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Discrete Green’s Function Formulation of the FDTD
Method and Its Application in Antenna Modeling
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Abstract—A discrete Green’s function formulation of the fi-
nite-difference time-domain (DGF-FDTD) method based on both
discrete system theory and the FDTD method has been developed,
which expresses the field response as a convolution of current
sources and the impulse response of the FDTD equation system.
The DGF-FDTD method presents the FDTD equations in a dif-
ferent perspective from the conventional Yee algorithm. It avoids
the computational difficulties such as the need for computation of
free-space nodes and absorbing boundary conditions of the classic
FDTD method. The ability of the DGF-FDTD method to model
on antenna is demonstrated by the modeling of a Yagi–Uda array
antenna with considerable saving in memory usage.

Index Terms—Absorbing boundary condition (ABC), discrete
Green’s function (DGF), finite-difference time-domain (FDTD)
method.

I. INTRODUCTION

THE finite-difference time-domain (FDTD) method [1] is
a robust, powerful, and popular general method to solve

Maxwell’s partial differential equations numerically in the time
domain. It has been used extensively to model all kinds of elec-
tromagnetic problems such as radiation, scattering, and circuit
problems. However, due to the limitation of computer resources,
it is usually difficult to apply the FDTD method in the modeling
of electrically large objects, especially when applied to prob-
lems with large spacing between objects. The improvements in
modern computer technology have made this difficulty less se-
rious, but the inherent features of the classic FDTD method still
impose some difficulties when dealing with electrically large
objects. First, the implementation of the FDTD method requires
absorbing boundary conditions to terminate the spatial compu-
tational grid. Moreover, the recursive nature of the classic Yee
algorithm [2] for the FDTD method implies that all the cells
contained in a given volume must be computed, which means a
great deal of computational time and computer memory is ded-
icated to determining free space fields between objects which
are actually of little interest. As a result, the FDTD method is
characteristically time consuming and memory demanding.

To improve the efficiency and accuracy of the FDTD method
and make its application in electrically large objects more
practical, researchers have proposed various methods [3], [4].
In this paper, the discrete Green’s function formulation of
the FDTD method (DGF-FDTD) was developed to examine
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the FDTD method from a system point of view [5]. The
DGF-FDTD method is based on the idea that the Yee algorithm
may not be the only possible formulation of the FDTD method.
Classic theory of discrete systems [6] shows that any linear and
invariant system can be completely determined by the impulse
response of the system. This is the discrete version of the
Green’s function technique [7] extensively used in electromag-
netics. This DGF formulation of the FDTD method solve for
the FDTD equations without the need for absorbing boundary
conditions (ABCs) or the computation of free-space nodes. For
the practical implementation of the algorithm, the analytical
formula of the impulse response or the discrete Green’s func-
tion of the FDTD system must be known. This paper discusses
in detail the derivation of the analytical form of the discrete
Green’s function in the one-, two-, and three-dimensional cases
and its application in antenna modeling and as an ABC.

II. DISCRETE GREEN’S FUNCTION FORMULATION OF THE

FDTD METHOD

A. FDTD Equations as a Discrete System and Its Z-Domain
Representation

The FDTD equations can be treated as a linear and invariant
discrete system whose “inputs” are the electric and magnetic
current density sources and , respectively, and the “out-
puts” are the electric and magnetic fields and . The impulse
response of the FDTD equations can be determined by using
the Kronecker delta function as the excitation. This gives a set
of 2 2 matrices, which is the Green’s function of the FDTD
system. The response to an arbitrary source is then expressed
as the convolution of the source with the Green’s function. The
full procedure for the derivation of the discrete Green’s function
will be described in this paper.

The impulse response of a system is usually more easily ob-
tained in the spectral domain, which is then inverse transformed
back into the real domain. The Z-transform is a powerful
tool widely used in the analysis of discrete systems [6], [8].
Throughout this paper, the unilateral Z-transform will be used
since the FDTD system is a causal system. When the FDTD
equations are represented in the Z-domain a four-dimensional
Z-transform with four complex variables in the Z-domain is
required . Starting with the sim-
plest case is the FDTD equations for the linear, isotropic,
nondispersive, and lossless free-space media. Let us take the

component of the electric field as an example. The FDTD
equation for has half space and time step components, but in
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computation it is necessary to omit the term 1/2 in the indexes,
which results in the FDTD equation with integer indexes (1)

(1)

Using the definitions of Z-transform and its property and
defining , ,

, (1) can be written as

(2)

Similarly, the Z-domain representations of the and
components can be obtained. For the magnetic field, let us take

as an example. It is noted that is taken 1/2 time step later
than the component. Therefore, for the time step, it is nec-
essary to keep the integer in the electric field and omit the half
time step in the magnetic field. It is now possible to obtain the
Z-domain representation of (3)

(3)

The Z-domain representations of and are obtained in a
similar fashion. The three components of both the electric and
magnetic fields can be written in a matrix form in the Z-domain
(4), (5)

(4)

(5)

B. Z-Domain Finite-Difference Second-Order Vector Wave
Equation and Its Relationship With the Scalar Wave Equation

For the continuous case, the second-order vector wave equa-
tion can be obtained from the two Maxwell’s curl equations.
Similarly, the Z-domain finite-difference second-order equation
can be obtained by substituting the electric field equation into
the magnetic field equation and vice versa [9]. The Z-domain
expression of the finite-difference vector equation for the elec-
tric field is obtained by substituting (5) into (4), yielding (6) as
shown at the bottom of the page, where is Kronecker delta
function.

This formulation of the discrete vector wave equation for the
electric field (6) is given in the Z-domain but can be easily trans-
formed to the real domain by taking the D-terms as finite-dif-
ference operators and can be compared to the continuous vector
wave equation. The solution to the discrete vector wave equation
is fully compatible with the FDTD system since the former is de-
duced from the latter without any additional conditions applied.

When the vector wave equation is source free, in the contin-
uous case it can be reduced to the scalar wave equation. This
equation also has a discrete version in terms of the second-order
finite differences in the Z-domain

(7)
In order to obtain the relationship between the discrete

vector and scalar wave equations it is necessary to use the
“divergence” equation and the continuity condition of current.
These two equations together provide an additional relationship
between the electric field and the current which can be used to
simplify the electric finite difference vector wave equation (6)
and make the coefficient matrix diagonal, yielding

(8)

The solution to (8) should be exactly the same as the solution
of the FDTD equations to the electric field with same initial con-
ditions. When there are no excitation currents, the vector wave
equation reduces to three scalar wave equations which have a

(6)
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solution only when the values of the complex parameters in the
Z-domain cancel the scalar wave operator (9)

(9)

This is actually the dispersion formula for the discrete FDTD
system. This expression is similar to the formulation of

of the continuous case. Equation (9) shows
the relationship for the complete complex plane. In the partic-
ular case of the unit circle of the complex plane, (9) becomes
the normal formula of dispersion (10)

(10)

It is then seen that the dispersion relationship is inherently in-
cluded in the Z-domain formulation of the FDTD equations.

C. Solutions to the Finite-Difference Wave Equations

To get the impulse response to the scalar wave equation, it is
necessary to excite the system with a delta function. Taking a
shifted Kronecker delta as the excitation, its real and Z-domain
representations are

(11)

The impulse response to the scalar wave equation (12) can be
obtained from the Z-domain representation of the scalar wave
equation (7) and the excitation (11), which is just the ratio be-
tween the impulse excitation in the Z-domain and the “transfer
function” of the scalar wave equation

(12)
Equation (12) is in the Z-domain; however, the solution needs

to be in the real domain. In continuous electromagnetics the
Green’s function of the scalar wave equation can be determined
either by taking the inverse transform of the spectral domain
representation or by direct integration of the equation in dif-
ferential form. The mathematical solution is extremely simpli-
fied by using the spherical symmetry of the problem, and the
Green’s function problem can be reduced to a one-dimensional
(1-D) problem in spherical coordinates. However, it is impos-
sible to use the same spherical symmetry conditions in the dis-
crete case since the discrete Cartesian grid is essentially not
isotropic as continuous space–time is. Therefore, we choose to
solve each coordinate contributing to the finite equations sep-
arately while taking the other coordinates as constants [10].
First, the scalar wave equation will be solved for the time index
in the real domain. The Z-domain operator related to time is

, which can be easily transformed into real domain as

, allowing (7) to be rewritten in the
following form:

where

(13)

is taken as a constant here since only the time index is solved
in the real domain at this time. The complex exponential se-
quences (14) can be tested as a solution to (13) since they are
eigenfunctions for any linear system

(14)

The parameter of the complex exponential is obtained by direct
substitution into (13). As a result the general solution of (13) is
determined with

(15)
For simplicity, (15) can be expressed in terms of Chebyshev

polynomials (16)

(16)
where ; ;

(Chebyshev polynomial, first order)
(Chebyshev

polynomial, second order).
The impulse response is a particular solution of the scalar

wave equation when the excitation is a delta function. The con-
stants and in the general solution to the homogeneous
equation are determined by the initial condition of the problem.
As a result the impulse response is now obtained, with the time
index in the real domain and the spatial indexes remaining in the
Z domain (17)

(17)

It is now necessary to determine the spatial indexes in the real
domain as well. Equation (17) can be expanded as a power sum
as follows:

(18)
The inverse Z-transform for the spatial indexes can be obtained
from the inverse Z-transform of all the
terms, which have the spatial complex variable. For simplicity
let us consider the 1-D case as an example.

D. Impulse Response for Scalar Wave Equation

For the 1-D case, the problem only considers the spatial index
. The operator is reduced to

(19)
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TABLE I
THE 1-D DISCRETE GREEN’S FUNCTION AS A FUNCTION OF n

The variable can be expressed as a product of

where

(20)

The inverse transform of the power terms can be obtained in a
direct way by binomial expansion into simple powers of . The
binomial expansion of the term takes the form of

(21)

By using the definition of the Z-transform, the inverse Z-trans-
form of can be readily obtained (22)

(22)

The inverse Z-transform of the other two terms of (20) can be
obtained in a similar way. As a result the inverse Z-transform of
2 is found as

(23)

The orthogonal Jacobi polynomials on the unit
circle [11] have the form of

(24)
It can be seen that (23) can be identified as a Jacobi polynomial
with an extra term (25) when is taken as ,
as , as , as , and as

(25)

The impulse response of the 1-D scalar wave equation is
now determined as the polynomial of the grid parameters given
in (20), which is achieved by introducing (25) into (18). The
resulting 1-D impulse response for the finite-difference scalar
wave equation is given as

(26)

The analytical form of the two-dimensional (2-D) (27) and
three-dimensional (3-D) (28) discrete Green’s function can be
obtained by the same method as for the 1-D case

(27)

(28)

where

(29)

The impulse response in the multidimensional case is not
simply a discrete version of the Green’s function for the
continuous equation. The impulse response reflects the basic
properties of the discrete grid such as dispersion and anisotropy
that do not happen for the continuous coordinate. The impulse
excitation contains all the frequencies allowed in the discrete
grid. For some frequencies is close to 2. In this case,
the wave propagation in the numerical FDTD grid shows very
strong dispersion.

E. Numerical Evaluation of the Discrete Green’s Function

The discrete Green’s function obtained previously is of ana-
lytical form; it is a function of both spatial and temporal steps

and . Let us now discuss the numerical evaluation of the
discrete Green’s function. For the 1-D DGF, if the delta func-
tion is applied at the spatial index , the DGF computed at
this point against time can be obtained, which gives the Green’s
function as a function of . When , the first few terms of
the 1-D Green’s function take the values of Table I. This Green’s
function can also be obtained through a time-stepping numer-
ical procedure. The result from the time-stepping algorithm for
a same grid is also listed in Table I for comparison.

It is seen that difference between the numerical and analytical
calculation of the Green’s function lies in the seventh decimal
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place. Since both results are an exact solution to the same finite
difference problems, they should be the same. The tiny differ-
ence here is basically due to the finite precision of the floating
point representation of real number in the computer.

Another example is given for a 2-D 60 60 grid. The grid
is excited at the center point , , with spatial and
time parameters , . Fig. 1 is
the contour graph of the 2-D discrete Green’s function over the
whole grid at time step and , respectively. The
anisotropy and causality of the Green’s function can be observed
from the graph.

F. Impulse Response to the Vector Wave Equation: Z-Domain
Representation

The vector wave equation can be reduced to the scalar wave
equation for the electromagnetic fields in both the discrete and
continuous cases. Therefore, the Green’s function for the vector
wave equation can be directly related to the Green’s function
for the scalar equation by applying the operator to the scalar
Green’s function. The impulse response to the discrete vector
wave equation in the Z-domain can also be determined from
the scalar impulse response in the Z-domain in a similar way,
yielding

(30)

where is vector impulse response and is scalar im-
pulse response.

Expanding the finite-difference operator for the current
source of (30) in a matrix form gives (31) as shown at the
bottom of the page.

This operator establishes a link between the vector and scalar
Green’s function in the Z-domain. It is also the Green’s func-
tion linking the electric current and electric field; therefore, it
is designated as . Other Green’s functions are named in the
same fashion. The time-domain vector Green’s function takes
the form of a matrix and its relationship with the time-domain
scalar Green’s function can be found through translating the fi-
nite-difference operators in the Z-domain into time-domain fi-
nite-difference operators. Take the first element of the matrix of
(31) as an example (ignoring the constant for the purpose of
simplicity). Its real domain form can be obtained by applying
the inverse Z-transform to the corresponding variables (32)

(32)

Fig. 1. Contour graph of 2-D discrete Green’s function at t = 20 and t = 30,
respectively.

All the other elements can be inverse Z-transformed similarly
to obtain the other components of the vector Green’s function,
which will not be listed here for the purpose of simplicity. Other
matrices such as , and can be determined in a
similar fashion, which will not be explored in detail here.

G. FDTD Equations Formulated as a Convolution of the
Green’s Function and the Current Sources

The impulse response of the FDTD equations can be deter-
mined with Kronecker delta impulse functions as sources. It is
a set of 2 2 matrices (33), which represent the and fields

(31)
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obtained when sources and are Kronecker delta functions
with arbitrary unitary vectors and functions

(33)

For an arbitrary current density source, according to the dis-
crete system theory, it can be expressed as a convolution sum
of Kronecker delta functions. Therefore the field responses can
be obtained as the convolution of the impulse response and the
current density sources (34)

(34)

Equation (34) is referred to as the convolution formulation of
the FDTD method. The impulse response is known as the dis-
crete Green’s function (DGF) of the FDTD system. It takes the
form of a matrix and corresponds to the dyadic Green’s func-
tion concept in continuous electromagnetics. Using the DGF
method, the FDTD equations are implemented as a discrete con-
volution sum which produces exactly the same result as the Yee
algorithm based on the finite-difference equations. Despite the
fact that the DGF-FDTD is equivalent to the Yee algorithm, it
does not require ABCs and only the currents on the scatterer
need to be stored. The steps , , , and are the same as
for the Yee algorithm in order to ensure stability and low disper-
sion. It will be demonstrated that the DGF-FDTD method can
be separately used to solve antenna problems in the time domain
and compute antenna parameters (antenna pattern, impedance).
At the same time, the DGF-FDTD method can also work as a
hybrid method with the FDTD method in electromagnetic mod-
eling to eliminate some of the computational difficulties. The
DGF-FDTD formulation can also work as an exact ABC for the
Yee algorithm by employing the principle of equivalence. The
next section will be dedicated to the investigation of the DGF’s
application.

III. APPLICATION OF THE DGF-FDTD METHOD

IN ANTENNA MODELING

A. The Applications of the DGF-FDTD Method

The convolution formulation of the FDTD (34) shows that the
fields at a specific location on or around the structure of interest
can be computed from the superposition of all the Green’s func-
tions and current sources on the structure. The knowledge of the
analytical formulation of the discrete Green’s function allows
the calculation of the impulse response at certain single index
positions without the need for absorbing boundary conditions.
This is very significant, as it would permit the analytical deter-
mination of the exact FDTD response across a homogeneous
region without the need for the calculation of the intermediate
nodes.

As stated previously, the DGF formulation is derived from
the FDTD equations directly without any other additional con-
dition; thus the two methods can be combined perfectly without
incurring any numerical errors or interface problems. The two

methods can work together in dealing with electromagnetic
problems, where the DGF is used for the analytical solution
across a homogeneous domains while the FDTD method is
used to solve in the adjacent inhomogeneous regions. At the
same time, since the DGF method does not require the imple-
mentation of ABCs because it can determine the fields at any
point just from the currents directly, it will work perfectly as
an ABC for the Yee algorithm. The convolution formulation of
the DGF method is used to compute the electric field on the
boundary walls which will be further used to update the Yee
algorithm. By this means DGF works as an ABC for the FDTD
grid.

For the purpose of simplicity, the application of the DGF
method as an ABC for Yee algorithm will not be discussed in
this paper. The application of the DGF method in antenna mod-
eling is presented as a demonstration of the convolution formu-
lation of the FDTD method.

B. Scattering Formulation of the DGF-FDTD Method

In the FDTD grid, the boundary condition on the electric and
magnetic conductors is satisfied by setting to zero the total tan-
gential electric or magnetic field at the nodes which are filled
with the electric or magnetic conductors [12]

electric conductor

magnetic conductor. (35)

Using the convolution formulation of the FDTD method (34),
the scattered fields can be determined from the currents induced
on the structure, which are then combined with the boundary
condition to link mathematically the incident field to the cur-
rents induced on the scatterer.

Equation (36) has to be inverted so that the induced currents
on the antenna are expressed as a function of the incident fields
which will result in the following scattering (37). In (37), the
current densities on the scatterer are related to the incident field
at the same time instant and to the current densities at previous
time steps. As a consequence, the induced currents can be solved
for each time step through iteration of the currents previously
calculated. The iteration starts from the time index (be-
fore , the incident field and the currents are assumed to be
zero) and ends at the time index .

(36)

and

(37)
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Fig. 2. Power pattern of a �=2 dipole with the grid resolution of �=10, �=20,
and �=40.

When applying (37) in antenna modeling, it is maintained
that the relative positions of the electric and magnetic currents
follow the same distribution as the electric and magnetic fields
in the Yee algorithm. The space and time steps also follow the
same Courant condition as the FDTD method. The reason for
this is because the DGF is based on the FDTD grid and equa-
tions. Therefore, the same resolution can be chosen for the DGF
method as for the Yee algorithm. Fig. 2 shows the power pattern
of a half-wavelength dipole obtained at a resolution of 10,

20, and 40, respectively. It is observed that the 20 and
40 results overlap each other, which shows that the DGF con-

verges very well. It is well known that in the traditional FDTD
method, results can be improved by reducing the cell sizes to
produce better modeling of an antenna or scatter. While no exact
rule exists for the minimum cell size, a rule of thumb of no cell’s
being larger than 10 is generally accepted. For the DGF ap-
proach, the same principle applies and since the method is de-
rived directly from the FDTD equations, it can be deduced that
the same rule of thumb will apply. However, it has been noticed
that by combining with fast Fourier transform, the resolution
used in the DGF method can actually decrease to Nyquist in-
terval. This happens for the case of DGF as ABCs, which will
not be discussed in detail here.

C. The Modeling of a Yagi–Uda Array

DGF-FDTD is applied to the modeling of a 15-element
Yagi–Uda array. The reflector is positioned 0.15 away from
the driven element and has a length of 0.7 and the driven
element has a length of 0.5 . Thirteen directors each of length
0.4 are evenly spaced with an element spacing of 0.35 . The
first director is also set at a distance of 0.35 away from the
driven element. Figs. 3 and 4, respectively, are the E-plane and
H-plane power patterns for the 15-element Yagi–Uda array at
300 MHz. Numerical results from NEC are also shown in the
same graphs for the purpose of comparison. It is seen from these
graphs that the number of lobes in both results are the same

Fig. 3. E-plane power pattern of a 15-element Yagi–Uda array at 300 MHz.

Fig. 4. H-plane power pattern of a 15-element Yagi–Uda array at 300 MHz.

and that the main lobes from both DGF and NEC overlap each
other while there is a slight difference between the side lobes
and a larger difference between the back lobes. The reasons
for the discrepancy are, first, the frequency resolution of the
postprocessing code which decides the available frequencies
depends on the number of time steps and the spatial steps used
in the main program; secondly, the DGF code has an inherent
zero wire radius. Better agreement can be achieved by padding
the raw data file with zeros and run in the fast Fourier transform
for a larger number of time steps.

D. Computational Complexity

For the traditional FDTD method, the number of nodal field
points in the spatial grid increases with , where is the spa-
tial dimension of the structure, while the number of time steps
needed for convergence increases linearly. Combining these fea-
tures together, the net run time for FDTD will increase as .
For the method of moments with large problems the run time
will be dominated by the solution of the linear equation set. The
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matrix size will be equal to the number of wire segments,
and this will vary with . For all numerical methods (NEC
uses Gaussian elimination), the time needed to obtain the linear
equation solution or invert the matrix will, in the limit, vary with

, so that the overall run time will vary with .
The recorded computation time for the 15-element Yagi–Uda

array using the DGF-FDTD method is approximately 3 min
when run on a PIII 733 MHz desktop, which is almost as fast
as NEC, but a five times improvement over the 15 min taken
when using XFDTD (a commercial FDTD package), which uses
the classic FDTD formulation. This significant improvement in
computational time using DGF-FDTD method will help to in-
crease the efficiency of the traditional FDTD method greatly
when the two methods work together as a hybird method, which
will be investigated in further papers.

IV. CONCLUSION

The analytical formulation of the discrete Green’s function
formulation of the FDTD method has been deduced for the 1-D,
2-D, and 3-D cases. The DGF formulation of the FDTD equa-
tions can determine the field value at any grid point and time
step directly. As a result it does not require the computation of
free-space nodes and the need for ABCs. The use of the DGF
technique in advanced FDTD applications has some potentially
significant benefits. It has been shown that a single boundary
point at which DGF can be applied as an ABC has similar per-
formance to a ten-layer perfectly matched layer. By studying a
Yagi–Uda array, it is also shown that the DGF method can lead
to savings in memory. More promising applications of the DGF
method can be taken as future work.
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