
Chapter 6

Digital Modulation

From Introduction to Communication Systems
Copyright by Upamanyu Madhow, 2008-2010

+1

Bit−to−Symbol Map
0      +1
1       −1

...Pulse
Modulation...0110100...

...
+1

−1 −1

+1

T
Symbol interval

−1

+1

Figure 6.1: Running example: Binary antipodal signaling using a timelimited pulse.

Digital modulation is the process of translating bits to analog waveforms that can be sent over
a physical channel. Figure 6.1 shows an example of a baseband digitally modulated waveform,
where bits that take values in {0, 1} are mapped to symbols in {+1,−1}, which are then used
to modulate translates of a rectangular pulse, where the translation corresponding to successive
symbols is the symbol interval T . The modulated waveform can be represented as

u(t) =
∑

n

b[n]p(t− nT ) (6.1)

where {b[n]} is a sequence of symbols in {−1,+1}, and p(t) is the modulating pulse. This
is an example of a widely used form of digital modulation termed linear modulation, where
the transmitted signal depends linearly on the symbols to be sent. Our treatment of linear
modulation in this chapter generalizes this example in several ways. The modulated signal in
Figure 6.1 is a baseband signal, but what if we are constrained to use a passband channel (e.g., a
wireless cellular system operating at 900 MHz)? One way to handle this to simply translate this
baseband waveform to passband by upconversion; that is, send up(t) = u(t) cos 2πfct, where the
carrier frequency fc lies in the desired frequency band. However, what if the frequency occupancy
of the passband signal is strictly constrained? (Such constraints are often the result of guidelines
from standards or regulatory bodies, and serve to limit interference between users operating in
adjacent channels.) Clearly, the timelimited modulation pulse used in Figure 6.1 spreads out
significantly in frequency. We must therefore learn to work with modulation pulses which are
better constrained in frequency. We may also wish to send information on both the I and Q
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components. Finally, we may wish to pack in more bits per symbol; for example, we could send
2 bits per symbol by using 4 levels, say {±1,±3}.
Plan: We first develop an understanding of the structure of linearly modulated signals, using the
binary modulation in Figure 6.1 to lead into variants of this example corresponding to different
signaling constellations which can be used for baseband and passband channels. We discuss how
to quantify the bandwidth of linearly modulated signals by computing the power spectral density.
Since the receiver does not know the bits being sent, they can be modeled as random, which
implies that the modulated signal is a random process. We compute the power spectral density for
this random process in order to determine how bandwidth depends on the choice of modulation
pulse and the statistics of the transmitted symbols. With these basic insights in place, we turn
to a discussion of modulation for bandlimited channels, treating signaling over baseband and
passband channels in a unified framework using the complex baseband representation. We note,
invoking Nyquist’s sampling theorem to determine the degrees of freedom offered by bandlimited
channels, that linear modulation with a bandlimited modulation pulse can be used to fill all of
these degrees of freedom. We discuss how to design bandlimited modulation pulses based on the
Nyquist criterion for intersymbol interference (ISI) avoidance. Finally, we discuss some other
forms of modulation, including orthogonal and biorthogonal modulation.

6.1 Signal Constellations
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Figure 6.2: BPSK illustrated for fc =
4
T
and symbol sequence +1,−1,−1. The solid line corre-

sponds to the passband signal up(t), and the dashed line to the baseband signal u(t). Note that,
due to the change in sign between the first and second symbols, there is a phase discontinuity of
π at t = T .

The signal in Figure 6.1 is a baseband waveform: while it is timelimited and hence cannot be
strictly bandlimited, it is approximately bandlimited to a band around DC. Now, if we are given
a passband channel over which to send the information encoded in this waveform, one easy
approach is to send the passband signal

up(t) = u(t) cos 2πfct (6.2)
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where fc is the carrier frequency. That is, the modulated baseband signal is sent as the I
component of the passband signal. To see what happens to the passband signal as a consequence
of the modulation, we plot it in Figure 6.2. For the nth symbol interval nT ≤ t < (n + 1)T , we
have up(t) = cos 2πfct if b[n] = +1, and up(t) = − cos 2πfct = cos(2πfct+ π) if b[n] = −1. Thus,
binary antipodal modulation switches the phase of the carrier between two values 0 and π, which
is why it is termed Binary Phase Shift Keying (BPSK) when applied to a passband channel:

We know from Chapter 2 that any passband signal can be represented in terms of two real-valued
baseband waveforms, the I and Q components.

up(t) = uc(t) cos 2πfct− us(t) sin 2πfct

The complex envelope of up(t) is given by u(t) = uc(t) + jus(t). For BPSK, the I component is
modulated using binary antipodal signaling, while the Q component is not used, so that u(t) =
uc(t). However, noting that the two signals, uc(t) cos 2πfct and us(t) sin 2πfct are orthogonal
regardless of the choice of uc and us, we realize that we can modulate both I and Q components
independently, without affecting their orthogonality. In this case, we have

uc(t) =
∑

n

bc[n]p(t− nT ), us(t) =
∑

n

bs[n]p(t− nT )

The complex envelope is given by

u(t) = uc(t) + jus(t) =
∑

n

(bc[n] + jbs[n]) p(t− nT ) =
∑

n

b[n]p(t− nT ) (6.3)

where {b[n] = bc[n] + jbs[n]} are complex-valued symbols.
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Figure 6.3: QPSK illustrated for fc = 4
T
, with symbol sequences {bc[n]} = {+1,−1,−1} and

{bs[n]} = {−1,+1,−1}. The phase of the passband signal is −π/4 in the first symbol interval,
switches to 3π/4 in the second, and to −3π/4 in the third.

Let us see what happens to the passband signal when bc[n], bs[n] each take values in {±1 ± j}.
For the nth symbol interval nT ≤ t < (n+ 1)T :
up(t) = cos 2πfct− sin 2πfct =

√
2 cos (2πfct+ π/4) if bc[n] = +1, bs[n] = +1;

up(t) = cos 2πfct + sin 2πfct =
√
2 cos (2πfct− π/4) if bc[n] = +1, bs[n] = −1;
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up(t) = − cos 2πfct− sin 2πfct =
√
2 cos (2πfct+ 3π/4) if bc[n] = −1, bs[n] = +1;

up(t) = − cos 2πfct + sin 2πfct =
√
2 cos (2πfct− 3π/4) if bc[n] = −1, bs[n] = −1.

Thus, the modulation causes the passband signal to switch its phase among four possibilities,
{±π/4,±3π/4}, as illustrated in Figure 6.3, which is why we call it Quadrature Phase Shift
Keying (QPSK).

Equivalently, we could have seen this from the complex envelope. Note that the QPSK symbols
can be written as b[n] =

√
2ejθ[n], where θ[n]∈ {±π/4,±3π/4}. Thus, over the nth symbol, we

have

up(t) = Re
(

b[n]ej2πfct
)

= Re
(√

2ejθ[n]ej2πfct
)

=
√
2 cos (2πfct+ θ[n]) , nT ≤ t < (n + 1)T

This indicates that it is actually easier to figure out what is happening to the passband signal
by working with the complex envelope. We therefore work in the complex baseband domain for
the remainder of this chapter.

In general, the complex envelope for a linearly modulated signal is given by

u(t) =
∑

n

b[n]p(t− nT )

where b[n] = bc[n] + jbs[n] = r[n]ejθ[n] can be complex-valued. We can view this as bc[n] mod-
ulating the I component and bs[n] modulating the Q component, or as scaling the envelope by
r[n] and switching the phase by θ[n]. The set of values that each symbol can take is called the
signaling alphabet, or constellation. We can plot the constellation in a two-dimensional plot,
with the x-axis denoting the real part bc[n] (corresponding to the I component) and the y-axis
denoting the imaginary part bs[n] (corresponding to the Q component). Indeed, this is why
linear modulation over passband channels is also termed two-dimensional modulation. Note
that this provides a unified description of constellations that can be used over both baseband
and passband channels: for physical baseband channels, we simply constrain b[n] = bc[n] to be
real-valued, setting bs[n] = 0.

Figure 6.4 shows some common constellations. Pulse Amplitude Modulation (PAM) corresponds
to using multiple amplitude levels along the I component (setting the Q component to zero).
This is often used for signaling over physical baseband channels. Using PAM along both I and Q
axes corresponds to Quadrature Amplitude Modulation (QAM). If the constellation points lie on
a circle, they only affect the phase of the carrier: such signaling schemes are termed Phase Shift
Keying (PSK). When naming a modulation scheme, we usually indicate the number of points
in the constellations. BPSK and QPSK are special: BPSK (or 2PSK) can also be classified as
2PAM, while QPSK (or 4PSK) can also be classified as 4PAM.

Each symbol in a constellation of size M can be uniquely mapped to log2M bits. For a symbol
rate of 1/T symbols per unit time, the bit rate is therefore log2 M

T
bits per unit time. Since the

transmitted bits often contain redundancy due to a channel code employed for error correction or
detection, the information rate is typically smaller than the bit rate. The choice of constellation
for a particular application depends on considerations such as power-bandwidth tradeoffs and
implementation complexity. We shall discuss these issues once we develop more background.
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Figure 6.4: Some commonly used constellations. Note that 2PAM and 4PAM can be used over
both baseband and passband channels, while the two-dimensional constellations QPSK, 8PSK
and 16QAM are for use over passband channels.

6.2 Bandwidth Occupancy

Bandwidth is a precious commodity, hence it is important to quantify the frequency occupancy
of communication signals. To this end, consider the complex envelope of a linearly modulated
signal (the two-sided bandwidth of this complex envelope equals the physical bandwidth of the
corresponding passband signal), which has the form:

u(t) =
∑

n

b[n]p(t− nT ) (6.4)

The complex-valued symbol sequence {b[n]} is modeled as a discrete-time random process. Mod-
eling the sequence as random at the transmitter makes sense because the latter does not control
the information being sent (e.g., it depends on the specific computer file or digital audio signal
being sent). Since this information is mapped to the symbols in some fashion, it follows that the
symbols themselves are also random rather than deterministic. Modeling the symbols as random
at the receiver makes even more sense, since the receiver by definition does not know the symbol
sequence (otherwise there would be no need to transmit). Thus, in the running example in Fig-
ure 6.1, we might choose to model the symbols as i.i.d., taking values ±1 with equal probability.
Of course, depending on the application, such an i.i.d. model may not be strictly applicable.
For example, we may wish to enforce constraints such as not having too long a run of symbols
of the same sign (which is unlikely but possible), in order to avoid loss of synchronism or DC
bias. We may also wish to insert dependencies in the symbol sequence in order to shape the
spectrum of the modulated signal (this is explored in the problems). Despite such caveats, it is
usually reasonable to model {b[n]} as being i.i.d., taking values with equal probability from the
signaling constellation. The constellation itself is typically chosen such that the center of mass
of the points is at the origin (this is the case for all the constellations in Figure 6.4, for example),
so that choosing all points with equal probability does yield zero DC.

Let us now compute the time-averaged PSD for a sample path of the form (6.4). Recall from
Chapter 4 that the steps for computing the PSD for a finite-power signal u(t) are as follows:
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(a) timelimit to a finite observation interval of length To to get a finite energy signal uTo
(t);

(b) compute the Fourier transform UTo
(f), and hence obtain the energy spectral density |UTo

(f)|2;
(c) estimate the PSD as Ŝu(f) =

|UTo
(f)|2

T0
, and take the limit T0 → ∞ to obtain Su(f).

Consider the observation interval [−NT,NT ], which fits roughly 2N symbols. Unlike our running
example, in general, the modulation pulse p(t) need not be timelimited to the symbol duration
T . However, we can neglect the edge effects caused by this, since we eventually take the limit as
the observation interval gets large. Thus, we can write

uTo
(t) ≈

N
∑

n=−N

b[n]p(t − nT )

Taking the Fourier transform, we obtain

UTo
(f) =

N
∑

n=−N

b[n]P (f)e−j2πfnT

The energy spectral density is therefore given by

|UTo
(f)|2 = UTo

(f)U∗
To
(f) =

N
∑

n=−N

b[n]P (f)e−j2πfnT
N
∑

m=−N

b∗[m]P ∗(f)ej2πfmT

where we need to use two different dummy variables, n and m, for the summations corresponding
to UTo

(f) and U∗
To
(f), respectively. Thus,

|UTo
(f)|2 = |P (f)|2

N
∑

m=−N

N
∑

n=−N

b[n]b∗[m]e−j2π(m−n)fT

and the PSD is estimated as

Ŝu(f) =
|UTo

(f)|2
2NT

=
|P (f)|2
T

{ 1

2N

N
∑

m=−N

N
∑

n=−N

b[n]b∗[m]e−j2πf(n−m)T } (6.5)

Thus, the PSD factors into two components: the first is a term |P (f)|2

T
that depends on the

spectrum of the modulation pulse p(t), while the second term (in curly brackets) Even without
simplifying further, we see that the PSD factors into two components depends on the symbol
sequence {b[n]}. Let us now work on simplifying the latter. Grouping terms of the formm = n−k
for each fixed k, we can rewrite this term as

1

2N

N
∑

m=−N

N
∑

n=−N

b[n]b∗[m]e−j2πf(n−m)T =
∑

k

1

2N

N
∑

n=−N

b[n]b∗[n− k]e−j2πfkT (6.6)

Note that we have been deliberately sloppy about the limits of summation in n on the right-hand
side to avoid messy notation. Actually, since −N ≤ m = n − k ≤ N , we have the constraint
−N + k ≤ n ≤ N + k in addition to the constraint −N ≤ n ≤ N . Thus, the summation in n
should go from n = −N to n = N + k for k < 0, and n = −N + k to n = N for k ≥ 0. However,
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these edge effects become negligible when we let N get large while keeping k fixed. When we do
this, we get

lim
N→∞

1

2N

N
∑

n=−N

b[n]b∗[n− k] = Rb[k]

where Rb[k] = b[n]b∗[n− k] is the empirical autocorrelation function of the symbol sequence.
Thus, as we take the limit N → ∞ in (6.5), we obtain

Su(f) =
|P (f)|2
T

∑

k

Rb[k]e
−j2πfkT (6.7)

Thus, we see that the PSD depends both on the modulating pulse p(t) and on the properties
of the symbol sequence {b[n]}. We explore how the dependence on the symbol sequence can
be exploited for shaping the spectrum in the problems. However, for most settings of interest,
the symbol sequence can be modeled as uncorrelated and zero mean, In this case, Rb[k] = 0 for
k 6= 0. In order to emphasize the importance of the expression for PSD in this special case, we
state the result, which follows by specializing (6.7), as a theorem.

Theorem 6.2.1 (PSD of a linearly modulated signal) Consider a linearly modulated signal

u(t) =
∑

n

b[n]p(t− nT )

where the symbol sequence {b[n]} is zero mean and uncorrelated with Rb[0] = |b[n]|2 = σ2
b . Then

the PSD is given by

Su(f) =
|P (f)|2
T

σ2
b (6.8)

and the power of the modulated signal is

Pu =
σ2
b ||p||2
T

(6.9)

where ||p||2 denotes the energy of the modulating pulse.

The PSD expression follows from specializing (6.7). The expression for power follows from
integrating the PSD:

Pu =

∫ ∞

−∞

Su(f)df =
σ2
b

T

∫ ∞

−∞

|P (f)|2df =
σ2
b

T

∫ ∞

−∞

|p(t)|2dt = σ2
b ||p||2
T

where we have used Parseval’s identity.

An intuitive interpretation of this theorem is as follows. Every T time units, we send a pulse
of the form b[n]p(t − nT ) with average energy spectral density σ2

b |P (f)|2, so that the PSD is
obtained by dividing this by T . The same reasoning applies to the expression for power: every
T time units, we send a pulse b[n]p(t − nT ) with average energy σ2

b ||p||2, so that the power is
obtained by dividing by T . The preceding intuition does not apply when successive symbols are
correlated, in which case we get the more complicated expression (6.7) for the PSD.

Bandwidth definitions: Once we know the PSD, we can define the bandwidth of u in a number
of ways:
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3 dB bandwidth: For symmetric Su(f) with a maximum at f = 0, the 3 dB bandwidth B3dB

is defined by Su(B3dB/2) = Su(−B3dB/2) = 1
2
Su(0). That is, the 3 dB bandwidth is the size

of the interval between the points at which the PSD is 3 dB, or a factor of 1
2
, smaller than its

maximum value.
Fractional power containment bandwidth. This is the size of the smallest interval that
contains a given fraction of the power. For example, for symmetric Su(f), the 99% fractional
power containment bandwidth B is defined by

∫ B/2

−B/2

Su(f)df = 0.99Pu = 0.99

∫ ∞

−∞

Su(f)df

(replace 0.99 in the preceding equation by any desired fraction γ to get the corresponding γ
power containment bandwidth).

Time/frequency normalization: Before we discuss examples in detail, let us simplify our
life by making a simple observation on time and frequency scaling. Suppose we have a linearly
modulated system operating at a symbol rate of 1/T , as in (6.4). We can think of it as a
normalized system operating at a symbol rate of one, where the unit of time is T . This implies
that the unit of frequency is 1/T . In terms of these new units, we can write the linearly modulated
signal as

u1(t) =
∑

n

b[n]p1(t− n)

where p1(t) is the modulation pulse for the normalized system. For example, for a rectangular
pulse timelimited to the symbol interval, we have p1(t) = I[0,1](t). Suppose now that the band-
width of the normalized system (computed using any definition that we please) is B1. Since
the unit of frequency is 1/T , the bandwidth in the original system is B1/T . Thus, in terms of
determining frequency occupancy, we can work, without loss of generality, with the normalized
system. What we are really doing is working with t/T and fT in the original system.

It is instructive to work through the algebra to make the preceding argument concrete. We know
that we can go from the normalized system (operating at symbol rate one) to the original system
(operating at symbol rate 1/T ) by time-scaling u1 by T ; that is, by setting u(t) = u1(t/T ). This
means that u(αT ) = u1(α), so that when αT units of time elapse in the original system, α units
of time elapse in the normalized system. The time scaling yields

u(t) = u1(t/T ) =
∑

n

b[n]p1(t/T − n) =
∑

n

b[n]p1

(

t− nT

T

)

=
∑

n

b[n]p(t− nT )

where p(t) = p1(t/T ) is the time-scaled modulation pulse. For example, for p1(t) = I[0,1](t), we
obtain p(t) = I[0,T ](t) after time scaling. What does this say about the PSD? Suppose that the
PSD of the normalized system is Su1

(f). Then the PSD of the original system is proportional to
Su1

(fT ), where the proportionality constant is chosen based on our normalization assumptions.
If we define the normalized system simply as a time-scaled version of the original system, the
signal power in both systems is the same, hence we must choose the proportionality constant
such that

∫∞

−∞
Su(f)df =

∫∞

−∞
Su1

(f)df . This implies (check for yourself!) that

Su(f) = TSu1
(fT )

Since bandwidth depends on the shape of the PSD rather than its scaling, and since the propor-
tionality constant would change if we decided to scale amplitude as well as time, we feel free to
be sloppy about the preceding proportionality constant and often set Su(f) = Su1

(fT ).
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Figure 6.5: PSD corresponding to rectangular and sine timelimited pulses. The main lobe of the
PSD is broader for the sine pulse, but its 99% power containment bandwidth is much smaller.

Rectangular pulse: Without loss of generality, consider a normalized system with p1(t) =
I[0,1](t), for which P1(f) = sinc(f)e−jπf . For {b[n]} i.i.d., taking values ±1 with equal probability,
we have σ2

b = 1. Applying (6.8), we obtain

Su1
(f) = σ2

b sinc
2(f) (6.10)

Integrating, or applying (6.9), we obtain Pu = σ2
b . The scale factor of σ2

b is not important, since
it drops out for any definition of bandwidth. We therefore set it to σ2

b = 1. The PSD for the
rectangular pulse, along with that for a sine pulse introduced shortly, is plotted in Figure 6.5.
Note that the PSD for the rectangular pulse has much fatter tails, which does not bode well for
its bandwidth efficiency. For the fractional power containment bandwidth with fraction γ, we
have the equation

∫ B1/2

−B1/2

sinc2fdf = γ

∫ ∞

−∞

sinc2fdf = γ

∫ 1

0

12dt = γ

using Parseval’s identity. We therefore obtain, using the symmetry of the PSD, that the band-
width is the numerical solution to the equation

∫ B1/2

0

sinc2fdf = γ/2 (6.11)

For example, for γ = 0.99, we obtain B1 = 10.2, while for γ = 0.9, we obtain B1 = 0.85.
Thus, if we wish to be strict about power containment (e.g., in order to limit adjacent channel
interference in wireless systems), the rectangular timelimited pulse is a very poor choice. On the
other hand, in systems where interference or regulation are not significant issues (e.g., low-cost
wired systems), this pulse may be a good choice because of its ease of implementation using
digital logic.

Example 6.2.1 (Bandwidth computation): A passband system operating at a carrier fre-
quency of 2.4 GHz at a bit rate of 20 Mbps. A rectangular modulation pulse timelimited to the
symbol interval is employed.
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(a) Find the 99% and 90% power containment bandwidths if the constellation used is 16-QAM.
(b) Find the 99% and 90% power containment bandwidths if the constellation used is QPSK.
Solution:
(a) The 16-QAM system sends 4 bits/symbol, so that the symbol rate 1/T equals 20 Mbits/sec

4 bits/symbol
= 5

Msymbols/sec. Since the 99% power containment bandwidth for the normalized system is
B1 = 10.2, the required bandwidth is B1/T = 51 MHz. Since the 90% power containment
for the normalized system is B1 = 0.85, the required bandwidth B1/T equals 4.25 MHz.
(b) The QPSK system sends 2 bits/symbol, so that the symbol rate is 10 Msymbols/sec. The
bandwidths required are therefore double those in (a): the 99% power containment bandwidth
is 102 MHz, while the 90% power containment bandwidth is 8.5 MHz.
Clearly, when the criterion for defining bandwidth is the same, then 16-QAM consumes half the
bandwidth compared to QPSK for a fixed bit rate. However, it is interesting to note that, for
the rectangular timelimited pulse, a QPSK system where we are sloppy about power leakage
(90% power containment bandwidth of 8.5 MHz) can require far less bandwidth than a system
using a more bandwidth-efficient 16-QAM constellation where we are strict about power leakage
(99% power containment bandwidth of 51 MHz). This extreme variation of bandwidth when we
tweak definitions slightly is because of the poor frequency domain containment of the rectangular
timelimited pulse. Thus, if we are serious about limiting frequency occupancy, we need to think
about more sophisticated designs for the modulation pulse.

Smoothing out the rectangular pulse: A useful alternative to using the rectangular pulse,
while still keeping the modulating pulse timelimited to a symbol interval, is the sine pulse, which
for the normalized system equals

p1(t) =
√
2 sin(πt) I[0,1](t)

Since the sine pulse does not have the sharp edges of the rectangular pulse in the time domain,
we expect it to be more compact in the frequency domain. Note that we have normalized the
pulse to have unit energy, as we did for the normalized rectangular pulse. This implies that the
power of the modulated signal is the same in the two cases, so that we can compare PSDs under
the constraint that the area under the PSDs remains constant. Setting σ2

b and using (6.8), we
obtain (see Problem 6.5):

Su1
(f) = |P1(f)|2 =

8

π2

cos2 πf

(1− 4f 2)2
(6.12)

Proceeding as we did for obtaining (6.11), the fractional power containment bandwidth for frac-
tion γ is given by the formula:

∫ B1/2

0

8

π2

cos2 πf

(1− 4f 2)2
df = γ/2 (6.13)

For γ = 0.99, we obtain B1 = 1.2, which is an order of magnitude improvement over the
corresponding value of B1 = 10.2 for the rectangular pulse.

While the sine pulse has better frequency domain containment than the rectangular pulse, it is
still not well-suited for use over strictly bandlimited channels. We discuss pulse design for such
channels next.
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6.3 Design for Bandlimited Channels

Suppose that you are told to design your digital communication system so that the transmitted
signal fits between 2.39 and 2.41 GHz; that is, you are given a passband channel of bandwidth 20
MHz at a carrier frequency of 2.4 GHz. Any signal that you transmit over this band has a complex
envelope with respect to 2.4 GHz that occupies a band from -10 MHz to 10 MHz. Similarly, the
passband channel (modeled as an LTI system) has an impulse response whose complex envelope is
bandlimited from -10 MHz to 10 MHz. In general, for a passband channel or signal of bandwidth
W , with an appropriate choice of reference frequency, we have a corresponding complex baseband
signal spanning the band [−W/2,W/2]. Thus, we restrict our design to the complex baseband
domain, with the understanding that the designs can be translated to passband channels by
upconversion of the I and Q components at the transmitter, and downconversion at the receiver.
Also, note that the designs specialize to physical baseband channels if we restrict the baseband
signals to be real-valued.

6.3.1 Nyquist’s Sampling Theorem and the Sinc Pulse

Our first step in understanding communication system design for such a bandlimited channel is
to understand the structure of bandlimited signals. To this end, suppose that the signal s(t) is
bandlimited to [−W/2,W/2]. We can now invoke Nyquist’s sampling theorem (proof postponed
to later in this section) to express the signal in terms of its samples at rate W .

Theorem 6.3.1 (Nyquist’s sampling theorem) Any signal s(t) bandlimited to [−W
2
, W

2
] can

be described completely by its samples {s( n
W
)} at rate W . The signal s(t) can be recovered from

its samples using the following interpolation formula:

s(t) =
∞
∑

n=−∞

s
( n

W

)

p
(

t− n

W

)

(6.14)

where p(t) = sinc(Wt).

Degrees of freedom: What does the sampling theorem tell us about digital modulation? The
interpolation formula (6.14) tells us that we can interpret s(t) as a linearly modulated signal
with symbol sequence equal to the samples {s(n/W )}, symbol rate 1/T equal to the bandwidth
W , and modulation pulse given by p(t) = sinc(Wt) ↔ P (f) = 1

W
I[−W/2,W/2](f). Thus, linear

modulation with the sinc pulse is able to exploit all the “degrees of freedom” available in a
bandlimited channel.

Signal space: If we signal over an observation interval of length To using linear modulation
according to the interpolation formula (6.14), then we have approximately WTo complex-valued
samples. Thus, while the signals we send are continuous-time signals, which in general, lie in an
infinite-dimensional space, the set of possible signals we can send in a finite observation interval
of length To live in a complex-valued vector space of finite dimension WTo, or equivalently, a
real-valued vector space of dimension 2WTo. Such geometric views of communication signals as
vectors, often termed signal space concepts, are particularly useful in design and analysis, as we
explore in more detail in Chapter 7.
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Figure 6.6: Three successive sinc pulses (each pulse is truncated to a length of 10 symbol intervals
on each side) modulated by +1,-1,+1. The actual transmitted signal is the sum of these pulses
(not shown). Note that, while the pulses overlap, the samples at t = 0, T, 2T are equal to the
transmitted bits because only one pulse is nonzero at these times.

The concept of Nyquist signaling: Since the sinc pulse is not timelimited to a symbol interval,
in principle, the symbols could interfere with each other. The time domain signal corresponding
to a bandlimited modulation pulse such as the sinc spans an interval significantly larger than the
symbol interval (in theory, the interval is infinitely large, but we always truncate the waveform
in implementations). This means that successive pulses corresponding to successive symbols
which are spaced by the symbol interval (i.e., b[n]p(t − nT ) as we increment n) overlap with,
and therefore can interfere with, each other. Figure 6.6 shows the sinc pulse modulated by three
bits, +1,-1,+1. While the pulses corresponding to the three symbols do overlap, notice that, by
sampling at t = 0, t = T and t = 2T , we can recover the three symbols because exactly one of the
pulses is nonzero at each of these times. That is, at sampling times spaced by integer multiples
of the symbol time T , there is no intersymbol interference. We call such a pulse Nyquist for
signaling at rate 1

T
, and we discuss other examples of such pulses soon. Designing pulses based

on the Nyquist criterion allows us the freedom to expand the modulation pulses in time beyond
the symbol interval, while ensuring that there is no ISI at appropriately chosen sampling times
despite significant overlap between successive pulses.

The problem with sinc: Are we done then? Should we just use linear modulation with a sinc
pulse when confronted with a bandlimited channel? Unfortunately, the answer is no: just as the
rectangular timelimited pulse decayed too slowly in frequency, the rectangular bandlimited pulse,
corresponding to the sinc pulse in the time domain, decays too slowly in time. Let us see what
that does. Figure 6.7 shows a plot of the modulated waveform for a bit sequence of alternating
sign. At the correct sampling times, there is no ISI. However, if we consider a small timing error
of 0.25T , the ISI causes the sample value to drop drastically, making the system more vulnerable
to noise. What is happening is that, when there is a small sampling offset, we can make the ISI
add up to a large value by choosing the interfering symbols so that their contributions all have
signs opposite to that of the desired symbol at the sampling time. Since the sinc pulse decays
as 1/t, the ISI created for a given symbol by an interfering symbol which is n symbol intervals
away decays as 1/n, so that, in the worst-case, the contributions from the interfering symbols

12
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Figure 6.7: The baseband signal for 10 BPSK symbols of alternating signs, modulated using the
sinc pulse. The first symbol is +1, and the sample at time t = 0, marked with ’x’, equals +1, as
desired (no ISI). However, if the sampling time is off by 0.25T , the sample value, marked by ’+’,
becomes much smaller because of ISI. While it still has the right sign, the ISI causes it to have
significantly smaller noise immunity.
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roughly have the form
∑

n
1
n
, a series that is known to diverge. Thus, in theory, if we do not

truncate the sinc pulse, we can make the ISI arbitrarily large when there is a small timing offset.
In practice, we do truncate the modulation pulse, so that we only see ISI from a finite number
of symbols. However, even when we do truncate, as we see from Figure 6.7, the slow decay of
the sinc pulse means that the ISI adds up quickly, and significantly reduces the margin of error
when noise is introduced into the system.

While the sinc pulse may not be a good idea in practice, the idea of using bandwidth-efficient
Nyquist pulses is a good one, and we now develop it further.

6.3.2 Nyquist Criterion for ISI Avoidance

Nyquist signaling: Consider a linearly modulated signal

u(t) =
∑

n

b[n]p(t− nT )

We say that the pulse p(t) is Nyquist (or satisfies the Nyquist criterion) for signaling at rate 1
T

if the symbol-spaced samples of the modulated signal are equal to the symbols (or a fixed scalar
multiple of the symbols); that is, u(kT ) = b[k] for all k, so that there is no ISI at appropriately
chosen sampling times.

In the time domain, it is quite easy to see what is required to satisfy the Nyquist criterion. The
samples u(kT ) =

∑

n b[n]p(kT − nT ) = b[k] (or a scalar multiple of b[k]) for all k if and only
if p(0) = 1 (or some nonzero constant) and p(mT ) = 0 for all integers m 6= 0. However, for
design of bandwidth efficient pulses, it is important to characterize the Nyquist criterion in the
frequency domain. This is given by the following theorem.

Theorem 6.3.2 (Nyquist criterion for ISI avoidance): The pulse p(t) ↔ P (f) is Nyquist
for signaling at rate 1

T
if

p(mT ) = δm0 =

{

1 m = 0
0 m 6= 0

(6.15)

or equivalently,
1

T

∞
∑

k=−∞

P (f +
k

T
) = 1 for all f (6.16)

The proof of this theorem is postponed to Section 6.3.5, where we show that both the Nyquist
sampling theorem, Theorem 6.3.1, and the preceding theorem are based on the same mathemat-
ical result, that the samples of a time domain signal have a one-to-one mapping with the sum of
translated (or aliased) versions of its Fourier transform.

In this section, we explore the design implications of Theorem 6.3.2. In the frequency domain,
the translates of P (f) by integer multiples of 1/T must add up to a constant. As illustrated by
Figure 6.8, the minimum bandwidth pulse for which this happens is one that is ideal bandlimited
over an interval of length 1/T .

Minimum bandwidth Nyquist pulse: The minimum bandwidth Nyquist pulse is

P (f) =

{

T |f | ≤ 1
2T

0 else

14



Not Nyquist

P(f)P(f + 1/T) P(f − 1/T)

1/T

f

... ...... ...
P(f)P(f + 1/T) P(f − 1/T)

1/T

f

Nyquist with minimum bandwidth

Figure 6.8: The minimum bandwidth Nyquist pulse is a sinc.

corresponding to the time domain pulse

p(t) = sinc(t/T )

As we have already discussed, the sinc pulse is not a good choice in practice because of its slow
decay in time. To speed up the decay in time, we must expand in the frequency domain, while
conforming to the Nyquist criterion. The trapezoidal pulse depicted in Figure 6.8 is an example
of such a pulse.

f
(1+a)/(2T)(1−a)/(2T)−(1−a)/(2T)−(1+a)/(2T)

P(f + 1/T) P(f) P(f − 1/T)

Figure 6.9: A trapezoidal pulse which is Nyquist at rate 1/T . The (fractional) excess bandwidth
is a.

The role of excess bandwidth: We have noted earlier that the problem with the sinc pulse
arises because of its 1/t decay and the divergence of the harmonic series

∑∞
n=1

1
n
, which implies

that the worst-case contribution from “distant” interfering symbols at a given sampling instant
can blow up. Using the same reasoning, however, a pulse p(t) decaying as 1/tb for b > 1 should
work, since the series

∑∞
n=1

1
nb does converge for b > 1. A faster time decay requires a slower

decay in frequency. Thus, we need excess bandwidth, beyond the minimum bandwidth dictated
by the Nyquist criterion, to fix the problems associated with the sinc pulse. The (fractional)
excess bandwidth for a linear modulation scheme is defined to be the fraction of bandwidth
over the minimum required for ISI avoidance at a given symbol rate. In particular, Figure 6.9
shows that a trapezoidal pulse (in the frequency domain) can be Nyquist for suitably chosen
parameters, since the translates {P (f+k/T )} as shown in the figure add up to a constant. Since
trapezoidal P (f) is the convolution of two boxes in the frequency domain, the time domain pulse
p(t) is the product of two sinc functions (see Problem 6.1 for details). Since each sinc decays as
1/t, the product decays as 1/t2, which implies that the worst-case ISI with timing mismatch is
indeed bounded.

Raised cosine pulse: Replacing the straight line of the trapezoid with a smoother cosine-
shaped curve in the frequency domain gives us the raised cosine pulse shown in Figure 6.11,
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which has a faster, 1/t3, decay in the time domain.

P (f) =







T |f | ≤ 1−a
2T

T
2
[1− sin((|f | − 1

2T
)πT

a
)] 1−a

2T
≤ |f | ≤ 1+α

2T

0 |f | > 1+a
2T

where a is the fractional excess bandwidth, typically chosen in the range where 0 ≤ a < 1. As
shown in Problem 6.9, the time domain pulse s(t) is given by

p(t) = sinc(
t

T
)
cos πa t

T

1−
(

2at
T

)2

This pulse inherits the Nyquist property of the sinc pulse, while having an additional multiplica-
tive factor that gives an overall ( 1

t3
) decay with time. The faster time decay compared to the

sinc pulse is evident from a comparison of Figures 6.11(b) and 6.10(b).

−1/2 1/2
fT

T

0

X(f)

(a) Frequency domain boxcar

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t/T

(b) Time domain sinc pulse

Figure 6.10: Sinc pulse for minimum bandwidth ISI-free signaling at rate 1/T . Both time and
frequency axes are normalized to be dimensionless.

6.3.3 Bandwidth efficiency

We define the bandwidth efficiency of linear modulation with an M-ary alphabet as

ηB = log2M bits/symbol

The Nyquist criterion for ISI avoidance says that the minimum bandwidth required for ISI-free
transmission using linear modulation equals the symbol rate, using the sinc as the modulation
pulse. For such an idealized system, we can think of ηB as bits/second per Hertz, since the symbol
rate equals the bandwidth. Thus, knowing the bit rate Rb and the bandwidth efficiency ηB of
the modulation scheme, we can determine the symbol rate, and hence the minimum required
bandwidth Bmin. as follows:

Bmin =
Rb

ηB
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(a) Frequency domain raised cosine

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

t/T

(b) Time domain pulse (excess bandwidth a = 0.5)

Figure 6.11: Raised cosine pulse for minimum bandwidth ISI-free signaling at rate 1/T , with
excess bandwidth a. Both time and frequency axes are normalized to be dimensionless.

This bandwidth would then be expanded by the excess bandwidth used in the modulating pulse.
However, this is not included in our definition of bandwidth efficiency, because excess bandwidth
is a highly variable quantity dictated by a variety of implementation considerations. Once we
decide on the fractional excess bandwidth a, the actual bandwidth required is

B = (1 + a)Bmin = (1 + a)
Rb

ηB

6.3.4 The Nyquist criterion at the link level

z(t)

TX  g   (t)
C

g    (t)
RX

Transmit Filter Channel Filter Receive FilterSymbols

rate 1/T

{b[n]}
Sampler

rate 1/T

z(nT)

When is z(nT) = b[n]?
 g    (t)

Figure 6.12: Nyquist criterion at the link level.

Figure 6.12 shows a block diagram for a link using linear modulation, with the entire model
expressed in complex baseband. The symbols {b[n]} are passed through the transmit filter to
obtain the waveform

∑

n b[n]gTX(t − nT ). This then goes through the channel filter gC(t), and
then the receive filter gRX(t). Thus, at the output of the receive filter, we have the linearly
modulated signal

∑

n b[n]p(t − nT ), where p(t) = (gTX ∗ gC ∗ gRX)(t) is the cascade of the
transmit, channel and receive filters. We would like the pulse p(t) to be Nyquist at rate 1/T , so
that, in the absence of noise, the symbol rate samples at the output of the receive filter equal
the transmitted symbols. Of course, in practice, we do not have control over the channel, hence
we often assume an ideal channel, and design such that the cascade of the transmit and receive
filter, given by (gTX ∗ gRX) (t)GTX(f)GRX(f) is Nyquist. One possible choice is to set GTX to
be a Nyquist pulse, and GRX to be a wideband filter whose response is flat over the band of
interest. Another choice that is even more popular is to set GTX(f) and GRX(f) to be square
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roots of a Nyquist pulse. In particular, the square root raised cosine (SRRC) pulse is often used
in practice.

Square root Nyquist pulses and their time domain interpretation: A pulse g(t) ↔ G(f)
is defined to be square root Nyquist at rate 1/T if |G(f)|2 is Nyquist at rate 1/T . Note that
P (f) = |G(f)|2 ↔ p(t) = (g ∗ gMF )(t), where gMF (t) = g∗(−t). The time domain Nyquist
condition is given by

p(mT ) = (g ∗ gMF )(mT ) =

∫

g(t)g∗(t−mT )dt = δm0 (6.17)

That is, a square root Nyquist pulse has an autocorrelation function that vanishes at nonzero
integer multiples of T . In other words, the waveforms {g(t− kT, k = 0,±1,±2, ...} are orthonor-
mal, and can be used to provide a basis for constructing more complex waveforms, as we see
later.

6.3.5 Proofs of the Nyquist theorems

We have used Nyquist’s sampling theorem, Theorem 6.3.1, to argue that linear modulation
using the sinc pulse is able to use all the degrees of freedom in a bandlimited channel. On
the other hand, Nyquist’s criterion for ISI avoidance, Theorem 6.3.2, tells us, roughly speaking,
that we must have enough degrees of freedom in order to avoid ISI (and that the sinc pulse
provides the minimum such degrees of freedom). As it turns out, both theorems are based on
the same mathematical relationship between samples in the time domain and aliased spectra in
the frequency domain, stated in the following theorem.

Theorem 6.3.3 (Sampling and Aliasing): Consider a signal s(t), sampled at rate 1
Ts
. Let

S(f) denote the spectrum of s(t), and let

B(f) =
1

Ts

∞
∑

k=−∞

S(f +
k

Ts
) (6.18)

denote the sum of translates of the spectrum. Then the following observations hold:
(a) B(f) is periodic with period 1

Ts
.

(b) The samples {s(nTs)} are the Fourier series for B(f), satisfying

s(nTs) = Ts

∫ 1

2Ts

− 1

2Ts

B(f)ej2πfnTs df (6.19)

B(f) =
∞
∑

n=−∞

s(nTs)e
−j2πfnTs (6.20)

Remark: Note that the signs of the exponents for the frequency domain Fourier series in the
theorem are reversed from the convention in the usual time domain Fourier series (analogous to
the reversal of the sign of the exponent for the inverse Fourier transform compared to the Fourier
transform).
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Proof of Theorem 6.3.3: The periodicity of B(f) follows by its very construction. To prove
(b), apply the the inverse Fourier transform to obtain

s(nTs) =

∫ ∞

−∞

S(f)ej2πfnTsdf

We now write the integral as an infinite sum of integrals over segments of length 1/T

s(nTs) =

∞
∑

k=−∞

∫

k+1
2

Ts

k−
1
2

Ts

S(f)ej2πfnTsdf

In the integral over the kth segment, make the substitution ν = f − k
Ts

and rewrite it as

∫ 1

2Ts

− 1

2Ts

S(ν +
k

Ts
)ej2π(ν+

k

Ts
)nTsdν =

∫ 1

2Ts

− 1

2Ts

S(ν +
k

Ts
)ej2πνnTsdν

Now that the limits of all segments and the complex exponential in the integrand are the same
(i.e., independent of k), we can move the summation inside to obtain

s(nTs) =
∫

1

2Ts

− 1

2Ts

(

∑∞
k=−∞ S(ν + k

Ts
)
)

ej2πνnTsdν

= Ts
∫

1

2Ts

− 1

2Ts

B(ν)ej2πνnTsdν

proving (6.19). We can now recognize that this is just the formula for the Fourier series coefficients
of B(f), from which (6.20) follows.

 to recover S(f) from B(f)

s 1/Ts
1/TsS(f +         ) 1/TsS(f −         ) 1/TsS(f +         ) 1/TsS(f −         )

W W

f f

S(f) S(f)

Sampling rate not high enough Sampling rate high enough
to recover S(f) from B(f)

1/T

Figure 6.13: Recovering a signal from its samples requires a high enough sampling rate for
translates of the spectrum not to overlap.

Inferring Nyquist’s sampling theorem from Theorem 6.3.3: Suppose that s(t) is ban-
dlimited to [−W

2
, W

2
]. The samples of s(t) at rate 1

Ts
can be used to reconstruct B(f), since they

are the Fourier series for B(f). But S(f) can be recovered from B(f) if and only if the translates
S(f − k

Ts
) do not overlap, as shown in Figure 6.13. This happens if and only if 1

Ts
≥ W . Once

this condition is satisfied, 1
Ts
S(f) can be recovered from B(f) by passing it through an ideal

bandlimited filter H(f) = I[−W/2.W/2](f). We therefore obtain that

1

Ts
S(f) = B(f)H(f) =

∞
∑

n=−∞

s(nTs)e
−j2πfnTsI[−W/2.W/2](f) (6.21)
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Noting that I[−W/2.W/2](f) ↔W sinc(Wt), we have

e−j2πfnTsI[−W/2.W/2](f) ↔W sinc (W (t− nTs))

Taking inverse Fourier transforms, we get the interpolation formula

1

Ts
s(t) =

∞
∑

n=−∞

s(nTs)W sinc (W (t− nTs))

which reduces to (6.14) for 1
Ts

= W . This completes the proof of the sampling theorem, Theorem
6.3.1.

Inferring Nyquist’s criterion for ISI avoidance from Theorem 6.3.3: A Nyquist pulse
p(t) at rate 1/T must satisfy p(nT ) = δn0. Applying Theorem 6.3.3 with s(t) = p(t) and Ts = T ,
it follows immediately from (6.20) that p(nT ) = δn0 (i.e., the time domain Nyquist criterion
holds) if and only if

B(f) =
1

T

∞
∑

k=−∞

P (f +
k

Ts
) = 1

In other words, if the Fourier series only has a DC term, then the periodic waveform it corresponds
to must be constant.

6.3.6 Linear modulation as a building block

Linear modulation can be used as a building block for constructing more sophisticated waveforms,
using discrete-time sequences modulated by square root Nyquist pulses. Thus, one symbol would
be made up of multiple “chips,” linearly modulated by a square root Nyquist “chip waveform.”
Specifically, suppose that ψ(t) is square root Nyquist at a chip rate 1

Tc
. N chips make up

one symbol, so that the symbol rate is 1
Ts

= 1
NTc

, and a symbol waveform is given by linearly
modulating a code vector s = (s[0], ..., s[N − 1]) consisting of N chips, as follows:

s(t) =
N
∑

n=0

s[k]ψ(t− kTc)

Since {ψ(t− kTc)} are orthonormal (see (6.17)), we have simply expressed the code vector in a
continuous time basis. Thus, the continuous time inner product between two symbol waveforms
(which determines their geometric relationships and their performance in noise, as we see in
the next chapter) is equal to the discrete time inner product between the corresponding code
vectors. Specifically, suppose that s1(t) and s2(t) are two symbol waveforms corresponding to
code vectors s1 and s2, respectively. Then their inner product satisfies

〈s1, s2〉 =
N−1
∑

k=0

N−1
∑

l=0

s1[k]s
∗
2[l]

∫

ψ(t− kTc)ψ
∗(t− lTc)dt =

N−1
∑

k=0

s1[k]s
∗
2[k] = 〈s1, s2〉

where we have use the orthonormality of the translates {ψ(t − kTc)}. This means that we can
design discrete time code vectors to have certain desired properties, and then linearly modulate
square root Nyquist chip waveforms to get symbol waveforms that have the same desired prop-
erties. For example, if s1 and s2 are orthogonal, then so are s1(t) and s2(t); we use this in the
next section when we discuss orthogonal modulation.
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Examples of square root Nyquist chip waveforms include a rectangular pulse timelimited to an
interval of length Tc , as well as bandlimited pulses such as the square root raised cosine. From
Theorem 6.2.1, we see that the PSD of the modulated waveform is proportional to |Ψ(f)|2 (it is
typically a good approximation to assume that the chips {s[k]} are uncorrelated). That is, the
bandwidth occupancy is determined by that of the chip waveform ψ.

6.4 Orthogonal and Biorthogonal Modulation

While linear modulation with larger and larger constellations is a means of increasing bandwidth
efficiency, we shall see that orthogonal modulation with larger and larger constellations is a
means of increasing power efficiency (while making bandwidth efficiency smaller). Consider first
M-ary frequency shift keying (FSK), a classical form of orthogonal modulation in which one of
M sinusoidal tones, successively spaced by ∆f , are transmitted every T units of time, where 1

T

is the symbol rate. Thus, the bit rate is log2 M
T

, and for a typical symbol interval, the transmitted
passband signal is chosen from one of M possibilities:

up,k(t) = cos (2π(f0 + k∆f)t) , 0 ≤ t ≤ T, k = 0, 1, ...,M − 1

where we typically have f0 ≫ 1
T
. Taking f0 as reference, the corresponding complex baseband

waveforms are

uk(t) = exp (j2πk∆ft) , 0 ≤ t ≤ T, k = 0, 1, ...,M − 1

Let us now understand how the tones should be chosen in order to ensure orthogonality. Recall
that the passband and complex baseband inner products are related as follows:

〈up,k, up,l〉 =
1

2
Re〈uk, ul〉

so we can develop criteria for orthogonality working in complex baseband. Setting k = l, we see
that

||uk||2 = T

For two adjacent tones, l = k + 1, we leave it as an exercise to show that

Re〈uk, uk+1〉 =
sin 2π∆fT

2π∆f

We see that the minimum value of ∆f for which the preceding quantity is zero is given by
2π∆fT = π, or ∆f = 1

2T
.

From the point of view of the receiver, it means that when there is an incoming wave at the kth
tone, then correlating against the kth tone will give a large output, but correlating against the
(k + 1)th tone will give zero output (in the absence of noise) if the tone spacing is 1

2T
. However,

this assumes a coherent system in which the tones we are correlating against are synchronized in
phase with the incoming wave. What happens if they are 90◦ out of phase? Then correlation of
the kth tone with itself yields

∫ T

0

cos (2π(f0 + k∆f)t) cos
(

2π(f0 + k∆f)t+
π

2

)

dt = 0
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(by orthogonality of the cosine and sine), so that the output we desire to be large is actually zero!
In order to be robust to such variations, we must use noncoherent reception, which we describe
next.

Noncoherent reception: Let us develop the concept of noncoherent reception in generality,
because it is a concept that is useful in many settings, not just for orthogonal modulation. Sup-
pose that we transmit a passband waveform, and wish to detect it at the receiver by correlating
it against the receiver’s copy of the waveform. However, the receiver’s local oscillator may not
be synchronized in phase with the phase of the incoming wave. Let us denote the receiver’s copy
of the signal as

up(t) = uc(t) cos 2πfct− us(t) sin 2πfct

and the incoming passband signal as

yp(t) = yc(t) cos 2πfct− ys(t) sin 2πfct = uc(t) cos (2πfct+ θ)− us(t) sin (2πfct+ θ)

Using the receiver’s local oscillator as reference, the complex envelope of the receiver’s copy is
u(t) = uc + jus(t), while that of the incoming wave is y(t) = u(t)ejθ. Thus, the inner product

〈yp, up〉 =
1

2
Re〈y, u〉 = 1

2
Re〈uejθ, y〉 = 1

2
Re

(

||u||2ejθ
)

=
||u||2
2

cos θ

Thus, the output of the correlator is degraded by the factor cos θ, and can actually become zero,
as we have already observed, if the phase offset θ = π/2. In order to get around this problem,
let us look at the complex baseband inner product again:

〈y, u〉 = 〈uejθ, y〉 = ejθ||u||2

We could ensure that this output remains large regardless of the value of θ if we took its magni-
tude, rather than the real part. Thus, noncoherent reception corresponds to computing |〈y, u〉|
or |〈y, u〉|2. Let us unwrap the complex inner product to see what this entails:

〈y, u〉 =
∫

y(t)u∗(t)dt =

∫

(yc(t)+jys(t))(uc(t)−jus(t))dt = (〈yc, uc〉+ 〈ys, us〉)+j (〈ys, uc〉 − 〈yc, us〉)

Thus, the noncoherent receiver computes the quantity

|〈y, u〉|2 = (〈yc, uc〉+ 〈ys, us〉)2 + (〈ys, uc〉 − 〈yc, us〉)2

In contrast, the coherent receiver computes

Re〈y, u〉 = 〈yc, uc〉+ 〈ys, us〉

That is, when the receiver LO is synchronized to the phase of the incoming wave, we can correlate
the I component of the received waveform with the I component of the receiver’s copy, and
similarly correlate the Q components, and sum them up. However, in the presence of phase
asynchrony, the I and Q components get mixed up, and we must compute the magnitude of the
complex inner product to recover all the energy of the incoming wave. Figure 6.14 shows the
receiver operations corresponding to coherent and noncoherent reception.

Back to FSK: Going back to FSK, if we now use noncoherent reception, then in order to
ensure that we get a zero output (in the absence of noise) when receiving the kth tone with a
noncoherent receiver for the (k + 1)th tone, we must ensure that

|〈uk, uk+1〉| = 0
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Figure 6.14: Structure of coherent and noncoherent receivers.

We leave it as an exercise to show that the minimum tone spacing for noncoherent FSK is 1
T
, which

is double that required for orthogonality in coherent FSK. The bandwidth for coherent M-ary
FSK is approximately M

2T
, which corresponds to a time-bandwidth product of approximately M

2
.

This corresponds to a complex vector space of dimension M
2
, or a real vector space of dimension

M , in which we can fit M orthogonal signals. On the other hand, M-ary noncoherent signaling
requires M complex dimensions, since the complex baseband signals must remain orthogonal
even under multiplication by complex-valued scalars.

Summarizing the concept of orthogonality: To summarize, when we say “orthogonal”
modulation, we must specify whether we mean coherent or noncoherent reception, because the
concept of orthogonality is different in the two cases. For a signal set {sk(t)}, orthogonality
requires that, for k 6= l, we have

Re(〈sk, sl〉) = 0 coherent orthogonality criterion
〈sk, sl〉 = 0 noncoherent orthogonality criterion

(6.22)

Bandwidth efficiency: We conclude from the example of orthogonal FSK that the bandwidth
efficiency of orthogonal signaling is ηB = log2(2M)

M
bits/complex dimension for coherent systems,

and ηB = log2(M)
M

bits/complex dimension for noncoherent systems. This is a general observation
that holds for any realization of orthogonal signaling. In a signal space of complex dimension
D (and hence real dimension 2D), we can fit 2D signals satisfying the coherent orthogonality
criterion, but only D signals satisfying the noncoherent orthogonality criterion. AsM gets large,
the bandwidth efficiency tends to zero. In compensation, as we see in Chapter 7, the power
efficiency of orthogonal signaling for large M is the “best possible.”

Orthogonal Walsh-Hadamard codes

Section 6.3.6 shows how to map vectors to waveforms while preserving inner products, by using
linear modulation with a square root Nyquist chip waveform. Applying this construction, the
problem of designing orthogonal waveforms {si} now reduces to designing orthogonal code vectors
{si}. Walsh-Hadamard codes are a standard construction employed for this purpose, and can
be constructed recursively as follows: at the nth stage, we generate 2n orthogonal vectors, using
the 2n−1 vectors constructed in the n − 1 stage. Let Hn denote a matrix whose rows are 2n

orthogonal codes obtained after the nth stage, with H0 = (1). Then

Hn =

(

Hn−1 Hn−1

Hn−1 −Hn−1

)
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We therefore get

H1 =

(

1 1
1 −1

)

, H2 =









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









, etc.

The signals {si} obtained above can be used for noncoherent orthogonal signaling, since they
satisfy the orthogonality criterion 〈si, sj〉 = 0 for i 6= j. However, just as for FSK, we can fit
twice as many signals into the same number of degrees of freedom if we used the weaker notion of
orthogonality required for coherent signaling, namely Re(〈si, sj〉 = 0 for i 6= j. It is easy to check
that for M-ary Walsh-Hadamard signals {si, i = 1, ...,M}, we can get 2M orthogonal signals
for coherent signaling: {si, jsi, i = 1, ...,M}. This construction corresponds to independently
modulating the I and Q components with a Walsh-Hadamard code; that is, using passband
waveforms si(t) cos 2πfct and −si(t) sin 2πfct, i = 1, ...,M .

Biorthogonal modulation

Given an orthogonal signal set, a biorthogonal signal set of twice the size can be obtained by
including a negated copy of each signal. Since signals s and −s cannot be distinguished in
a noncoherent system, biorthogonal signaling is applicable to coherent systems. Thus, for an
M-ary Walsh-Hadamard signal set {si} with M signals obeying the noncoherent orthogonality
criterion, we can construct a coherent orthogonal signal set {si, jsi} of size 2M , and hence a
biorthogonal signal set of size 4M , e.g., {si, jsi,−si,−jsi}. These correspond to the passband
waveforms ±si(t) cos 2πfct and ±si(t) sin 2πfct, i = 1, ...,M .

Problems

Problem 6.1 Consider the trapezoidal pulse of excess bandwidth a shown in Figure 6.9.
(a) Find an explicit expression for the time domain pulse p(t).
(b) What is the bandwidth required for a passband system using this pulse operating at 100
Mbps using 64QAM, with an excess bandwidth of 25%?

Problem 6.2 Consider a pulse s(t) = sinc(at)sinc(bt), where a ≥ b.
(a) Sketch the frequency domain response S(f) of the pulse.
(b) Suppose that the pulse is to be used over an ideal real baseband channel with one-sided
bandwidth 400 Hz. Choose a and b so that the pulse is Nyquist for 4-PAM signaling at 1200
bits/sec and exactly fills the channel bandwidth.
(c) Now, suppose that the pulse is to be used over a passband channel spanning the frequencies
2.4-2.42 GHz. Assuming that we use 64-QAM signaling at 60 Mbits/sec, choose a and b so that
the pulse is Nyquist and exactly fills the channel bandwidth.
(d) Sketch an argument showing that the magnitude of the transmitted waveform in the preceding
settings is always finite.
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Problem 6.3 Consider the pulse p(t) whose Fourier transform satisfies:

P (f) =























1, 0 ≤ |f | ≤ A

B−|f |
B−A

, A ≤ |f | ≤ B

0, else

where A = 250KHz and B = 1.25MHz.
(a) True or False The pulse p(t) can be used for Nyquist signaling at rate 3 Mbps using an
8-PSK constellation.
(b) True or False The pulse p(t) can be used for Nyquist signaling at rate 4.5 Mbps using an
8-PSK constellation.

Problem 6.4 Consider the pulse

p(t) =







1− |t|
T
, 0 ≤ |t| ≤ T

0, else

Let P (f) denote the Fourier transform of p(t).
(a) True or False The pulse p(t) is Nyquist at rate 1

T
.

(b) True or False The pulse p(t) is square root Nyquist at rate 1
T
. (i.e., |P (f)|2 is Nyquist at

rate 1
T
).

Problem 6.5 Show that the Fourier transform of the pulse p(t) = sin πtI[0,1](t) is given by

P (f) =
2 cos(πf) e−jπf

π(1− 4f 2)

Problem 6.6 Consider the pulse

p(t) =







1− |t|
T
, 0 ≤ |t| ≤ T

0, else

Let P (f) denote the Fourier transform of p(t).
(a) True or False The pulse p(t) is Nyquist at rate 1/T .
(b) True or False The pulse p(t) is square root Nyquist at rate 1/T . (i.e., |P (f)|2 is Nyquist
at rate 1/T ).

Problem 6.7 Consider the pulse p(t) whose Fourier transform satisfies:

P (f) =























1, 0 ≤ |f | ≤ A

B−|f |
B−A

, A ≤ |f | ≤ B

0, else
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where A = 250KHz and B = 1.25MHz.
(a) True or False The pulse p(t) can be used for Nyquist signaling at rate 3 Mbps using an
8-PSK constellation.
(b) True or False The pulse p(t) can be used for Nyquist signaling at rate 4.5 Mbps using an
8-PSK constellation.

Problem 6.8 (True or False) Any pulse timelimited to duration T is square root Nyquist (up
to scaling) at rate 1/T .

Problem 6.9 In this problem, we derive the time domain response of the frequency domain
raised cosine pulse. Let R(f) = I[− 1

2
, 1
2
](f) denote an ideal boxcar transfer function, and let

C(f) = π
2a
cos(π

a
f)I[− a

2
, a
2
] denote a cosine transfer function.

(a) Sketch R(f) and C(f), assuming that 0 < a < 1.
(b) Show that the frequency domain raised cosine pulse can be written as

S(f) = (R ∗ C)(f)

(c) Find the time domain pulse s(t) = r(t)c(t). Where are the zeros of s(t)? Conclude that
s(t/T ) is Nyquist at rate 1/T .
(d) Sketch an argument that shows that, if the pulse s(t/T ) is used for BPSK signaling at rate
1/T , then the magnitude of the transmitted waveform is always finite.

Problem 6.10 (Effect of timing errors) Consider digital modulation at rate 1/T using the
sinc pulse s(t) = sinc(2Wt), with transmitted waveform

y(t) =

100
∑

n=1

bns(t− (n− 1)T )

where 1/T is the symbol rate and {bn} is the bit stream being sent (assume that each bn takes
one of the values ±1 with equal probability). The receiver makes bit decisions based on the
samples rn = y((n− 1)T ), n = 1, ..., 100.
(a) For what value of T (as a function of W ) is rn = bn, n = 1, ..., 100?
Remark: In this case, we simply use the sign of the nth sample rn as an estimate of bn.
(b) For the choice of T as in (a), suppose that the receiver sampling times are off by .25 T. That
is, the nth sample is given by rn = y((n−1)T + .25T ), n = 1, ..., 100. In this case, we do have ISI
of different degrees of severity, depending on the bit pattern. Consider the following bit pattern:

bn =

{

(−1)n−1 1 ≤ n ≤ 49
(−1)n 50 ≤ n ≤ 100

Numerically evaluate the 50th sample r50. Does it have the same sign as the 50th bit b50?
Remark: The preceding bit pattern creates the worst possible ISI for the 50th bit. Since the sinc
pulse dies off slowly with time, the ISI contributions due to the 99 other bits to the 50th sample
sum up to a number larger in magnitude, and opposite in sign, relative to the contribution due
to b50. A decision on b50 based on the sign of r50 would therefore be wrong. This sensitivity to
timing error is why the sinc pulse is seldom used in practice.
(c) Now, consider the digitally modulated signal in (a) with the pulse s(t) = sinc(2Wt)sinc(Wt).
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For ideal sampling as in (a), what are the two values of T such that rn = bn?
(d) For the smaller of the two values of T found in (c) (which corresponds to faster signaling,
since the symbol rate is 1/T ), repeat the computation in (b). That is, find r50 and compare its
sign with b50 for the bit pattern in (b).
(e) Find and sketch the frequency response of the pulse in (c). What is the excess bandwidth
relative to the pulse in (a), assuming Nyquist signaling at the same symbol rate?
(f) Discuss the impact of the excess bandwidth on the severity of the ISI due to timing mismatch.

Problem 6.11 (OQPSK and MSK) Linear modulation with a bandlimited pulse can perform
poorly over nonlinear passband channels. For example, the output of a passband hardlimiter
(which is a good model for power amplifiers operating in a saturated regime) has constant
envelope, but a PSK signal employing a bandlimited pulse has an envelope that passes through
zero during a 180 degree phase transition, as shown in Figure 6.15. One way to alleviate this

Envelope is zero due to 180 degrees phase transition

Figure 6.15: The envelope of a PSK signal passes through zero during a 180 degree phase
transition, and gets distorted over a nonlinear channel.

problem is to not allow 180 degree phase transitions. Offset QPSK (OQPSK) is one example of
such a scheme, where the transmitted signal is given by

s(t) =
∞
∑

n=−∞

bc[n]p(t− nT ) + jbs[n]p(t− nT − T

2
) (6.23)

where {bc[n]}, bs[n] are ±1 BPSK symbols modulating the I and Q channels, with the I and Q
signals being staggered by half a symbol interval. This leads to phase transitions of at most 90
degrees at integer multiples of the bit time Tb =

T
2
. Minimum Shift Keying (MSK) is a special

case of OQPSK with timelimited modulating pulse

p(t) =
√
2 sin(

πt

T
)I[0,T ](t) (6.24)

(a) Sketch the I and Q waveforms for a typical MSK signal, clearly showing the timing relationship
between the waveforms.
(b) Show that the MSK waveform has constant envelope (an extremely desirable property for
nonlinear channels).
(c) Find an analytical expression for the PSD of an MSK signal, assuming that all bits sent are
i.i.d., taking values ±1 with equal probability. Plot the PSD versus normalized frequency fT .
(d) Find the 99% power containment normalized bandwidth of MSK. Compare with the minimum
Nyquist bandwidth, and the 99% power containment bandwidth of OQPSK using a rectangular
pulse.
(e) Recognize that Figure 6.5 gives the PSD for OQPSK and MSK, and reproduce this figure,
normalizing the area under the PSD curve to be the same for both modulation formats.
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Problem 6.12 (FSK tone spacing) Consider two real-valued passband pulses of the form

s0(t) = cos(2πf0t+ φ0) 0 ≤ t ≤ T
s1(t) = cos(2πf1t+ φ1) 0 ≤ t ≤ T

where f1 > f0 ≫ 1/T . The pulses are said to be orthogonal if 〈s0, s1〉 =
∫ T

0
s0(t)s1(t)dt = 0.

(a) If φ0 = φ1 = 0, show that the minimum frequency separation such that the pulses are
orthogonal is f1 − f0 =

1
2T
.

(b) If φ0 and φ1 are arbitrary phases, show that the minimum separation for the pulses to be
orthogonal regardless of φ0, φ1 is f1 − f0 = 1/T .
Remark: The results of this problem can be used to determine the bandwidth requirements for
coherent and noncoherent FSK, respectively.

Problem 6.13 (Walsh-Hadamard codes)
(a) Specify the Walsh-Hadamard codes for 8-ary orthogonal signaling with noncoherent reception.
(b) Plot the baseband waveforms corresponding to sending these codes using a square root raised
cosine pulse with excess bandwidth of 50%.
(c) What is the fractional increase in bandwidth efficiency if we use these 8 waveforms as building
blocks for biorthogonal signaling with coherent reception?

Problem 6.14 (Bandwidth occupancy as a function of modulation format) We wish to
send at a rate of 10 Mbits/sec over a passband channel. Assuming that an excess bandwidth of
50% is used, how much bandwidth is needed for each of the following schemes: QPSK, 64-QAM,
and 64-ary noncoherent orthogonal modulation using a Walsh-Hadamard code.

Problem 6.15 Consider 64-ary orthogonal signaling using Walsh-Hadamard codes. Assuming
that the chip pulse is square root raised cosine with excess bandwidth 25%, what is the bandwidth
required for sending data at 20 Kbps over a passband channel assuming (a) coherent reception,
(b) noncoherent reception.
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