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Abstract— A hybrid metasurface (HMS) is proposed to form a
low-profile wideband antenna array. The antenna element is an
array of 4 × 4 square metal patches and fed by a 50 � microstrip
line through an H-shaped coupling slot on the ground plane.
Only are the edge patches of HMS antenna element grounded
by shorting pins for the suppression of surface waves and cross-
polarization levels as well as the enhancement of the gain. With
the HMS antenna element, a compact 2 × 2 array with an
overall size of 1.58λ0× 1.58λ0 ×0.068λ0 (λ0 is the free-space
wavelength at 5.0 GHz) is designed, where the adjacent elements
share the edge patches of the elements. The measurement shows
the impedance bandwidth of 28% (4.41–5.85 GHz) for |S11| ≤
−10 dB is obtained, and the boresight gain is greater than 8.4 dBi
across the operating band, covering both fifth-generation (5G)
sub 6 GHz and WiFi bands.

Index Terms— Antenna array, broadband antenna, hybrid
metasurface (HMS), low profile, wide bandwidth.

I. INTRODUCTION

WHEN the fifth-generation (5G) communication system
is coming soon, new antenna design is on great demand

for the new wireless applications, such as intelligent trans-
portation system, multimedia devices, and advanced mobile
systems [1]–[3]. Wideband high-gain patch antennas for
5G sub 6 GHz and WiFi systems have attracted numerous
research interest due to their merits of low profile and low
cost. However, a conventional microstrip patch antenna suffers
from the inherent limitation of narrow operating bandwidth
caused by its high quality factor. Many techniques have been
developed to increase the impedance bandwidth, typically
adopting the stacked patches [4], parasitic resonators [5],
and capacitive coupling feeding [6], [7]. However, it is still
difficult to widen the bandwidth of low-profile antenna because
majority of the wideband designs are based on the quality-
factor reduction using a thick substrate or substrate with low
dielectric constant or both.
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As an alternative, the antennas loaded with metasurface
(MS) [8]–[14] have been proposed to enhance the oper-
ating bandwidth and radiation performance of the low-
profile antennas. For example, bandwidths of 20% and 23.4%
were achieved by stacking an MS above the radiating patches,
respectively [8], [9]. In [10], a capacitor-loaded MS was
applied to the monopole antennas, achieving an impedance
bandwidth of 15% and a gain higher than 6.67 dBi. In [11],
an MS was also applied to a dipole antenna for improving the
radiation performance, achieving a higher gain of over 8.5 dBi.

Furthermore, the MS antenna in which the MS directly
functions as a radiator rather than a reflector or loading
of an antenna has been proposed for wideband and low-
profile antenna design [15], [16]. Two operating modes with
identical radiation performance were well excited by a slot
simultaneously over a bandwidth of more than 20%. The
rich dispersion characteristics and operating modes of the
composite right/left-handed (CRLH) metamaterial structures
were analyzed. Moreover, the source-free characteristic mode
analysis (CMA) has also been proposed to guide the design
of wideband MS antennas [17], [18].

On the other hand, a small interelement spacing is required
in an antenna array configuration for suppressing grating lobes,
and it is also a key consideration for wideband multiple-
input multiple-output (MIMO) antenna systems. Therefore,
the low-profile wideband array elements with smaller radi-
ating apertures of the MS antennas rather than the dimen-
sions of 0.73λ0 × 0.73λ0 (λ0 is the free space wavelength)
in [15] and [16] are more suitable for wideband antenna array
and MIMO systems.

Inspired by the hybrid high impedance surface (HHIS)
[19], [20], a hybrid metasurface (HMS) antenna is proposed
to form a low-profile wideband antenna array for 5G and
WiFi applications. The HMS antenna consists of a 4 × 4
square-metal-patch array, and only the outermost patches are
connected to the ground plane by shorting pins, while the
internal patches are not shorted. With the shorting pins, surface
waves are depressed, and high gain and low cross-polarization
levels are achieved. Furthermore, a compact 2 × 2 antenna
array is designed by sharing the adjacent shorted patches
between the square-metal-patch arrays, and the impedance
bandwidth is enhanced by exciting an additional lower fre-
quency resonance. All the numerical simulations are carried
out by the full-wave EM simulation software CST Microwave
Studio [21].
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Fig. 1. (a) Proposed HMS in this work. (b) CMS antenna. (Lg = Wg = 60,
d = 0.6, w = 9, g = 1, p = 10, Ws1 = 2.4, Ls1 = 20, Ws2 = 2.2, Ls2 = 6,
w50 = 1.85, and Ls = 39. unit: mm).

II. DESIGN OF HYBRID METASURFACE ANTENNA

The geometrical configuration of the proposed antenna is
shown in Fig. 1(a). The antenna is composed of two layers:
a radiating layer and a feeding layer, which are designed
on a piece of 3.15 and 0.813 mm-thick F4BTM substrates
(εr = 3.38, tan δ = 0.0027 at 10 GHz), respectively.
The HMS antenna consists of a 4 × 4 array of square
metal patches etched on the top surface of the upper layer,
a 50 � microstrip feeding line placed on the bottom surface of
the lower layer, and a ground plane with an H-shaped coupling
slot in the middle of the two substrates. The HMS antenna is
similar to the conventional metasurface (CMS) antenna, and
the difference between them is that the outermost patches of
the HMS are shorted to the ground plane by metal vias, while
all the patches of the CMS are not shorted.

The HMS antenna can also be regarded as a grid-
slotted patch (GSP) antenna proposed in [16]. Therefore,
the transmission-line model is also applicable to the mode
analysis of the HMS antenna. The equations for calculating
the resonant frequencies of the dual modes are given as
follows [15], [16]:

εre = εr + 1

2
+ εr − 1

2
(1 + 12h/Wp)

−0.5 (1)

�L

h
= 0.412

(εre + 0.3)(Wp/h + 0.262)

(εre − 0.258)(Wp/h + 0.813)
(2)

βe = 2π f
√

εre/c (3)

4βu px/π = 1 − 2βe�L/π TM10 mode (4)

2βu px/π = 1 − 2βe�L/π TM20 mode (5)

where βu is the propagation constant of the capacitor-loaded
patch unit cell, βe is the propagation constant in the effective
extended region with a length of �L, f is the operating
frequency, and c is the free-space light velocity.

Fig. 2 shows the simulated dispersion diagram of the unit
cell with the curves of (4) and (5) for determining the resonant
frequencies of TM10 and TM20 modes. It can be seen that the
predicted resonant frequencies of the dual modes based on the
transmission-line model are 5.01 and 5.65 GHz.

Fig. 3 shows the simulated reflection coefficient and bore-
sight gain of the HMS antenna. There are two resonant dips
at 5.25 and 5.70 GHz. According to the calculated resonant
frequencies for TM10 and TM20 modes, the simulated reso-
nance at the higher frequency is close to the predicted one but
that at the lower frequency slightly moves to higher frequency.
The reason for the frequency shift is that the effective shunt

Fig. 2. Dispersion diagram of the series-capacitor-loaded patch unit cell.

Fig. 3. Simulated reflection coefficient and boresight gain of the HMS
antenna.

inductance in the outermost patches is decreased due to the
connection of the metal vias to ground. For the HMS antenna,
an 18.01% (4.96–5.94 GHz) bandwidth for |S11| ≤ −10 dB
is achieved due to the closely spaced dual modes. Besides,
a boresight gain more than 8 dBi is achieved over the band.

Figs. 4(a) and 5(a) show the E-field distributions on the
plane z = 0.5 mm at the resonant valleys of 5.25 and 5.7 GHz,
respectively. It is found that the E-field distributions at the
two resonant frequencies of the HMS antenna are similar to
the TM10 and TM20 modes of a conventional patch antenna,
but the radiation is from the gaps between the subwavelength
square patches, different from a microstrip patch antenna.

Since the dominant surface waves launched in the grounded
substrate are along the E-plane of the CMS antenna across the
operating band [22], the antenna performance can be improved
by depressing the surface waves. The outermost patch array
of the HMS antenna can be a 1-D grounded high impedance
surface (HIS) for restricting the flow of surface waves, and the
dispersion diagram of the mushroom unit cell is calculated as
shown in Fig. 6. It can be seen that there exists a complete
band gap in a frequency range of 4.2–5.85 GHz. Therefore,
the surface waves are blocked by the outermost patches of the
HMS antenna. Besides, the simulated model of the mushroom
unit cell is depicted in the inset of Fig. 6, and the dimensions
of the mushroom unit cell are kept the same as the square
patch depicted in Fig. 1(a).
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Fig. 4. TM10 mode. (a) Simulated E-field distribution on z = 0.5 mm plane
at 5.25 GHz. (b) Sketch of the operation mechanism.

Fig. 5. TM20 mode. (a) Simulated E-field distribution on z = 0.5 mm plane
at 5.7 GHz. (b) Sketch of the operation mechanism.

Furthermore, Fig. 7 shows the simulated magnitude current
distributions on the ground of the HMS and CMS antennas
at 5.5 GHz. The current on the ground edge of the
HMS antenna is weaker than that of the CMS antenna because
the vias inserted into the outermost patches reduce the flow
of surface waves. The simulated boresight gains and cross-
polarization levels are given in Fig. 8. It is observed that
compared with the CMS antenna, the proposed antenna is with
the improved boresight gain by more than 0.5 dB and the
reduced cross-polarization levels by more than 60 dB across
the frequency band of 5.0–5.9 GHz.

Fig. 6. Simulated dispersion diagram of the mushroom unit cell.

Fig. 7. Simulated current magnitude distribution on the ground at 5.5 GHz.
(a) Proposed HMS antenna in this work. (b) CMS antenna.

III. ANTENNA ARRAY DESIGN

Based on the proposed HMS antenna design in Section II,
a 2 × 2 antenna array is designed and investigated as shown
in Fig. 9. The dimensions of the array element remain the
same as those in Fig. 1(a), but the adjacent elements share the
grounded patch cells. The central distance between two adja-
cent elements is d = 0.5λ0 (λ0 is the free-space wavelength
at 5.0 GHz), and the corresponding ground width of the array
is 1.58λ0. The antenna element performance is maintained
even with the sharing shorted patches. Besides, a conven-
tional 1-to-4 Wilkinson power divider acts as a feeding net-
work as depicted in Fig. 9(b).

The influence of different widths w1 of the quarter-
wavelength impedance transformer on the impedance band-
width is shown in Fig. 10 when the other dimensions are kept
the same as those in Fig. 1. The bandwidth increases when
width w1 decreases, but when width w1 is less than 2.66 mm,
the matching at the higher frequency worsens. Hence, when
width w1 is selected as 2.66 mm, the simulated impedance
bandwidth reaches 22.74% (4.48–5.63 GHz) for |S11| ≤
−10 dB. Compared with the single element with impedance
bandwidth of 18.01%, the impedance bandwidth of the array
is improved by exciting a new resonant due to the compact
array arrangement.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The 2 × 2 array prototype is fabricated and measured
as depicted in Fig. 11 to validate the proposed design.
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Fig. 8. Simulated (a) boresight gain and (b) cross-polarization levels at
boresight of the CMS antenna and HMS antenna.

Fig. 9. Configuration of the 2 × 2 antenna array. (a) Top view. (b) Back
view. (Ws = Ls = 95, d = 30, Lf = 21, and w1 = 2.66. Unit: mm).

Nylon bolts with a 2 mm diameter are used to fix the upper
and lower substrates. The reflection coefficients and radiation
of the prototype are measured using an Agilent PNA E8361A
vector network analyzer and a SATIMO antenna measure-
ment system, respectively, as shown in Fig. 12. Besides,
Figs. 13–15 compare the simulated and measured results.

From Fig. 13, it can be seen that the measured S-parameters
agree well with the simulated results, both with three res-
onant points. The measured −10 dB impedance band is
4.41–5.85 GHz (28%), 290 MHz wider than that predicted
by the simulation, and the three dips slightly move to the
higher frequencies. The discrepancy may be caused by

Fig. 10. Simulated reflection coefficients for different widths.

Fig. 11. Photographs of the fabricated prototype. (a) Top view. (b) Back
view.

Fig. 12. Antenna measurement setups. (a) Agilent PNA E3861A vector net-
work analyzer for measuring S-parameter. (b) SATIMO antenna measurement
system for measuring radiation characteristics.

fabrication and assembly error. In addition, to show the effects
of the gap between the upper and lower substrates on reflection
coefficient, the simulated S-parameters for varying gaps are
given in Fig. 16. As can be seen, the three resonances move
to the higher frequencies as the gap increases.

Fig. 14 compares the simulated and measured radiation
efficiencies and gain. Within the band of 4.6–5.6 GHz, the
simulated/measured efficiencies are greater than 80%/72%,
and the boresight gains are higher than 10.4 dBi/9.7 dBi,
respectively. The measured results are lower than the simulated
ones, which may be caused by the machining error and metal
loss. From Fig. 14, it can be seen that over the 4.6–5.6 GHz,
the simulated gain reaches up to 13.4 dBi with a variation
of 2.8 dB, while the measured one is up to 12.1 dBi with
a variation of 2.4 dB. Besides, a measured average gain
of 10.9 dBi is obtained by calculating the arithmetic mean of
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Fig. 13. Simulated and measured reflection coefficients of the antenna array.

Fig. 14. Simulated and measured radiation efficiencies and boresight gains
of the antenna array.

boresight gains at the frequencies with an interval of 100 MHz
across the measured band of 4.4−5.9 GHz.

Fig. 15 shows the simulated and measured normalized radi-
ation patterns at 4.6, 5.1, and 5.6 GHz, which are normalized
with respect to the peak gain at respective frequency. The
simulation and measurement are in excellent agreement. Also,
the maximum radiation of the antenna array is in the desired
boresight direction across the operating band. Due to the sur-
face waves being depressed by the shorting pins, and the sym-
metrical feeding design, the measured cross-polarization levels
at boresight are less than −30 dB over the operating band.

To highlight the merits of the proposed antenna, the size
and performance comparison with some previously reported
MS antennas [17], [23]–[27] is carried out and listed in Table I.
Obviously, the HMS antenna array is more compact than
those in [17], [22], and [23] while still maintaining a
wider or comparable bandwidth. An extremely compact
MS antenna array was designed based on substrate inte-
grated waveguide (SIW), but the impedance bandwidth is
only 5.3% [24]. Compared with the MS antennas in [25]
and [26], the proposed HMS antenna element has a smaller
size, lower cross-polarization level, and a comparable gain
with similar thickness. Besides, in comparison with the
MS antenna in [27], the profile of the proposed HMS antenna

Fig. 15. Simulated and measured radiation patterns at selected frequencies
of the antenna array in the xz and yz planes. (a) 4.6 GHz. (b) 5.1 GHz.
(c) 5.6 GHz.

Fig. 16. Simulated reflection coefficients for different gaps between the upper
and lower substrates.

has been significantly reduced with a comparable size and
gain.

In short, the proposed HMS antenna has achieved desired
performance enhancement. In particular, the interelement
spacing has been reduced by more than 22% compared to
[17], [22], and [23], and the grating lobes of the HMS antenna
array are lower due to the smaller interelement spacing.
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TABLE I

FIGURE-OF-MERITS COMPARISON WITH SOME PREVIOUSLY REPORTED MS ANTENNAS

V. CONCLUSION

An HMS-based low-profile wideband antenna has been
proposed for compact high-performance array design. A wide
impedance band of the HMS antenna has been achieved by
exciting dual resonance modes simultaneously with broad-
side radiation. Compared with the CMS antenna, the cross-
polarization levels and gain of the HMS antenna have been
improved due to the shorting pins depressing the surface
waves. Based on the HMS antenna, a compact 2 × 2 array has
been designed and fabricated. The HMS array has achieved
a bandwidth of 28% with an average gain of 10.9 dBi,
radiation efficiency above 68%, and cross-polarization level
below −30 dB. The HMS antenna array can be an excellent
candidate for 5G sub-6 GHz and WiFi systems due to its
compact size, satisfactory performance, and easy integration
with a planar structure.
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