
1288 PROCEEDINGS OF THE IEEE, AUGUST 1970 

tances from  the origin, we may select any  one location or, for symmetry, 
divide each spectral value by the  number of equidistant images and place 
the  resultant at each image location. After the desired manipulations, the 
wavenumber data may be retranslated into the  array of Fig. 2 for fast 
inverse Fourier  transformation to the lattice of Fig. 1. 
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Fig. 1. Dserential amplifier. 

Fig. 2. Approximate equivalent circuit. 

Ea{l + A Z / [ Z  + (1 + A ) Z , ] )  

- E,IAZ,(Z + Z , ) / [ ( Z ,  + Z,) (Z + z ,  + A Z , ) ] }  = IAZ + Z A .  
(8) 

If the two voltage sources can be linearly related by 

E ,  = K E ,  (9) 

where K is assumed to be a function of the complex frequency s, then the 
input impedance is  given by 

Differential Amplifier Input Impedance Z ,  = E , , / I J I , = ( Z , + Z 3 ) ( Z + Z , + A Z , ) / [ ( 1 + A ) ( Z , + Z 3 ) - A K Z , ] .  (10) 

by t w o  separate  voltage sources reveals that  the  input impedance 
which loads the  voltage source at  the inverting  input is not  a  constant 
but  rather is a  function  of  the  characteristics  of each voltage source. 
An expression is derived for  the  input  impedance and the  result is Equation (11) indicates how the input impedance viewed by  the voltage 
illustrated  in  a simple example. source E&) varies with the  relationship between the two voltage sources 

Laplace transform of f(t). The conventional model for the  operational A simpler derivation, which provides a better physical description ofthe 
amplifier has  a finite open-loop gain A,  a very high impedance between process, can be realized if one notes that the voltage at node d can be 
nodes c and (ground), and  a very low output impedance. This model will . approximately represented by an ideal voltage source 

. Abstract-The analysis of  a simple differential  amplifier  excited As A+cc,  becomes 

ZAs)  Zl(s)[Z,(s)  + Z ~ ( S ) ] / [ Z ~ ( S )  + Z 3 ( ~ ) ( 1  - K(s))] .  (11) 

Consider the differential amplifier shown in Fig. 1 where F(s) is the [K(s) ] .  

be used to derive the input impedance viewed  by the voltage source E,(s) 
in Fig. 1 .  

The basic equations are 
Since the  open-loop gain of the differential amplifier is very high, 

E ,  - Ed 1 0. (13) 

The resulting equivalent circuit is shown in Fig. 2, and (11) follows immedi- 
ately from this. 

It is normally assumed that the  input impedance viewed  by the voltage 
source Eds) is simply given as Z,(s) .  However, it has been shown by (11) 
that this is only the limiting condition when Eb(s)=O and the  true imped- 
ance is a function of the  relationship between the two input voltage sources. 
In fact, the  input impedance can approach infinity if the  denominator of 
(1 1) becomes zero as shown in the example which follows. 

Consider  the.true  differentid or subtracting amphfier shown in Fig. 3, 
where the  input is assumed to be two sinusoidaLvoltage.sources of t h e m e  

’ Slrbstituting & (51, add (7) int046X solving for Ei, and substituting  this 
into (3) gives 

and 

Manuscript  received  January 16, 1970. z , ( s )  = z, L ez. (15) 
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Fig. 3. Example. 
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Fig. 4 (a). Impedance  magnitude  variations. (b). Impedance  phase  variations. 

The variations of the magnitude Z ,  and  the phase Oz with different ampli- 
tude  ratios K for a  constant  phase shift Ob are shown in  Fig. 4. 

An infinite input impedance does occur at K = 1.1 and Ob = 0'. Also a 
phase reversal occurs at K =  1.1 for Ob=O".  Thus in designing the voltage 
source E ,  not only must one realize that  the  input impedance varies over a 
wide range, but also  that  the voltage source must be capable of current flow 
in both directions for correct operation of the gain characteristic. This 
could impose restrictions for the  dc case. 

To summarize, the  input impedance which loads  the voltage source at 
the inverting input of a differential amplifier excited by two voltage sources 
is not  a  constant  but is a  function of the characteristics of each voltage 
source. The expression for  this  variation is given in (1 1) and a simple inter- 
pretation is also provided. The example illustrates the effect that variations 
in the two voltage sources can have on the  input impedance. This helps 
to show why the designer must consider these variations before designing 
such a circuit into a system. 

Zero Temperature Coefficient of Resonant Frequency in 
LiTaO, Length Expander  Bars 

Abstract-Zero temperature  coefficient  of resonant frequency has 
been found  in LiTaO, length expander bars with orientations zyw 
(+30 deg), zyw (+36 deg), and zyw (+46 deg). These bars have large 
coupling  constants k,, (more  than 20 percent).  The zyw (+ 30 deg) bar 
is the  most promising for  wide-band bandpass filter  applications  be- 
cause it shows the smallest change in the coupling constants at ordi- 
nary temperatures. 

Among  the oxygen-octahedral ferroelectrics discovered in recent years, 
lithium tantalate is one of the most promising for  applications requiring 
elastic and piezoelectric properties.  The low temperature coefficient of 
frequency in a LiTaO, X-cut resonator was discovered by Warner et al. 
[l 1, and several approaches  to  attain the zero temperature coefficient at 
room  temperatures have been proposed [2], [3]. Temperature characteris- 
tics of the elastic and piezoelectric properties of LiTaO, were studied by 
Smith et al. [4] in the  temperature range from about lo" to llO"C, and 
also by Yamada et al. [5] from  room  temperatures up to  the Curie point 
mainly with bar-shaped specimens. The result obtained, such as the be- 
havior of sf; near room temperatures [5, Fig. 5(b)], immediately suggests 
the existence of the zero temperature coefficient  of resonant frequency in 
the zyw (+ 8) bar with 0 between 25 and 50 deg. This useful property has 
been confirmed by the experiments described here. 

Five specimens were cut from a poled single crystal of LiTaO, with 
e values of 25,30,35,45, and 50 deg. The orientation angle 6 was defined as 
illustrated in Fig. 1. The accuracies of the angles were checked by X-ray to 
be within k 1 deg. They' axis was taken  along  the length of the bars, and  Ni 
electrodes were evaporated  on  the two z' faces. The dimensions of the  bars 
were about 13.7 by 2.5 by 1.0 mm. Temperature-frequency characteristics 
of the five specimens are shown in Fig. 2. Zero temperature coefficients  in 
the range 20" to 35°C are  found for the zyw ( + 30 deg), zyw ( + 35 deg), and 
zyw (+ 45 deg) bars. 

A resonant frequency of the length expander bar is expressed as 

l/(412pf,)=sf, cos4 0+s& sin4 0+(st4+2sf,) cos2 0 sin' B 

-2sf4 COS, e sin e (1) 

where s: is the elastic constant at a  condition of constant electric field, I 
the length of the  bar, and p the density. The length of the  bar is expressed as 

I = 2,[1 + (a2 cosz 0 + a3 sin2 QAT] (2) 

where I ,  is the length of the  bar at 20"C, and ai the thermal expansion co- 
efficient of the crystal. For LiTaO,, al =a2=22 x 10-6/"C, and a,= 1.2 
x 10-6/"C [5]. Similarly, the density is expressed as 

p = p,/[(l + a,AT){l + ( Z ~ C O S ~  0 + a,sin2 @AT} 
(3) 

x { l  + (z2 sinz 0 + a, cos2 e)AT}] 

where po is the density at 20'C and equal to 7.46 x lo3 kg/m3 [5] for 
LiTaO,. In (2) and (3) AT is the difference (T - 20)"C. The elastic constants 
sf1, &, ($,+2sf3), and sf4 were calculated from the measured resonant 
frequencies of the five specimens by means of the least-squares method. 
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