaze_mcs_setup.tcl

microblaze_mcs_setup: Found 1 MicroBlaze MCS core.

microblaze_mcs_setup: Added "-bm" option for "microblaze.bmm" to ngdbuild
command line options.

microblaze_mcs_setup: Done.

Now Implement your design.

There will be 45 warnings about unconnected Microblaze output pins —ignore these:

WARNING:NgdBuild:440 - FF primitive
'mcs_0/UO0/microblaze_I/MicroBlaze_Core_I/Area.Decode_I/Using_FPGA.Ext_NM_BRK_
FDRSE' has unconnected output pin

Microblaze MCS Tutorial Jim Duckworth, WPI

The next steps are related to the software development using SDK (Software Development Kit)

Start SDK and select the Workspace to match where your design is stored (for example the project is
located in this example at C:\ece3829\mcs_v3):

Note: when you add the ‘\workspace’ to your project path this new folder will be automatically created.

Workspace Launcher Iﬁ

Select a workspace

Xilinx SDK stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: C:\ECBSEQ\mcS_VBhWDrkspace - Browse...

[Use this as the default and do not ask again

OK] [Cancel

Click OK

SDK Starts:

@ C/C=+ - Xilinx SDK (= [E [
File Edit Source Refactor MNavigate Search Run Project XilinxTools Window Help
1 Welcome i N e T =
& Xilinx SDK

Xilinx SDK is based on Edlipse 3.6.2 and CDT 7.0.2. See what's new in SDK.

New to SDK?

You can get started by clicking File - New = Xilinx € Project
Or walch a 5 minute screencast demonstrating the basic features

I

Documentation

* Getting Started with Xilinx SDK

* EDK Concepts. Tools and Techniques
« Migrating from older versions of SDK
« Frequently asked questions

Known Issues

e Knownissues in SDK
e« Xilinx Answer Record Search

Questions, Comments..

* JKilinx Forums
e Xilinx Technical Support

[

Close the Welcome screen and the Project Explorer Window will open:

Microblaze MCS Tutorial Jim Duckworth, WPI

Select New -> Board Support Package.

The following Dialog box opens:

No Hardware Platforms in the Workspace @

SDK requires a hardware platform specification to support application development.
The hardware platform specification is exported by Project Navigator/Xilinx Platform
Studio/Vivade/IPL Currently, no hardware platforms have been brought into the
waorkspace. Select 'Specify’ to specify one now, or 'Cancel' to cancel the wizard.

..\-. =

| specify || Cancel |

Select Specify and browse to select the xml project created by ISE (will be in ipcore_dir) as shown below:

" |
Mew Hardware Project l—lﬂld—hj

Mew Hardware Project J

.
L]
H |
Create a new Hardware Project. I 3]
n

Project name: hw_platform_0

Use default location
CAECE3829 mecsd \workspacethw_platform_0 Browse...

;| default

Provide the path to the hardware specification file exported from Project Navigator or XP5 or Vivado or IPL
This file usually resides -~ - ivado project location.
Tl ffication file and associated bitstream content will be copied into the waorl

CAECESB29mcsdipcore_dirymicro_mes_sdk.aml

and BMM Files

@ [Finizh J l Cancel

Click Finish

Microblaze MCS Tutorial

MNew Board Support Package Project

Xilinx Board Support Package Project
Create a Board Support Package.

Project name: standalone_bsp_0|

Use default location

Checed829\mesIworkspace'standalone_bsp 0

default

Browse...

Hardware Platform: | hw_platform_0

CPU: | microblaze_mcs

xilkernel

|profiling, abort and exit.

@

[Standalone is a s'i'mpl'e, low-level software Iayer.'I't prov'i'des access to basic
|processor features such as caches, interrupts and exceptions as well as the
|basic features of a hosted environment, such as standard input and output,

? [Finish

) [o

Click Finish

Board Support Package Settings

Board Support Package Settings

Control various settings of your Board Support Package.

o

L standalone._bsp_0
standalone

4 drivers 0SType: standalane
cpu

OSVersion: 3052 ~ input and output, profiling, sbort and exit.

Hardware Specification: C:\ece3828\microblaze_example\workspace\lab4\system.xml

Processor: microblaze

Standalone is a simple, low-level software layer. It provides access to basic processor features such as
caches, interrupts and exceptions as well as the basic festures of a hosted environment, such as standard

Check the box next to the libraries you want included in your Board Support Package.You can configure the library in the navigator on the left.

I

Neme Version Description

[Iwipld0 1012 1wIP TCP/IP Stack library: P v1.4.0, Xilinx adapter v..
[7] silfatfs 1002 Provides read/urite routines to access files stored on...
[xilflash 3012 Xilirux Flash library for Intel/AMD CFI compliant paral...
[silisf 204 Xilir In-system and Serial Flash Library

[silms 1002

Xilirx Memory File System

@

Click OK

You should eventually see in the SDK Console Window:

"Compiling iomodule"

Jim Duckworth, WPI

"Compiling cpu"
Running execs_generate.
'Finished building libraries'

Microblaze MCS Tutorial Jim Duckworth, WPI

Now we will create a new C program:

Select File => New Application Project and Type ‘hello_world’ for the project name

B> New Project B

Application Project
Create a managed make application project. @
I N
< Project name: hello_world >

Use default location

Location: | CGAECE382%\mcs_vITworkspaceweto_worrd Browse...

Choose file systern: | default

Target Hardware

Hardware Platform Ihw_platform_ﬂ V]

Processor l microblaze_mcs V]

Target Software
05 Platform lstanda\one V]

Language @C ©C++
Board Support Package @ Create New hello_world_bsp

@) Use existing | standalone_bsp_0

@ < Back Net> | [Fnish][Cancel

Click Next
Mew Project l == g
Templates »
Create one of the available templates te generate a fully-functioning J
application project.

Available Templates:

Empty Application Let's say 'Hello World' in C. .
Hello World

Memery Tests
Peripheral Tests

| Enish || Cancel

Select Hello World and click Finish

10

Microblaze MCS Tutorial

Jim Duckworth, WPI

Hello_world_0.elf is produced (Executable and Linkable Format):

ELF file : hello_world.elf

elfcheck passed.

Finished building: hello_world.elf.elfcheck

Now go back to ISE Project Navigator add a UCF file to match your Nexys board (remember to include a

period timing constraint).

For example:
ISE Text Editor (P.58f) - [mcs.ucf] EE=)

a File Edit View Window Layout Help

$# set clock period

HET "
NET
NET "
NET

g NET "
10 KNET "
11 HET
1x HET "

LoC
LoC
LoC
LoC
LoC
Loc
Loc
LoC

4 |

FET "clk fpga" LOC = "V10"

HET "clk fpga™ PERIOD = 10ns=

HIGH 50%: IE

mos.ucf

)

A comment regarding the UART connection:

In the Nexys3 board reference manual the UART TX and RX are shown as follows. This is showing the

direction of transmission as seen by the UART.

13 [T 2 TXD — N17
“WART” | b ° RXD «— N18
O
Micro-USB FT232 Spartan 6

So this means that the FPGA transmits on N18 (port ‘tx’ in the UCF file) and receives on N17 (port ‘rx’)

Create a bit file by running the Generate Programming File

11

Microblaze MCS Tutorial Jim Duckworth, WPI

Next we need to add another TCL command:
Update Tool to Use Software, Update Bitstream with Software and Generate Simulation Files:

Type the following command in the Tcl Console:
microblaze_mcs_data2mem workspace/sdk-program/Debug/sdk-program.elf
Where the ‘sdk-program’ is replaced by hello_world in this example (two places).

You should see:

Command>microblaze_mcs_data2mem workspace/hello_world/debug/hello_world.elf
microblaze_mcs_dataZ2mem: Found 1 MicroBlaze MCS core.

microblaze_mcs_data2mem: Using "hello_world_0.elf" for microblaze_mcs
microblaze_mcs_data2mem: Existing bitgen "-bd" options unchanged.
microblaze_mcs_data2mem: Running "dataZmem" to create simulation files.
microblaze_mcs_data2mem: Running "dataZmemn" to update bitstream with software.
microblaze_mcs_dataZ2mem: Done.

Note: if you see a question mark ‘?’ next to the Generate Programming File in the Processes window
rerun the Generate Programming File process to create an updated bit file with the new C program
added (you do not need to redo any of the previous synthesis or implementation steps). You will need
to do this anytime you modify the C program.

Connect the board to a PC using an RS232 cable (Nexys2) or a USB cable (Nexys3) .

Using the Digilent Adept tool you can now download the fpga bit file from the main project directory to
your board.

You should see “Hello World” appear on a serial communications link such as Putty or a Hyperterminal
window:

i COMLO0_115K - HyperTerminal (=] B [

Eile Edit View Call Transfer Help
0= A& =B i

Hello Yorld

4

I

Connected 0:02:07

Auto detect 115200 8-N-1

12

Microblaze MCS Tutorial

Jim Duckworth, WPI

Extra: Modifying the C Program.

In the Xilinx XDK program, expand the src folder from the C project ,and double-click on the

hello world.c file. You can see the C statements:

Cf+ - hello_world_0/sre

—
File Edit Source Refactor Navigate Search Run Project Xilinx Tools Window Help
i 7 | BN @ d-S8- -0 i /-8 i%-0-%-:® 9~ g i [FE cree]
] v i v %0 (pow o v
[Project Explorer 52 = O ||l systemaml ﬁ_ﬂh system.mss ﬁ-ﬂh system.mss (@ helloworld.c £ = Mw»l T H|Owex~_ =0
=] % = g Tttt o e i - = s AT AT
=% hello_world 0 i T -
. F
3z, Binaries ; E'S T Q
Tl . €Xilinx
= Debug * helloworld.c: simple test application o stdioh
p == * o platform
= src 2 ++ print{che
@
{ [6 helloworld.c R — B fﬂain(]' Xilinx SDK is based ¢
- #include "platform.h"
le| platform.c E New to SDK?
L5 plat.form.h void print (char *str):
T Iscript.d You can get started b
[hello_world_bsp_0 int main(} Or watch a 5 minute |
2] systemn_bd.bmm init_platform{):
|53 systemaml =
@ standalone_bsp_0 print ("Hello World\n\r"}; Documentatior
i BSP Documentation
(= microblaze_mcs cleanup_platform(): = Getting Starte
2] libgen.log » EDK Concept
[libgen.options return 0; + Migrating from
[Makefile i B « Frequently as
|y system.mss = —
9! il | «Lm] ' | Known Issues
[Z! Problems | ¥ Tasks | El Console £3 =] Propaﬁieq@Tarminan &4 | LH BA i:.-"|| B~ 0 | 4
| remge g e =« Known issue:
C-Build [hello_world_0] 2
Command Line: elfcheck -hw ../../hw_platform 0/system.xml -pe microblaze mcs ~ * Kilinx Answer.
hello world 0.elf .
Questions, Co
ELF file : hello_world 0.elf
‘elfcheck passed. # Xilinx Forums
Finished building: hello_world 0.elf.elfcheck » Xilinx Technic
o L s
~||l | +
e
n}

Modify the statements as required (for example change the “Hello World” to add your name) and then

press save. A new ELF file is automatically generated.

Back in ISE, Rerun the Generate Programming File process to create an updated bit file with the new C

program added (you do not need to redo any of the previous synthesis or implementation steps).

Download the new bit file to the board and verify the new changes.

13

Microblaze MCS Tutorial

Jim Duckworth, WPI

Extra: Accessing the GPIO.

To access GPI/GPO use XIOModule DiscreteRead and XIOModule DiscreteWrite with channel

1-4 for GPI1-4 and GPO1-4. For example:

#include <stdio.h>

#include "platform.h"

#include "xparameters.h" // add
#include "xiomodule.h" // add

void print (char *str);

int main ()

{
init_platform();

u32 data;
XIOModule gpi;
XIOModule gpo;

print ("Reading switches and writing to LED port\n\r");

data = XIOModule_Initialize (&gpi,
data = XIOModule_Start (&gpi);
data = XIOModule_Initialize (&gpo,
data = XIOModule_Start (&gpo);
while (1)
{

data = XIOModule_DiscreteRead (

XIOModule_DiscreteWrite (&gpo,
}

cleanup_platform();

return 0;

XPAR_IOMODULE_O_DEVICE_ID) ;

XPAR_IOMODULE_O_DEVICE_ID) ;

// read switches
// turn on LEDs

(channel 1)
(channel 1)

&gpi, 1);
1, data);

You can find the APl documentation in the SDK Project Explorer, under <BSP Name>/BSP

Documentation/iomodule_v1_00_a. Click on "Files

, "xiomodule.h" for a list of functions.

14

Microblaze MCS Tutorial Jim Duckworth, WPI

Extra: Modifying the C Program to use xil_printf

The usual printf function is too large to fit into the small memory of the Microblaze but you can use the
Xilinx light-weight version of printf called xil_printf.

Here is an example of its use in my C program:

counter = 1234,
xil_printf("The counter value is %d in decimal and %x in hex.", counter, counter);

And this is what is displayed in hyperterminal:
The counter value is 1234 in decimal and 4D2 in hex.

xil_printf is defined in 'stdio.h'.

Note: However | found out that in Xilinx version 14.1 the declaration was missing in this header file and
you will see an 'implicit function declaration' warning. It did seem to link without errors and run OK.
(This seems to be corrected in Version 14.2 and later so you can probably ignore this step)

But if you see the warning and want to fix it on your own system, right click on the stdio.h at the top of
your C program (#include <stdio.h>) and select 'Open Declaration'

Add this to line 230

void _EXFUN(xil_printf, (const char*, ...));

so the nearby lines look like:

int _EXFUN(remove, (const char *));

int _EXFUN(rename, (const char *, const char *));
void _EXFUN(xil_printf, (const char*, ...));

#endif

Assembler instructions:

If you want to see the assembler instructions that are created from your C program look in the
hello_world => Debug => Src folder (top left pane in the Xilinx SDK application) and double-click on the
hello_world_0.elf file.

If you scroll down this file until you find 'int main()' you will see your C instructions and the
corresponding assembler and machine code values. Interesting stuff!

15

Microblaze MCS Tutorial Jim Duckworth, WPI

Extra: Accessing the GPIO, using xil_printf, and using the UART.

#include <stdio.h>

#include "platform.h"

#include "xparameters.h" // add
#include "xiomodule.h" // add

void print (char *str);

int

{

main ()
init_platform();

u32 data;
XIOModule iomodule; // iomodule variable for gpi, gpo, and uart

u8 msg[1l5] = "This is a test";// buffer for sending message using XIOModule_Send
u8 rx_buf[10]; // receive buffer using XIOModule_Recv

u32 counter;
// example using xil_printf

counter = 1234;
x1l_printf ("The counter value is %d in decimal and %x in hex\n\r", counter,

counter) ;

print ("Read switches, write to LED port, and UART send and receive chars\n\r");

// Initialize module to obtain base address
data = XIOModule_Initialize(&iomodule, XPAR_IOMODULE_O_DEVICE_ID);
data = XIOModule_Start (&iomodule) ;

// Need to call CfgInitialize to use UART Send and Recv functions
// int XIOModule_CfgInitialize (XIOModule *InstancePtr, XIOModule_Config *Config,

u32 EffectiveAddr);

// note config and effective address arguments are not used

data = XIOModule_CfgInitialize(&iomodule, NULL, 1);

x1l_printf ("CFInitialize returned (0 = success) %d\n\r", data);

// Send 12 characters using Send

// Send is non-blocking so must be called in a loop, may return without sending a
character

// unsigned int XIOModule_Send (XIOModule *InstancePtr, u8 *DataBufferPtr, unsigned
int NumBytes);

const int count = 14;

int index = 0;

while (index < count) {

data = XIOModule_Send(&iomodule, &msg[index], count - index);
index += data;

}

xil_printf ("\n\rThe number of bytes sent was %d\n\r", index);

// Another way to send individual characters

outbyte ('X");

outbyte (0x37); // number '7'

outbyte ('Z2");

outbyte('\n'); // line feed

// Receive a character and store in rx_buf

// unsigned int XIOModule_Recv (XIOModule *InstancePtr, u8 *DataBufferPtr, unsigned
int NumBytes);

while

((data = XIOModule_Recv (&iomodule, rx_buf, 1)) == 0);

16

Microblaze MCS Tutorial Jim Duckworth, WPI

x1l_printf ("The number of bytes received was %d\n\r", data);
x1l_printf ("Recv: The received char was %c\n\r", rx_buf[0]);

// Another way to receive a single character
rx_buf[0] = inbyte();
x1il_printf ("inbyte: The received char was %$c\n\r", rx_buf[0]);

while (1)
{
//data = XIOModule_DiscreteRead (&iomodule, 1); // read switches (channel

data = XIOModule_DiscreteRead (&iomodule, 2); // read push (channel 2)
XIOModule_DiscreteWrite (&iomodule, 1, data); // turn on LEDs (channel 1)
}

cleanup_platform();

return 0;

£ COM3 - PuTTY = | B |t

17

