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1. Abstract 

 

A simple communication system using root-raised-cosine filter on both transmitter and 

receiver will be built.  The purpose is to show how to design a system in Simulink™ and 

Xilinx™ System Generator environment, starting from choosing the algorithm, to build 

the floating-point system, and to building the fixed-point system. 

 

 

2. Motivation 

 

Can we design a digital chip in a day?  Research efforts in Berkeley Wireless Research 

Center (BWRC) and other places have indicated this is achievable.  This tutorial will 

hopefully get you familiar with the design environment to reach this goal.  Here 

Mathlab™,  Simulink™ and Xilinx™ System Generator form the foundation, on top of 

which a number of Matlab™ scripts and Simulink™ libraries enable much of the design 

process automated.  We will show how they can be utilized via designing a simplified 

transmitter-receiver system. 

 

 

3. How to Start 

 

You will need a computer with Matlab™, Simulink™, Xilinx™ System Generator 

installed in order to run through this tutorial.  You will also need read/execute access to 

BWRC file server \\hitz.eecs.berkeley.edu\designs to use the Floating-point to Fixed-

point Conversion (FFC) Tool.  In addition if you want to learn how to map your design to 

FPGA, you need to refer to other tutorial such as System Generator Tutorial, Tutorial on 

BEE.  To map to ASIC, you need to refer to Tutorial on Insecta. 

 

A simple way to solve the problem is to login one of the MS Windows Remote Desktop 

Servers available in BWRC, namely intel2650-{1, 2, 3}.eecs.berkeley.edu, and a few 

others.  You will need Remote Desktop Connection Client on your local PC to do that.  If 

you are using Linux, you may use Rdesktop [Rdesktop].  Each of the Server has all the 

necessary tools installed correctly. 

 

Once you have all the software ready, you need to map \\hitz.eecs.berkeley.edu\designs to 

your network drive, preferably H: disk. 
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The demo system in this tutorial can be found at H:\ffc\ffc_tutorial.mdl.   

 

If you have never used one of the three tools before, you might want to ready Appendix 

A of this tutorial before you precede. 

 

4. Algorithm Study 

 

The system to be built here is a simplified version of that in your HW1[HW1].  Suppose 

we want to do base-band communication with 2-PAM modulation scheme at 1Mbits/sec.  

Under 2-PAM input symbols (1 symbol/ 1us), such as sequence choosing from binary 

integer {0,1}, are mapped into a data sequence choosing from {-A, A}.  For convenience, 

we can let A = 1.  The receiver needs a 2-PAM demodulator to map received signal into 

original integer.  Suppose the channel impose additive white Gaussian random noise, but 

otherwise ideal.   

 

Although we have assumed our channel is flat with no fading, in reality it could be band-

limited (may also due to RF front-end filtering); thus rectangular base-band pulse in time 

domain (Sinc shape in frequency domain) through the channel will be clearly distorted.  

One technique to combating this is to have a low-pass pulse-shaping filter at the 

transmitter side [Proakis01].  For that one needs to first over-sample the data sequence at 

R MHz.  This is usually done by an upsampler with integer R.  A condition R>2 is 

necessary to satisfy Nyquist criteria.   

 

However there are multiple reasons to make R even higher.  One of them is to minimize 

the impairment on the frequency response due to finite-tap structure implementation of 

the filter, which cause none zero stop-band response and hence aliases after the received 

signal is downsampled.  This is what usually called inter-symbol-interference (ISI).  

Without higher upsampling rate R this deterioration can be alleviated with the cost of 

increased filter complexity and signal latency.  Another reason to have large R is for time 

and frequency recovery.  When the channel together with RF front-end has a fractional 

delay of symbol period, one needs upsampled sequences to find out the right fractional 

delay “adjustment” the receiver need to tune [Chi02, Proakis01].    

 

On the other hand, choosing R too high will result high clock rate on the digital filter, 

A/D and D/A converters, which is not desirable.  In our case, suppose we decide R=4. 

 

On the receiver side, it is desirable to have a matched filter that matches the pulse-

shaping filter on the transmitter side.  With this consideration in mind a commonly used 

filter shape, called root-raised-cosine filter is used in this design.  After the downsampler 

on the receiver side, the signal will be perfectly reconstructed if the two root-raised-

cosine filters are ideal.  Figure 1 shows the algorithms we have conceived so far. 

 

It should be pointed out that if the channel is really as simple as AWGN, one can just 

feed the 2-PAM modulated signal into the channel.  We included more blocks in the 

design to combat some other channel impairments that are not present here.  
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Figure 1.  A simple based-band digital communication system 

 

 

5. Building Floating-point System – Algorithm Validation 

 

With the block-diagram in Figure 1, we can start to write either C or Matlab™ codes for 

each of the blocks, and see if the output symbols agree with the input ones by doing 

simulations.  This is what conventionally people would do.  This is still a good way to 

understand your system, and we encourage you to do so.  However there is a more natural 

way to validate our algorithm; that is to use existing Simulink™ library blocks to draw 

the diagram in Simulink™ quickly.  A snapshot of the completed system is shown in 

Figure 2. 

 

 
Figure 2. Floating-point system in Simulink™ blockset 

 

Notice that there is almost a 1-1 correspondence between above Simulink™ system with 

the block diagram in Figure 1.  Different colors of the blocks indicate different clock rate.  

Here let’s explain some of them in more detail. 

 

First of all several display blocks are used to help us debug/understand the system.  These 

include the Display block, Deiscrete-time Scatter Plot Scope, and Discrete-Time Eye 

Diagram Scope.  A number of other very useful display blocks can be found in 

SimulinkSink library and Communication BlocksetComm Sink library.   

 

Secondly, the Error Rate Calculation block is used to compare the Tx signal with the Rx 

ones, and output bit-error-rate (BER).   

 

2-PAM 

Modulation 

1 Mbit/s 

symbol 4 

4 

rRCos filter 

AWGN 

Channel 
2-PAM de-

mod 

1 Mbit/s 

symbol rRCos filter 



A couple Integer Delay Blocks are used to synchronize the Tx and Rx signals.  In our 

design both the Tx filter and Rx filter introduce 11 delays (each delay corresponds to 

1/(4MHz) = ¼ s) on their center tap.  So another 2 delays of ¼ us are introduced to 

make the total delay 

¼ (11+11+2) = 6 s, 

which is an integer multiple of the symbol period.  Without using the integer delay of 2, a 

large ISI will be seen on Scatter plot; that is, the down-sampler will not sample at the 

wide-open instance showed in the eye diagram. 

 

Finally two Digital Filter Design blocks are used for the two rRC filters.   These two 

identical blocks are specified using the design mask showed in Figure 3. 

 

 
Figure 3. design root-raised-cosine filter 

 

Here we choose Rectangular window method without trying others.  To understand 

window method, please refer to [OppenheimShafter99].  The sampling frequency is 

4MHz since we choose R=4.  Rolloff factor is chosen to be 0.5.  The higher rolloff factor 

is, the more relaxed the filter is; thus less number of taps will be needed.  But more 

excess bandwidth (total bandwidth needed will be [ -(1+rolloff) MHz, (1+rolloff) MHz]).  

In our system this factor is another degree of freedom, but let’s fit it for now.  The final 

parameter adjustable is the filter order, we choose the lowest filter order that satisfies the 

side-lobe to be 40dB less then the main-lobe, as shown in Figure 3.  



You may also try to use Matlab function 

 

 >>help rcosfir (or firrcos) 

 

to do the task.  Then you can write a script to automatically determine the lowest filter 

order given different choices on Rolloff, windowing method, etc.  Once the filter 

coefficients are found you can specify them in a Digital Filter block in Simulink, which 

basically does the same thing as the Digital Filter Design block.  But we won’t try that 

approach here. 

 

You can also export the filter coefficients to workspace choosing FileExport in figure 3.  

That will give figure 4. 

 
Figure 4. Exporting coefficients to workspace vector A 

 

With the two filters designed above, and a channel noise power of 0.1, we get the 

following system performance in Figure 5. 

 

 
  a)          b)        c) 

Figure 5. a) Eye diagram of the transmitted signal, b) eye diagram of the received signal, 

c) scatter plot before the demodulator 

 



It can be seen that the Tx rRC filter caused some ISI as shown in Figure 5 a).  The eye is 

further closed by AWGN noise as shown in Figure 5 b).  Therefore the constellation 

points become blurred in the scatter plot in Figure 5 c).  Suppose we wish the  

 

BER <0.002, with AWGN N(0, 0.1). 

 

Then our system satisfies above system specification, as indicated in the right-most 

display of Figure 2.  Note that 100 bit error are detected before we stop the simulation.  

Assuming bit error comes in Poisson process, then the real BER in the following interval 

with .95 confidence [Shi02]. 
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The simulation takes about 30 minutes to finish. 

 

 

6. Building Xilinx™ Pseudo Floating-point System – Architecture Validation 

 

The floating-point system above can now serve as our reference system.  The next step is 

to impose the architecture information into the system.  Xilinx™ System Generator 

blockset is used to realize the architecture choice.  Historically we have used the granular 

blocks of Simulink™, such as multiplier, adder etc. in this step.  However it turns out it’s 

just easier (for the rest of the BEE or INSECTA flow) to build the system directly in 

System Generator library.  Notice the blocks in SysGen only support fixed-point datatype 

(but with double over-ride functionality in simulation).  But that won’t cause much 

difficulties here since we can just choose all the word lengths to be very high whenever 

possible [Shi03].  When this is done, we call the system pseudo floating-point system 

with architecture information.  This is a good way to validate you architecture choice. 

 

Choosing the architecture correctly is a difficult task [Brodersen03].  For example, in our 

example for the filter structure one can use the built-in FIR block in SysGen DSP library, 

which use distributed arithmetic to save area.  But it is often not power-efficient since the 

pre-stored partial products need to be loaded from the memory block frequently.  Without 

too much justification, let’s use the Delay, Cmult, AddSub, upsampler, downsampler, and 

Gateway In/Out block only to build the system.  We want to minimize the number of 

such blocks in our design.  Therefore we explore the linear phase property of the rRC 

filter.  Further more the center tap can be normalized to 1 to save another Cmult.  The 

resulting structure is shown in Figure 6 and Figure 7.  A gain of A(12) is used in order to 

bring the total transmitting power the same (one can think it as analog gain, so does not 

consume Cmult).   

 



 
Figure 6.  Psuedo-flpt system in system generator 

 

 
Figure 7. LP rRC filter 

 

 
Figure 8. Mask parameters of LP rRC filter 

 



Figure 7 and 8 show the detailed structure of the LP rRC filter, and its mask.  We have 

set all the WL to be exceptionally high (60 bits).  Simulation indicates the pseudo flpt 

system and original flpt system performs the same within their confidence interval. 

 

Here be careful that since the original system has both I/Q channel, the noise power 

indicates the sum of I/Q noise.  So we should choose noise power be 0.1/2 to get the same 

BER as previous floating point. 

 

 

7. Building Fixed-point System – Arithmetic Datatype Determination 

 

Now all the algorithm and architecture decisions have been made in our design.  What is 

left is to decrease the word lengths presented in the previous section, and to determine all 

the overflow and quantization modes.  The goal is to have this done automatically, which 

is done using our floating-point to fixed-point conversion (FFC) tool [Shi02, Shi03, 

ShiBrodersen03].  

 

In order to have the conversion, one needs to identify the node where the fixed-point and 

floating-point system difference will be checked.  This is practically done by inserting a 

Specification Marker block from FFC library that is also located in H:\ffc directory.  A 

natural place to place the marker is the node after gateway out block of the receiver.  At 

this node one can detect the number of bit errors that caused solely by quantization errors.  

Suppose it has probability p, i.e. BQER (bit quantization error rate) = p; then the  

 

MSE (flpt-fxpt) = p 1
2
 +(1-p) 0

2
 = p = BQER.   

 

Theoretically this is fine.  However in practice it is often a bad choice, not because 

perturbation theory fails, but due to the long simulation time to estimate this error 

accurately.  In fact since we normally wish BQER less than BER we need about the same 

number of samples as the one in previous section to get a small confidence interval.  That 

corresponds to minutes to hours simulation duration for each estimate, which is too long 

as we also need iterations.  BTW, the total BER with both channel noise and quantization 

noise is not the sum of the BER(without QN) and this BQER, because slicer 

(demodulator) block is a nonlinear function of noise power. 

 

A good choice to place the Specification Marker block is before the 2-PAM demodulator.  

One reason is that we know the rest of the receiver does not have word lengths to be 

determined.  Also the MSE(flpt-fxpt) at this node gives a good indication of the BER 

system performance after the demodulator.  In fact if we think QN and channel noise 

cause uncorrelated Gaussian noise at this node separately; then it is equivalent to think 

the total noise power as the sum of them.  So one just needs to make sure QN power 

much less than channel noise power to quantify the statement “fxpt system differs only 

little from flpt system”.   

 

A system with the marker specified is displayed is Figure 9.   This newer version is 

named ffc_tutorial_v2.mdl.  One can see that a specification marker has been placed after 



the demodulator.  In addition you can find some supporting Matlab files in the same 

directory (H:\ffc\); they are: 

  

 System_init.m 

 and A.mat. 

 

In order to continue the demonstration yourself you need to copy ffc_tutorial_v2.mdl, 

system_init.m and A.mat into your personal directory of which you have write-access.  

To prevent possible hazard H:\ffc is read-access only.  After the copy you can go to that 

directory and try the conversion tool yourself by typing in  

 

 >>ffc 

 

Later when you have your own design you might want to have a directory for that design.  

In that directory you should have a file name system_init.m  that initializes your pseudo-

flpt system.  In our example it load the filter coefficients A. 

 

 
Figure 9. ffc_tutorial_v2.mdl file, with specification marker and resource estimator in.   

some blocks supporting the floating-point design are eliminated to speed up simulation 

time. 

 

FFC this small system takes about 10 minutes.  Ffc tool will sequentially ask you to input 

some important information you want to choose, such as design names.  At one point it 

also asks you to change the model simulation time.  You can let it to stop at 1/1e3.  This 

will make the simulation duration to be 1ms, which results in 1001 output samples after 

the downsampler.  That will be enough to have a good MSE estimation. 

 

Another important input is the MSE level you want to choose.  You can either manually 

do a couple try to understand the relationship between your system performance (e.g. 

BER) and MSE.  On the other hand you can do the following calculation to decide.  The 

flpt system has BER ~ 810
-4

; so its SNR is about 8.4dB (refer to [Proakis01] chapter 5, 

figure 5.2-4 for the waterfall curve of BPSK system).  Since the signal power is at 



about .5 ( you can estimate it by placing a eye-diagram scope before the demodulator, 

and see the signal power), the PN power is about 

PN power ~ 0.5/10
(8.4/10) 

= 0.07. 

 

We further want MSE << PN power.  Notice at 8.4dB SNR the waterfall curve has 

derivative about 1.8dB/decade.  If we hope the BER increase about 10% due to Q-noise, 

then the total SNR should become 

 

8.4dB  1/10
(1.8*log10(1+.1)/10)

 ~ 8.4dB  (1-1.8  0.1); 

 

so the QN power is about 

    

QN power = PN power  (1.8  0.1) = .012. 

 

Using this MSE level, we achieve a fxpt system with BER of 910
-4

.  The total resource 

used is ~270 FPGA slices.  The final system is save as ws_ffc_tutorial_v2.mdl, as shown 

in figure 10. 

 

 
Figure 10.  The final fxpt system having BER~ 910

-4
, and ~270 FPGA slices. 

 

You can choose Format->show Port Data Types to see the fxpt data-type used for the 

final system.  In fact you can see some of the constant multipliers have coefficients zero 

now (since constant cannot be represented by the small WL fxpt datatype).  But you don’t 

need to worry too much about it since these logics will be eliminated in the final place 

and route stage. 

 

 

8. An Important Remark 

 

The most important remark I want to point out here is in our design procedure above, we 

only did qualitative justification on choosing the algorithms (say data modulation scheme, 



upsampling rate R, filter type, etc.) and architectures (say filter specification, filter form).  

To have a good design these “parameters” need to be justified using careful analysis or 

simulations.  Nevertheless the purpose of this tutorial is to get you familiar with the 

design process, and mainly on using FFC tool.  So these design dimensions have not been 

explored fully here. 

 

On the other hand higher-level decision (such as algorithm) made without considering the 

lower-level discrepancies could be unfavorable when the lower-level design (such as 

choosing circuit) space is explored.  For example, we decided the number of filter taps to 

be the smallest one satisfying the 40dB attenuation requirement.  This sounds reasonable 

while we make the decision since it saves hardware and result less latency.  However it’s 

fairly possible that with fixed-point datatype, we need too high wordlength to make the 

40dB attenuation still true because there is not much room left for WL reduction.  By 

relaxing the number of taps to a few more, one might dramatically drop the number of 

bits needed for each tap; therefore save total hardware cost. 

 

So ideally algorithm, architecture, and fixed-point datatypes should be optimized jointly, 

maybe with other design variables such as circuit level flexibility, in order to get the truly 

“best” design.  The bad news is a problem in this magnitude like this could become too 

hard to solve.  That’s exactly the reason design of a large system is almost always divided 

into different levels, and different blocks.  One always tries to reduce the inter-

dependency between these levels and blocks to make each of the smaller problems more 

tractable.  Our introduction of MSE specification as a global justification on FFC 

problem is based on this argument.  

 

Of course one needs to bear in mind that quite often by considering the inter-dependency 

more carefully one can achieve large improvements.  Examples include Trellis-coding 

(coding and modulation jointly considered), our approach on FFC problem in some sense 

(different WLs jointly considered), channel coding (where algorithm is directly done in 

number theory, which is already fixed-point), etc.   But this interesting trade-off is 

beyond the scope of this tutorial. 

 

 

9. Conclusion 

 

Via a simple base-band digital communication system we showed a design procedure, 

starting from algorithm to fixed-point implementation, in our design environment 

combined with Matlab™, Simulink™, Xilinx™ System Generator.  One major topic is 

on how to use our floating-point to fixed-point conversion tool. 



 

Appendix A: Getting Familiar with Matlab™, Simulin™, and Xilinx™ System 

Generator 

The quick way to get started on these tools is to see an existing design.  You can do so by 

type in 

>>demo 

in Matlab command line, and start to play around the systems there.  Notice that Xilinx 

demos are located at BlocksetsXilinx directory in the demo window.  An example is 

shown in Figure A1. 

 

 
Figure A1.  Using Matlab™ demos 

 

If you wish to learn these tools in more a systematic way, we encourage you to pay more 

attention on the help file, with a window somewhat like Figure A2. 



 
Figure A2: Using Matlab™ help system 

 

Some other information is available if you want to know understand how to using 

Matlab™ scripts to build Simulink™ system. (see Appendix of [Shi02]). 

 

If you still have questions related to Matlab™ and Simulink™, and could not be 

answered by anybody around you, you might contact help@mathworks.com.  They 

usually respond within the same day. 
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Appendix B: Using Floating-point to Fixed-point Conversion Tool 

 

You should have already mapped  \\hitz.eecs.berkeley.edu\designs to H: disk.  Now go to 

H: disk in Matlab: 

  

 >>cd H: 

 >>cd ffc 

 >>ffc_init 

 

The last command above swap the Xilinx library to a version that is prepared for 

hardware resource estimation.  You should see some library opened and closed.  In 

addition a few Matlab paths containing FFC scripts are added to the path file.  A good 

way to check that you have successfully done this initialization is to open Xilinx blockset, 

and see whether you have the resource estimator block in the Basic Elements.  

 

Now you can go to your own directory where your pseudo-floating point system is 

located, and type in: 

 

>>ffc   

 

This will lead you sequentially through the ffc process.  This ffc.m script is located at 

H:\ffc\ffc_package directory that you have linked to in the initialization step. 

file:\\hitz.eecs.berkeley.edu\designs
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