DESIGN OF A PHASE LOCKED LOOP BASED CLOCKING CIRCUIT
FOR HIGH SPEED SERIAL LINK APPLICATIONS

BY

RISHI RATAN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Adviser:

Professor José Schutt-Ainé

ABSTRACT

Technology scaling and unprecedented growth in demand for ubiquitous, fast,
robust computing have been the driving forces leading the innovations in
high-speed interfaces. With the rise of heavy duty data centers to handheld
mobile devices, the desire for faster, low-power integrated inter-IC commu-
nication protocols is at an all-time high and has led the roadmap of the
semiconductor industry, making it one of the fastest growing yet fiercely
competitive industries. With the growing needs for ultra-low power yet
multi-Gbps signaling in both wired as well as wireline applications, inte-
grated systems on chip (SoCs) have become mainstream critical components
in modern computing systems. The ability to process and access ‘big-data’
is the fundamental demand in modern society where every second saved in
prompt communication as well as computation of information is critical. In
order to meet these needs of fast, robust signaling over the same old “lossy”
channels, the clock-frequencies need to scale accordingly and clever 1/O links
need to be developed. The most crucial component of any high-speed 1/0
link is the clocking circuitry: clock generator at the transmit (TX) end and
clock-recovery unit on the receive (RX) end.

This thesis provides an in-depth tutorial on circuit design, analysis and
simulation of on-chip PLL based clocking generator circuits for high-speed
serial link applications. An overview of high-speed links, along with the basic
building blocks that make up a serial link, is presented. The fundamentals
of PLLs are introduced and a complete guide to analysis and simulation of
a charge-pump phase-locked loop based clocking circuit at both behavioral
as well as transistor levels is presented for use as a synthesizer in a serial
link. Finally, a survey of potential future research areas to explore for both
PLLs in high-speed links as well as the complete serial link is provided with
an emphasis on signal integrity applications for future students pursuing

graduate studies in the fields of Signal Integrity and Mixed-Signal IC Design.

i

To my family and friends, for their love and support.

iii

ACKNOWLEDGMENTS

As T approach the finishing stages of my graduate career, looking back there
are countless individuals who have helped make this journey special and
memorable. Graduate school is full of numerous uncertainties, various road-
blocks in terms of design and implementation of ideas; thus it is a journey
that though embarked on by one individual, really is a culmination of the
efforts of many people who have helped behind the scenes along the way. At
the end of it all, it is this support system that I am deeply indebted to for
helping each step of the way, motivating me in the most difficult of times
where there were only questions and no answers.

First and foremost, I want to thank my wonderful advisor Professor José
Schutt-Ainé for being my mentor, always motivating me to push myself to
the next level and being there for me like family. Dr. Schutt-Ainé was one of
the first to see potential in me back when I was just a sophomore and had no
direction in what I wanted to pursue in my career. He introduced me to the
field of circuits and sparked an interest in engineering. He has always been
extremely patient throughout the countless occasions I have visited his office
hours. Being a mentor and father-figure for me throughout my educational
career at UIUC, Prof. Schutt-Ainé has been the biggest contributor to my
successes throughout my collegiate career and will forever be a role-model
who I look up to as I start my professional career in industry.

Secondly, I would like to convey my heartfelt thank you to Professor Pavan
Kumar Hanumolu for guiding me throughout this thesis as a mentor. Prof.
Hanumolu stood by me with patience throughout the course of this thesis
work, and took time off from his busy schedule in providing me formal lectures
on PLLs one-on-one in his office at a time when it was very hectic for him
given that he had just moved to UIUC. Without Dr. Hanumolu’s constant
guidance and feedback this thesis would never have been completed.

Thirdly, I would like to sincerely thank my wonderful colleagues, mentors

v

and friends in graduate school: Da Wei, Xu Chen, Tom Comberiate, Romesh
Nandwana, Mrunmay Talegaonkar, Yubo Liu, Ahmed Elkholy, Saurabh Sax-
ena, Tejasvi Anand, Guanghua Shu, Woo-Seok Choi, Drew Newell, Xinying
Wang, Jerry Yang and Maryam Hajimiri for always being patient to answer
all my questions, solving arcane problems during the simulation and design
process. These fine graduate students have stood by me since day one, pro-
vided constructive criticism on my work, painstakingly critiqued every figure
and most importantly constantly pushed me towards striving for nothing
short of excellence.

Furthermore, I am extremely grateful to Professor Steven Franke, Profes-
sor Christopher Schmitz, Professor Milton Feng, Professor Elyse Rosenbaum,
Professor Naresh Shanbhag, Professor Venugopal Veeravalli and Dr. Chan-
drashekhar Radhakrishnan for supporting me throughout my educational ca-
reer at UIUC and mentoring me every step of the way. Even when the chips
were down, they always believed in me and helped me gain an opportunity
to pursue my graduate studies.

I thank my family for always being by my side, motivating me to move
forward whenever I was faced with roadblocks. Lastly, I am eternally grateful
to my friends Tan Wetherbee, Rohan Bambery, Eric Iverson, Pourya Assem,
Sai Zhang, Min-Sun Keel, Anish Chivukula, Eclair Hanjing Gao, Dennis
Yuan, Jerry Sun, Nishant Nookala and Eric Kim for always standing by
me throughout my ECE career at UIUC. I am positive I have missed a few
people from the above list but I truly am very thankful to all those who I
have interacted with throughout my time at UIUC. Additionally, I am very
grateful for getting an opportunity to work with wonderful undergraduates
Rushabh Mehta, Ishita Bisht, Brady Salz, Ankit Jain, Haodong Guo, and
Pradyut Paul who have worked very diligently in getting the High Speed-

SerDes Design project off the ground from scratch.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Outline. 3
CHAPTER 2 HIGH SPEED SERIAL LINKS OVERVIEW 5
2.1 Simple Link Design 0L 5
2.2 Serial vs. Parallel Data Transmission 7
2.3 SerDes Building Blocks o0 8
CHAPTER 3 PLL THEORY AND BACKGROUND 17
3.1 PLL Applications 17
3.2 Basic PLL Building Blocks 17
CHAPTER 4 PLLs IN CLOCKING CIRCUITS 23
4.1 Charge-Pump (CP) PLLs Overview 23
4.2 CPLL Linear Model and Analysis 24
4.3 CPLL Noise-Analysis 26
CHAPTER 5 PLL BASED CLOCK GENERATOR 29
51 PED 29
52 CPs . . . 31
53 LF . . . 32
54 VCOs e 33
5.5 Dividero 34
CHAPTER 6 BEHAVIORAL LEVEL SIMULATION 35
6.1 Why Behavioral Modeling? 35
6.2 Why Verilog-AMS? 35
6.3 Basic Verilog-A/AMS Syntax 36
6.4 PLL Simulation in AMS Using Cadence Virtuoso 38
CHAPTER 7 TRANSISTOR LEVEL SIMULATION 54
7.1 What is SPICE? 54
7.2 SPICE vs. Spectre 54
7.3 Transient, PSS and PNoise Simulation Overview 55
7.4 PLL Simulation in Spectre Using Cadence Virtuoso 56

vi

CHAPTER 8 DISCUSSION 87

81 Conclusion 87
8.2 Future Work 88
APPENDIX A CADENCE VIRTUOSO INSTALLATION GUIDE . . 92
A.1 Introduction 92
A.2 Environment Setup 93
A.3 Common Troubleshooting Tips 115
REFERENCES 116

vil

CHAPTER 1

INTRODUCTION

1.1 Motivation

Over the last 50 years, advances in Semiconductor Fabrication Technology
(SFT) coupled with innovations in Integrated Circuit (IC) technology scal-
ing have fueled an unparalleled growth in computing. This aggressive scaling
has revolutionized every aspect of modern society and triggered an insatiable
demand for faster data rates and higher processing power resulting in clock
frequencies and corresponding data rates approaching multi-GHz and multi-
Gbps ranges in everyday computing devices like personal computers, mobile
devices, entertainment consoles and other such devices. Access to informa-
tion promptly and efficiently in terms of power and portability/ease of use
is the major driver pushing the limits of IC technology. Thus, the need
for robust, high-speed, low-power and highly integrable compact systems-
on-chip (SOCs) is paramount for inter-IC communication interfaces such as
network switches, processor/memory interfaces across backplane channels.
In order to meet this growing demand for wideband systems, the Input/Out-
put (I/O) links need to scale proportionally with the increased data-rate
scaling; however in reality the off-chip I/O bandwidth (BW) has not scaled
appropriately and has become a major bottleneck in the overall system per-
formance. Furthermore, along with the off-chip I/O BW limitations, the
channel as well as package/connector interfaces have not scaled with SFT
making the design of high-speed I/O links extremely challenging due to the
increased transmission line loss, crosstalk, and signal distortion resulting in
intersymbol interference. As the demand for high data-rate interfaces has
skyrocketed, the clock-frequencies needed to realize such systems have corre-
spondingly reached the multi-GHz range necessitating the use of phase-locked

loops (PLLs) for on-chip clock synthesis.

—®— HyperTranport
—&— Pl

®—PCle

T | ¥ S-ATA
—W—SAS

—&— OIF/CEI

4 PON
—&—Fibre Channel
¥ DDR

- GDDR

Data Rate [Gbps]

1 I }
2000 2002 20'04 2006 2008 2010 2012 2014 2016
Year

Figure 1.1: IO Link Signaling Data-Rate Trends

Figure 1.1 shows the trends in data-rate scaling of I/O high-speed signal-
ing links as forecasted by the International Solid State Circuits Conference
(ISSCC) 2011 annual semiconductor roadmapping report [5]. The key take-
away from this graph is that the data-rates in inter-IC communication links
are scaling by a factor of 2X every 4 calendar years while IO channel BW
remains the same. The I/O BW scaling problem aside, the ability to design
robust, low-jitter on-chip clock synthesizer circuits is in itself an extremely
challenging task. Though research in the field of integrated high-frequency
clocking circuits has been going on for the past two-decades and lots of in-
novative designs have come into existence, one common facet missing from
the whole paradigm is complete documentation on process of simulation us-
ing the Electronic Design Automation (EDA) tools [6]. Most of the literary
works in this area primarily focus on novel system level designs for PLL based
clock synthesizers and some go into transistor-level details of the sub-blocks;
however very rarely do any of the prominent works describe the actual sim-
ulation process. As the clock-frequencies scale and demand for robustness
in the on-chip synthesizers increases, circuit designers also need to be aware
of potential Signal-Integrity (SI) problems associated with their intricate de-
signs. Since the channel BW is essentially the same at high-frequencies of
operation the PCB traces act as transmission-lines (TLs) leading to severe
degradation in signal quality due to reflections, ringing and cross-talk ef-
fects. Thus, every integrated circuit designer will invariably face SI problems
in their design which until recently was not a concern as the frequencies

were low enough that digital design did not require a formal understand-

ing of signal integrity during the development as well as verification process.
Therefore, the motivation for this thesis is to bridge the gap between cir-
cuit design and simulation for signal-integrity engineers who need the basic
expertise in mixed-signal design process to be able to provide the required

assistance to IC designers on designing high-speed SI aware systems.

1.2 Outline

This thesis is organized to serve as a training manual for students pursu-
ing mixed-signal integrated circuit design as their field of study in graduate
school. The goal is for this thesis to be their go-to guide to grasp a high-level
understanding of high-speed links and learn the simulation setup/procedure
to validate PLL based clocking circuits using the popular EDA tool Cadence

Virtuoso.

1. Chapter 1 provides an introduction to the research problem describing

the need for high-speed serial links and their future trends.

2. Chapter 2 provides an overview of high-speed links with an emphasis on
describing each of the building blocks, figures of merit to characterize
these links and lay the motivation for the industry-wide shift from
parallel to serial-link design for low power, cost-effective robust 1/0

link design.

3. Chapter 3 describes the fundamentals of Phase-Locked Loops (PLLs)
and provides a brief overview of their ubiquitous use in modern day

wireline/wireless systems.

4. Chapter 4 covers a special class of PLLs, Charge-Pump PLLs, and
provides a linear model for small-signal as well as noise-analysis of
these PLLs.

5. Chapter 5 presents the transistor-level design of a Charge-Pump based
Integer-N clock generator circuit operating at an output frequency of
1.6GHz.

. Chapter 6 describes the procedure for behavioral modeling and simu-
lation using Verilog-AMS for the clock-generator circuit described in
Chapter 5.

. Chapter 7 describes the procedure for transistor-level simulation for

the clock-generator circuit described in Chapter 5.

. Chapter 8 concludes the thesis with a discussion of the take-aways from
the clocking circuit designed earlier and provides a brief anecdote on
the signal integrity focus areas in high-speed link design and lists design
improvements on the basic Integer-N analog clock generating circuit to

accommodate industry trends within the field.

. Lastly, the Appendix provides a step-by-step guide for installing and

configuring the Cadence Virtuoso environment.

CHAPTER 2

HIGH SPEED SERIAL LINKS OVERVIEW

2.1 Simple Link Design

:: E Channel {-ﬁ
TX = E’ > RX
data:: -g) RX E : data
—> N ﬁ_;
ref clk —| PLL TX clk RX clkY CDR bl

TX data x Din] XD[n‘ﬂ]XD[r:tZIXD[n:S] x
TX clk f | f | f | f | f
RX clk f | f | f f |

Figure 2.1: Typical High-Speed Link Block Diagram

Generalized model of a High-Speed Serial Link (HSSL), as shown in Fig-
ure 2.1 [1], consists of a serializer and transmitter (TX) driven by a PLL
clock synthesizer, a channel and a receiver (RX) and Deserializer driven by
a Clock-Data Recovery (CDR) unit. The serializer accepts the incoming
parallel data-stream and converts it into a serial data-stream which is then
sent to the transmitter. The TX generates a train of pulses depending on
the data symbols to be transmitted across the channel and the pulse-width
which is determined by the timing instant of the transmit clock at both be-

gin/end/edges. The receiver basically comprises a sampler and a decision

circuit whose purpose is to sample the received data-bit stream from the
channel and recover, both the transmitted data as well as the clock. Once
the receiver recovers the transmitted serial bit-stream it is sent to the Dese-
rializer block whose job as the name suggests is to convert the received serial

data back to its original parallel form for future interfaces.

Chip package
(crosstalk)

Package via
(reflections)

Line card trace
(dispersion) On-chip termination
(reflections)

Backplane connector
(crosstalk)

Backplane trace
(dispersion)
Line card via
(reflections)

Backplane via
(major reflections)

Figure 2.2: Typical Backplane Channel Interface

As discussed in the previous chapter, though the desired data-rates have
scaled along with technology scaling, the off-chip channel I/O BW has re-
mained the same. The channel is the electrical path between the TX and RX
blocks and in inter-IC communication systems typically comprises printed
circuit-board (PCB) traces, vias, connectors and other such I/O interface
components. Generally speaking, in high-speed 1/O interfaces the channel
is typically a ‘backplane’” which essentially connects two PCBs together and
typically looks like the interface shown in Figure 2.2 [1]. The channel is
something that the designer has no control over and is thus just a ‘known
unknown’ to the link designer. It is known in the sense that the channel
impulse-response is known via measurement of S-parameters of the interface
using a Vector-Network-Analyzer (VNA) or via computational electromag-
netic modeling software such as Ansys HFSS. The manner in which channel
degrades the transmitted signal stream is the unknown aspect and the de-
signer’s aim is to design a mechanism for counteracting this degradation.
Thus, the whole challenge in high-speed link design is that we need to de-
sign a high signal-fidelity communication system that is fast, robust to losses
incurred in the channel and on top of all this it needs to be low-power and
must occupy the least possible area. The challenge in meeting all of the

aforementioned requirements is that at high-speeds the channel suffers from

various kinds of microwave losses due to impedance discontinuities between
connectors, substrate loss, cross-talk effects, reflections and ringing, all which
are difficult to predict and model [1].

Figure 2.3 [2] shows an example of the I/O link interface for a 10Gbps serial
link across a backplane channel. Notice that a clean signal when transmit-
ted across a backplane channel incurs tremendous amounts of loss from the
channel at an operating speed of 10Gbps making the signal at the receiver
virtually indistinguishable from noise and thus virtually garbage. In order
to limit the degradation of signal quality during transmission and reception,
the goal of mixed-signal designers is to design fast high-frequency clocks with
minimum timing skew at the TX end and minimal sampling errors at the RX

end.

20

PO R ——n - S Signal at Rx

Signal at Tx

10Gb/s view of the channel

Figure 2.3: 10Gbps Backplane Serial Link Interface

2.2 Serial vs. Parallel Data Transmission

Historically, parallel links have been widely used in I/O systems that are
connected to the CPU in computers via interfaces like PCI, PCI-X buses.
However, as the data-rates have scaled into multi-gigabit ranges, the parallel
link performance has not scaled accordingly with high signal fidelity. The
tolerance level in timing skew between parallel signaling links has reached
the practical limit achievable using traditional printed-circuit-boards (PCBs)
that typically use FR-4 substrates. Additionally, as the supply voltage lev-
els in modern CMOS process technologies have scaled down tremendously,

the legacy parallel bus voltage levels have not scaled proportionally, making

them incompatible with modern processes [6]. Thus, in order to mitigate this
performance limitation and supply voltage scaling problems posed by conven-
tional parallel-link design the industry has shifted to electrical point-to-point
serial link interfaces.

Serial links occupy small area on chip and require very few 1/O pins as
compared to case of parallel links because the number of pins is not directly
proportional to the number of data input/output signals. In serial commu-
nication links clock-skew is not a problem at the receiver since TX clock is
typically not forwarded to the RX. In parallel links, on the other hand clock-
skew is the major source of signal degradation at the RX side since the TX
clock and data are transmitted separately. Furthermore, cross-talk effects are
minimized in serial links due to the absence of multiple conducting channels
in parallel that each have varying signals transmitted, whereas in parallel
links this is a major problem due to the presence of capacitive/inductive
coupling between multiple conducting parallel interconnect channels.

In the consumer electronics industry, serial links have found widespread ac-
ceptance in the form of USB (Universal Serial Bus) that connects peripheral
electronic systems to computer, and SATA (Serial Advanced Technology At-
tachment) which connects the computer motherboard with mass storage de-
vices (e.g. hard disk) and PCI-Express (Peripheral Component Interconnect)
that is used to connect cards (sound, video or other) to the motherboard.
Therefore serial communication has become the solution to higher and more
efficient data transmission in order to meet the demands and trends of the

higher capacity of communication technology [7].

2.3 SerDes Building Blocks

2.3.1 Serializer

The serializer circuit, as the name suggests, converts the input parallel-bus
data into a serial bit-stream form. It is a completely digital block and it pre-
cedes the TX driver circuit. At a fundamental level, a serializer is essentially
a Multiplexer circuit whose driving clock for the serialization process is the
TX_CLK signal generated by the TX PLL.

2.3.2 Driver Amplifier

Driver amplifiers are found both at the TX as well as RX ends. The DA
(Driver Amplifier) is used to amplify the input serial bit-stream before it is
sent to the receiver through the channel. Another important task accom-
plished by the DA is that it provides impedance terminations that terminate
the channel input/output with 502 impedance.

2.3.3 Phase-Locked Loop (PLL) Clock Generator

CP ICPV LF VCI'L

_1#’ PFD

A

| —
I DIV

Figure 2.4: Typical PLL Based Clock-Generator Block Diagram

Yy

REF

N |« OuT |

A PLL is a negative feedback system whose sole purpose is to use a reference
input clock of frequency frrr and generate a local clock on-chip at a desired
frequency, four, such that the output clock is matched in phase to the input
clock and foyr = afrer, where « is a multiplying factor. PLLs are used in
every modern day high-speed system whether it be wired or wireless because
generating a high spectral purity clock at microwave frequencies/data-rates
is practically not feasible yet. Piezo-electric crystals are used exclusively
as the reference clocks for almost every on-chip interface system because
they have the highest-spectral purity and can output truly periodic, jitter-
free clock signals typically up to 200MHz. Due to the insatiable demand
for robust, high-speed signaling, a mere crystal oscillator is not enough to
meet the necessary requirements, so a PLL is essential. The most important
task of a PLL is therefore to produce clock signals with minimal timing
noise, i.e. the lowest possible jitter (in time domain) and phase-noise (in
frequency-domain). At a block-level, a typical PLL clock-generator circuit (as
shown in Figure 2.4) used to generate the high-speed on-chip clocks consists
of a phase-frequency detector (PFD), charge-pump (CP), loop-filter (LF),
voltage-controlled oscillator (VCO) and clock-divider (DIV). PEFD tracks the

phase and frequency difference between the reference signal and the divider

9

output signal outputs digital pulse-width modulated (PWM) signals to the
CP which essentially converts these digital pulses into an analog current
signal. The LF then takes the CP output current signal, low-pass filters the
high-frequency noise components and outputs a control voltage that drives
the VCO. The VCO is the most-critical component within the PLL as it is
the circuit-block that generates the final output clock that is used to drive
the digital circuits of the link. Thus, a low phase-noise VCO is of paramount
importance in the PLL as the VCO phase-noise is the dominant noise-form
in the PLL. Finally, the divider is used in the feedback loop back to the PFD
as the VCO output needs to be brought back down to the same frequency
level as the reference clock so that the loop can dynamically drive all static-
phase errors between reference clock and divider clock to zero such that
four = afrer, where « is the multiplying factor and the loop is “locked”
to output a stable clock at the desired frequency of operation. The various

intricacies involved in PLL design are covered in the remainder of the thesis.

2.3.4 Channel

=10+ 9" FR4

=20+

Attenuation [dB]

-30; 6" FR4

=40+t
9" FR4,
=501 via stub

-60} 26" FR4,
via stub

0 2 4 6 g8 10
frequency [GHz]

Figure 2.5: Typical Serial Link Channel Responses

Figure 2.5 [3] shows the attenuation levels a typical serial link channel incurs
as a function of operating frequency. Figure 2.6 and 2.7 show the eye diagram
outputs from a backplane channel interface at 1Gbps and 10Gbps data-rates
respectively. Notice that the eye is fully open at 1Gbps but at 10Gbps the

signal is almost indistinguishable from the noise at the receiver side due to

10

the tremendous loss and distortion incurred along the channel. The HSSL
designers need to be able to account for such losses when designing the blocks
of the HSSL at both a system as well as circuit level. As stated earlier, the
channel induced degradation is the primary limiting factor during the entire

link-design process.

In-phase Signal

Amplitude (AU)
o

Figure 2.6: 1Gbps Backplane Link Eye Diagram

In-phase Signal

Amplitude (AU)

Figure 2.7: 10Gbps Backplane Link Eye Diagram

2.3.5 Equalization

Equalization is a method of combatting the detrimental effects of intersym-
bol interference (ISI) caused by the bandlimited channel. Equalizers are
typically implemented as linear or non-linear adaptive filters. Equalization
performed before the channel is referred to as pre-emphasis and basically
involves passing the TX signal through a filter whose transfer function is the
inverse of the channel transfer function. Conversely, equalization at the RX
end is used to undo the distortion incurred in the received signal due to the

channel loss and dispersion. Most RX equalization schemes are adaptive and

11

are implemented using DSP techniques to cancel out the channel loss from

the received data-bits.

2.3.6 Clock and Data Recovery (CDR)

A CDR as the name suggests is responsible for extracting the clock infor-
mation of the transmitter from the received signal. In modern HSSLs, a
clock-recovery mechanism is essential at the receiver end because TX clock
information is typically embedded inside the incoming data pulse-stream at
the receiver input. At heart, a CDR is essentially a modified PLL circuit
wherein the phase-detector now has to sample the incoming data-stream and
extract both data and phase information from it [3]. The PD of the CDR
detects the transitions in the received data-stream and the VCO generates
a periodic clock that drives the decision circuit within the PD to retime the
distorted received data and then regenerates the system clock with lower
skew and jitter. CDR design is a lot more intricate than PLL design because
in the case of the CDR, loop bandwidth is often very small and governed by
the jitter tolerance specifications of the system, meaning there is not much
room for VCO phase-noise reduction. The most common implementation of a
CDR (as shown in Figure 2.8) includes a regular PLL loop to track the exact-
frequency of the TX clock, a phase-tracking loop with special phase-detector
to produce the retimed data and a common VCO to output a low-jitter,

phase-noise replica of the TX clock.

Retimed Data

" PD » CP
" Phase
S Tracking Loo
3 9Loop/
- O 3
Dim 1 3 | LF
@
g VCO .
e Frequen?:h
| FD » CP

Figure 2.8: Typical Clock and Data Recovery Unit Implementation

12

2.3.7 Deserializer

The deserializer circuit, as the name suggests, converts the input serial bit-
stream data back into its original parallel bus form. It is also a completely
digital block and it succeeds the RX driver circuit. Basically, the deserializer

is just a demultiplexer circuit that is driven by the clock that is recovered by

the CDR.

2.3.8 Coding Schemes

Nonreturn-to-zero (NRZ) pulses are commonly used as the basis function for
discrete data transmission. The response of the channel to the NRZ pulse
is defined as the pulse response and is traditionally used to analyze and
model the effects of a channel on data transmission and also in the design of
equalizers in the case of channels with large attenuation at the frequency of
interest. Apart from NRZ signaling, designers can also implement advanced
modulation techniques for faster, robust signaling. For example, multilevel
PAM like PAM-4 has much higher spectral efficiencies and can transmit two
bits per symbol. This enables the transmission of an equivalent amount
of data in half the channel bandwidth. In modern serial links along with
the signaling schemes, some amount of encoding is also present in the data-
stream. Most commonly used encoding schemes are 8B/10B and 16B/20B
wherein 10bits or 20bits are sent but only 8bits/16bits are actual meaningful
data bits, and this is powerful as it improves the BER. The only drawback
of encoding is that it further adds complexity to the transceiver design as a
encoder/decoder circuit needs to be designed and more bits need to be sent

through the same bandwidth-limited channel.

2.3.9 HSSL Figures of Merit

HSSL performance is limited by the channel as well as the process technology
used during circuit design. Since data-rates are scaling faster than the avail-
able channel bandwidths, the major constraint in realizing robust, high-speed
interfaces is improving the maximum available clock frequency for on-chip
synthesis. The channel bandwidth is the major constraint in overall system

performance; thus, dealing with channel loss and designing clever equaliza-

13

tion techniques are the biggest design challenges in HSSLs today. Robustness
therefore is the most important metric of performance for link designers. The
primary figures-of-merit (FOM) for HSSLs are bit-error-rate (BER), jitter,
crosstalk analysis and timing/noise analysis [1].

BER in modern HSSLs is typically between 10712 and 107'° and it is the
main metric used to signify the integrity of the received data-bits. A BER of
1072 means that 1 bit will incur an error along the link when we transmit a
total of 10'2 bits. Measurement/Estimation of BER is one of the fundamental
challenges faced by link designers because in order to accurately conclude
that the link actually has a BER of the order 107'2, one needs to simulate a
random sequence of at least 10'? bits which even in current state-of-the art
simulators is next to impossible. Therefore, most simulators use statistical
means to collectively analyze the effects of deterministic noise sources such as
Intersymbol Interference (ISI), supply-noise, timing-jitter as well as random
noise sources like white-thermal noise and random jitter when estimating the
system BER.

A common method to measure timing jitter is to use eye-diagrams. Eye
diagrams are constructed by slicing the time-domain signal waveform into
small sections and overlaying them on top of each other such that the re-
sulting shape resembles an ‘eye’. The horizontal axis of the eye diagram
represents time and is typically one or two symbols wide, and the vertical
axis represents the amplitude of the signal. Ideally, we want the eye to be as
“open” as possible, since a larger eye opening signifies that there is a large
enough margin to meet any voltage and timing requirements needed by the
system. Quantitatively speaking, the minimum height and width of the data
at the receiver are key metrics for evaluating link performance. As link de-
signers, we want the receiver eye to be wide enough to provide adequate time
to satisfy the setup and hold requirement of the flip-flops used, and have suf-
ficient height to ensure that the voltage levels meet v; and v;, requirements
of the system in the presence of multiple noise sources. Figure 2.9 [6] shows

an example of what sampling an eye with and without jitter means.

14

Jittered

Voltage noise]
when receiver_
clock is off

Voltage noise

Figure 2.9: Eye Diagram Terminology and FOMs

The most prominent source of signal degradation in HSSLs over a bandlim-
ited channel is Intersymbol Interference (ISI). ISI results when a sequence of
signals are passed through a channel whose bandwidth is insufficient to allow
passage of all the spectral components of the signal. It is a form of signal
distortion caused due to reflections, channel resonances, and channel loss/dis-
persion. Simplest way to understand ISI is to view it as interference between
symbols wherein current bit/symbol causes distortion in subsequent /preced-
ing bit/symbol. ISI degrades as data-rates increase and channel bandwidth
remains the same, and the only way to combat it is through clever equal-
ization techniques on either the TX, RX ends or both. Another form of
interference which is slowly becoming a major hindrance for link designers
as data-rates scale is crosstalk (XT), which is a phenomenon occurring due
to presence of capacitive as well as inductive coupling between neighboring
signal lines in a transceiver. Typically, most of the XT effects are felt at the
connector/package levels of a channel where the signal spacings are small
compared to the distance between shields [6]. Near-End XT (NEXT) and
Far-End XT (FEXT) are the two classes of XT wherein NEXT is defined as
the XT due to energy dissipated from coupling between transmitted signal
and the reflected signal on the same chip, while FEXT is defined as the XT
due to energy dissipated from coupling between transmitted signals of two
different chips. NEXT is by far the most deleterious type of XT and the
most commonly observed kind because the TX energy levels are typically
very high compared to the RX signal levels so the received signal can really

be submerged inside it if proper care is not taken.

15

Finally, the last major metric in calculating the timing margin of a HSSL
is the jitter. Characterization of deterministic as well as random timing jitter
in a clock output is very important to a link designer. Essentially, jitter is
the time-domain variation in the clock-signal as shown in Figure 2.10 [10].
A commonly used method for jitter calculation is to close either side of the
eye horizontally by the amount of peak clock jitter. While this method can
be helpful in evaluating the effects of jitter at the receiver end, we will show
in this paper that this is an overly optimistic approximation of noise margin
degradation for transmitter jitter. Due to the need for integration of clock
generators such as PLLs in large digital chips, clock jitter is dominated by
power-supply and substrate noise, both of which do not scale with technol-
ogy. Therefore, as data rates increase, bit-periods become shorter and the
performance of multi-gigabit links will be limited by the clock jitter, thereby
initiating the importance of accurately analyzing the effects of clock jitter on
high-speed serial links. Figure 2.11 [5] provides a summary of common jitter

profiles in a typical serial link.

Total Jitter

Random
Jitter (RJ)

Characteristics.
« Unbounded, Gaussian distril

* Key parameters: u=0, oppg
« Sources: Device noise (shot, flicker, thermal)

. Detsrministic Characteristics
Jitter (DJ) + Bounded, peak-to-peak
o Key parameters: Maximum pk-pk jitter
e Sources: Losses, reflections, t/f, mismatch,

[Sinusoidal read spectrum clocking, crosstalk
Jter(sy) | o seeet .
Data Dependent
Jitter (DDJ)
[
= [I]
— Intersymbol Duty Cycle Bounded
08 Interfe (IS)__|| _Distortion (DCD) Uncorrelated Jitter
o (Crosstalk)
03 "]
02
o1

Figure 2.11: Summary of Common Jitter Profiles

16

CHAPTER 3

PLL THEORY AND BACKGROUND

3.1 PLL Applications

Phase-Locked Loops (PLLSs) are one of the most fundamental and ubiquitous
circuits found in any communications (wireless, wireline) and high-speed dig-
ital systems. Monolithic CMOS implementation of PLLs has gained lots of
popularity over the last few decades due to an insatiable demand for high
performance digital systems. Most common uses of a PLL are in the form
of frequency synthesizers and carrier/clock recovery circuits both in the RF

domain as well as the high-speed digital domain.

3.2 Basic PLL Building Blocks

3.2.1 Phase/Phase-Frequency Detector (PD or PFD)

In a PLL, unlike many other feedback systems, the variable of interest
changes dimension around the loop: it is converted from phase to voltage
(or current) by the phase detector, processed by the LPF as such, and con-
verted back to phase by the VCO. In the lock condition, the input and output
frequencies are exactly equal, regardless of the magnitude of the loop gain
(although the phase error may not be zero). This is an extremely important
property because many applications are intolerant or even small (systematic)
differences between the input and output frequencies [15].

The PD compares the phase of the output signal with the phase of the
reference signal and develops an output signal that is approximately propor-
tional to the phase-error ®.. The output voltage of the PD is proportional to

the phase-difference between the reference signal and the output signal. The

17

PD serves as an “error’-amplifier” in the feedback loop, thereby minimizing
the phase-difference, A¢, between the reference signal, V,.;(t) and the os-
cillator output signal, V,,;. The loop is considered to be “locked” if A¢ is
constant with time, a result of which is that the input and output frequen-
cies are equal. In locked condition, all the signals in the loop have reached
steady state and the PLL operates as follows. The phase detector produces
an output whose DC value is proportional to A¢. The low-pass filter sup-
presses high-frequency components in the PD output, allowing the DC value
to control the VCO frequency. The VCO then oscillates at a frequency equal
to the input frequency and with a phase-difference equal to A¢. Thus, the
LPF filter generates the proper control voltage for the VCO. The VCO phase
can be seen to be an initial condition of the system, as it is independent of
the initial conditions in the LPF. Whenever two frequencies become equal
at a point in time and A¢ has not established the required control voltage
for the VCO, the loop will continue the transient, temporarily making the
frequencies unequal again. In other words, both “frequency-acquisition” and
“phase-acquisition” must be completed. This behavior is to be expected be-
cause for lock to occur again, all the initial conditions of the system, including
the VCO output phase, must be updated [15].

The biggest pitfall of using just a PD is that it does not capture any step
changes in frequency; thus, in order to be able to track both phase and
frequency we need to use a phase-frequency detector (PFD). The purpose of
a PFD is to compare the reference clock signal and the VCO output clock
after division in both phase and frequency. These frequencies are generally
denoted by Frrr and Fy oo respectively. The basic structure can be divided
into logic control part and a charge pump. The charge pump is a current
source in series with a current sink and the output node is like a switch
that resides in between the source and sink. The logic part consists of two
D-Flip-Flops (DFFs) and the outputs of these DFFs control the switch of
the charge pump. Conceptually the PFD can be viewed as a state machine
with three states. The initial state is 0 and both DFFs will be reset if VCO
and reference signal are both high. In state -1 only current sink is turned
on and sinks charge out of the load, thereby decreasing the output voltage;
in state 0 current source and current sink are turned off so no charge is
injected or extracted out of the output node, thereby keeping the output

voltage unchanged. In state 1 only current source is turned on so charge can

18

be injected into the output node, thereby increasing the output voltage. The
state transitions are controlled by the edges of VCOs output and reference

signal; thus it is clear that the PFD is a purely digital circuit.

Ref_l_lJ_l_ Ref J_|_|_|_

Ref—» - UP cK __|_|_J_|_ CK L
n [

(b)

PFD
CK—p - DN UP UP

DN —— DN
@)

Figure 3.1: PFD Operation

1—p q

> g U

f!ef - ‘/

il
1—D Q

> U

fai

(a) (b)

Figure 3.2: PFD Functionality

Figures 3.1 and 3.2 show the block diagram of a PFD and demonstrate its
functionality. Essentially, when the reference clock is faster than the divider
clock, UP signal is High, DN signal is Low and vice versa. Note that when
both the reference and divider clocks are synchronized both UP and DN
signals are set to be High. The phase frequency detector (PFD) is a circuit
that linearly translates the phase difference into voltage signals. The ideal

average input/output relationship should be:
Ve = Kpp X ¢ (3-1)

where |¢e| < 27

Kppp is defined as the PFD gain.

3.2.2 Charge-Pump (CP)

The charge pump is the device that translates the digital voltage signals
generated from PFD into a current signal. Since the voltage controlled os-
cillator needs a stable voltage to control the oscillating frequency, a charge
storage capacitor is needed. In order dump enough charge into the capac-
itor, a charge pump is needed here. Together with the PFD the s-domain

transform becomes the following:

Z.C’howge Pump (32)

Kprp = o

3.2.3 Loop-Filter (LF)

PLLs act as high-pass filters so the purpose of the loop filter is to filter out
the high-frequency components from the output of the PFD. Typically, loop-
filters are just simple passive RC networks whose main objective is to filter

out the high-frequency noise data from the PFD output.

3.2.4 Voltage Controlled Oscillator (VCO)

VCOs are the most important and complex component of the overall PLL
design. The essential idea behind a VCO design is to generate a clock signal
based on the Barkhausen criteria for oscillation which states that the mag-
nitude of the VCO transfer function at the oscillation-frequency is 1 while
the phase is -180 degrees. Two most popular VCO topologies whose sample
architectures are ring-based and LC-tank based. Due to the superior noise
performance we chose to design a LC-Tank based VCO. VCO is the device
that generates the target clock. Ideally, its output frequency should be lin-
early related to the input control voltage. The Laplace transform function
of the VCO is derived as follows:

wout(t) - KVCOUctrl (t) (33>

Llwout(t)] = Wour (s) = Kvcover(s) (3.4)

20

t t

oult) = [wtna(r)ir = [Kvcovan(r)dr (3.5)

0

E[Qbout(t)] _ ¢aut<5) _ wout(s) _ KVC’O'Uctrl(S) (36)

S S

Thus, the Laplace transform function for the VCO is:

HVC’O(S) _ ¢0ut(s) _ KVCO (37>

Vetrl (8) S

The Kyco is defined as the VCO gain.

3.2.5 Divider

A frequency divider is needed to produce a clock signal that runs many times
faster than the reference clock. The PFD input clock and reference clock have
to be synchronized for PLL to be in locked condition. In order to perform
this task we use a fractional-N divider circuit, which divides the VCO clock
by the highest power of 2 factor to synchronize reference clock signal and the

divider output clock.

3.2.6 Analysis of a PLL in Locked-State

The open-loop transfer function of the PLL is equal to Hyo = KppGrpr(s) Kveo

S
Pout(s) _ _KppKvcoGrpr(s)
Din(s) s+KppKvcoGrpr(s)®

In its simplest form, a low pass filter is implemented to have the trans-
ﬁ,where WLpF = R_lc' Thus, for a PLL con-
“LPF

taining a first-order LPF the closed-loop response is represented as H(s) =

yielding the closed-loop transfer function H(s) =

fer function Gppr(s) =

—KepKvco indicating that the system is of second-order, where one
o pp TstEPDKvVCO

ch) e is contributed by the VCO and the other by the LPF. Here, K =

KppKyco is called the loop-gain and expressed in rad/s. In order to under-

stand the dynamic behavior of the PLL, the denominator of the second-order
closed-loop response is converted to a form commonly used in control the-
ory: 8% + 2Cw,s + w?, where (is the damping factor and w, is the natural
frequency of the system. Therefore, the closed-loop response can now be
expressed as H(s) = m, where w, = VwrprK and ¢ = %\/@
Note that w,, is the geometric mean of the -3dB bandwidth of the LPF and

21

the loop-gain, and thus an indicator of the gain-bandwidth product of the
loop. The damping factor is inversely proportional to the loop gain. Typi-
cally, in a well designed second order system, (is usually greater than 0.5
and preferably equal to */75 so as to provide an optimally flat response. Thus,
K and wpppr cannot be chosen independently; for example if { = ‘/75, then
K = “LPE If s — 0, we note that H(s) — 1; i.e. a static phase shift at the

input is transferred to the output unchanged. We can examine the “phase
Dc(s) _ s242(wps
Din(s) — s24+2Cwnstw?

error transfer function” defined as H.(s) =1 — H(s) =

which drops to 0 as s — 0 [15].

3.2.7 PLL Characteristics and Figures of Merit

The most important metrics of a PLL are Order, Type, Hold-In range, Lock-
in range, and Pull-in range. The order of a PLL is determined by the number
of poles in the loop while the type is determined by the number of integrators.
The VCO always has a pre-existing pole because it generates frequency from
phase via an integration; thus every PLL is at least of order 1 and type 1. As
the loop-filter poles increases and the PLL order and type increases as well
and higher the type, the better the PLL is at tracking both frequency and
phase. For instance, a type 2 PLL is capable of tracking both a step change
in phase as well as frequency with zero steady-state phase error while a type
1 PLL can only track a step change in phase.

Hold-In range of a PLL is a measure of the DC loop gain and the range
of frequencies under which the PLL can maintain a lock. Lock-In range is
a measure of the range of frequencies under which a PLL can acquire lock
without slipping any clock-cycles. Finally, the Pull-In range is the measure
of the range of frequencies for which the PLL can acquire lock by missing a
few clock cycles. It is important to note that the hold-in range is the largest

of the three and lock-in range is the smallest of the three metrics.

22

CHAPTER 4

PLLs IN CLOCKING CIRCUITS

4.1 Charge-Pump (CP) PLLs Overview

o, up_
——N_ | PFD
4 ICP
—_ VCO
¢I‘(Ef —l DN VCI'RL
L R
'ICP CZ
ICII
Dgiv =N | ¢°U=t

Figure 4.1: Charge-Pump PLL Block Diagram

Figure 4.1 shows the basic building blocks of a CPLL. Charge-Pump PLLs
offer many advantages over the classical voltage phase-detector PLL including
an infinite pull-in range and zero steady-state phase error. CPLLs also allow
one to use a passive filter and still have many of the benefits of using an
active filter with the voltage phase detector. The exception to this case is
when the VCO tuning voltage needs to be higher than the PLL can supply;
in this case, an active filter is necessary [15].

Phase-frequency detectors with charge-pump combination offer several ad-
vantages over the voltage charge pump and have all but replaced it. The PFD
and CP blocks are universally present in every PLL based synthesizer chip.
Using this approach completely bypasses issues of steady-state phase error

and hold-in range [10].

23

4.2 CPLL Linear Model and Analysis

/" PFD+CP T\
]]
X5 i LF Vou (6) Y(CO
®ger (S)E—E" Kep [T F(s) g b ® Poyr (S)
\ 3 /
Vclrl (S)
R

o |

Figure 4.2: Linear s-Domain Model for Charge-Pump PLL

Figure 4.2 shows the linear s-domain model for CPLLs. From the previous

section we can now define the open loop transfer function as follows:

LG(s) = Kpp - F(s) - KVSCO (4.1a)

1
s+ RCy

2 C1+Cs
Cas (3 T Rclcz)

= Kpp - Kvco - (4.1Db)

From the open loop gain we notice that

I PO E e
_R017 pl — Wp2 — YU, Wp3 — RClcg

Wy

(4.2)

The phase margin will be:

¢p = arctan (wugb) — arctan (wugb) (4.3)

z wp3

where wyg, is the open loop unity gain bandwidth and w, < wy,g.

In order to achieve maximum phase margin, the value of C'; and C5 have
to be chosen carefully. To calculate the expression of ¢y me: We take the
first order derivative of Eq. 4.3 with respect to w,g, and equate the result to

zero, such that:

Cy
Wygh = W 52 +1 (4.4)

24

Subsequently;,

C 1
Ortmas = arctan(y/ — + 1) — arctan(———) (4.5)
¢, NS
Co
The design procedure of the loop filter is as follows:

1. Choose desired bandwidth w,g, phase margin ¢,; and resistor R ac-

cording to specification. Then calculate the K, from Eq. 4.6:

K. = G 2(tan?(pyr) + tan(éary/tan®(gar) + 1)) (4.6)

2. From Eq. 4.4 we have:

W, = % (4.7)
V& +1
1 o
1 sza 2 Kc, ()

3. From aforementioned equations, we can determine the value for Iop:

2 2
27T02 2 W3 + wugb

. wugb . 5
ugb

Iop = (4.9)

K VCO wg +w
It is vital to analytically confirm that the PLL will indeed lock when there
is a frequency step applied at the input. Without loss of generality assume
there is input frequency step w;, = %, then ®;,(s) = %. First, obtain the

closed loop transfer function:

LG(s)
H =/ 4.10
Pl = TG 0) (4.10)
Lastly, define steady state error transfer function:
(I)error(s) 1
—— > =H,/(s)=1—-H = 4.11
D (s) () pols) =17 LG(s) .

25

Applying the final value theorem, we get the steady state error to be:

Ploter = lir%s - H(s) - ©in(s) (4.12a)
s—

1 Aw
=1 - .=~ 4.12b
e R + LG(s) 2 ()

[R010252 + (Cl + CQ)S]ACU

=1 4.12
sl~r>n0 RCCy8® + (Cl + 02)82 + KycoKpps+1 (C)

_ Y (4.12d)
1

=0 (4.12¢)

Eq. 4.12(a) to 4.12(e) indicate that the PLL we have designed can eliminate
any steady state phase error and relock when a frequency step is applied at
the input [8].

4.3 CPLL Noise-Analysis

The following equations describe the noise-transfer functions of the CPLL

and are used in determining the optimal PLL BW.

. (I)OUT<3) . N - LG(S)

NTF - — 4.1
() inv(s) 1+ LG(s) (4.13)
NTFD]\/(S) = NTF]N(S) (414)

) 2
NTFqp(s) = our(s) _ 2 . NTFyn(s) (4.15)
icp(s) Icp
<I>OUT(S) Kyco

NTFp(s) = - s 4.1
RO =T T 1T L00) (4.16)
SeiN = So, INTFyn(s)|? (4.17)
Ser e = SiepINTFop(s)|? (4.18)
St = S| NTFg(s)” (4.19)

S8vC0 = Soy o NTFreo(s))? (4.20)
1

G - 4.21

Lpr(s) . (4.21)

26

KppKvco
*— 4+ s+ KppKyco

WLPF

§* + 20w,s + w2

H(s) =

1
wp = VwrprK,(= -
’ 2 K
V2 WLPF
C = —, — K =
2 2
Sub-optimal phase margin A Optimal phase margin
LG \ G|
wg oSt ao Wugy _ “nso
ugb \ |I
—135° /—\ N , ®Mm \
D
—180° —180° L
LLG LLG

Figure 4.3: Loop-Gain and Phase-Margin Response

Reference Reference Charge Pump VCO Noise
Jitter Feedthrough Noise
| l ‘ \.2.0 dB/dec

f . f
\ Ik

ref(t) e(t) [Char v(t) NI
. ge Loop
PFD[— Pump [| Filter [—
2 VCO
Jr —
div(t) Divider |«
Divider
Jitter " T
I f N

Figure 4.4: CPLL Output Noise Model

27

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

-100

S0P
120 F

130 e

Power Spectral Density (dB20)

i Lo
10° 10 10°
Frequency (Hz)

Figure 4.5: CPLL Output Noise Simulation

Figure 4.3 [8] shows the typical loop-gain and phase-margin plot for a
CPLL. Recall that phase-margin is the difference in phase between —180°C
and the phase value corresponding to wyg. Figure 4.4 shows the typical
noise-profile for each component in a CPLL based Integer-N synthesizer [12].
Figure 4.5 shows the noise-transfer function characterization for the PLL
using the above equations implemented in MATLAB. The beauty of this
analysis is that it accurately predicts what the noise-profile for the PLL will
look like so that the designer can determine the BW specifications for the
PLL from which the rest of the Loop-Filter and VCO specifications can be

determined.

28

CHAPTER 5

PLL BASED CLOCK GENERATOR

5.1 PFD

Figure 5.1 shows the NAND PFD implementation used in the design of the
PLL used in this thesis. In Figure 5.2 the transistor-level implementation for

each of the circuits shown in Figure 5.1 are displayed with the appropriate

D ~

sizing.

upP

:)o« RST

NS —,————————

VRer o— > up
Vo o— - ODN

Figure 5.1: NAND PFD Implementation

29

0.18um
Do+ T
0.18um
T o
m E
~Sum_ JM _8um —I 018um018u I——I 018um018pm I—
0.18um 18um 0.18um

g

3

[V L7 LT

i
£ L _L

:|0.1 Bum
5 D= e
. :l 181

0.18um —I 0.18pm

12um _| d6ym

0.18um 0.18pm
— 16pm
= 0.18pm

Figure 5.2: PFD Transistor Level Circuit Blocks

One of the major challenges during the design of an efficient PFD circuit is
the “dead-zone” problem. “Dead-zone” is refers to the region wherein there
is no output for inputs. It is equal to the sum of the on-times of the pull-
up/pull-down switches in the charge-pump and is typically a problem because
the presence of dead-zone causes the PLL to operate in “open-loop” when the
phase-error is zero. One method to overcome the dead-zone issue is to ensure
that the PFD generates equal UP/DN pulses whose width is larger than the
switch-on time of the CP switches. The NAND-PFD implementation is one
example of a PFD circuit where the dead-zone issue is avoided. The D-Flip-
Flops are designed using cross-coupled NAND-latches and even though this
uses up a lot of on-chip area and burns a lot of power in the PFD circuit, the
large delay in UP /DN feedback paths allows the pulse-widths to be just larger
than the switch-on time of the PMOS/NMOS transistors that act as the pull-
up/pull-down switches in the CP. The maximum operating frequency of a
PFD circuit is determined by the reset path delay such that F,., < ﬁ
In the case of a NAND PFD circuit, Trsr = 2Tnvanp2 + T NanNDa, Where we
intentionally design the NAND4 circuit to have a high delay to minimize the

reset period.

30

5.2 (CPs

Figure 5.3 shows the CP implementation used in the design of the PLL used
in this thesis. The transistor-level implementation is also displayed with the

appropriate sizing.

16pm
0.18um

R S e ———————————-

Icp

————— —————

uPD—
DND—

Figure 5.3: Bootstrapped Charge-Pump Implementation

The charge-pump circuit needs to be carefully designed in because it is
the main contributor to low-frequency PLL noise. The current mismatch in
the charge-pump leads to static-phase offset and causes ripples in the control

voltage, thereby creating a ‘jittery” VCO output clock. Thus, it is important

31

to design a CP circuit that has equivalent pull-up and pull down currents and
equal on-time for the PMOS/NMOS switches. Though several CP architec-
tures exist, a ‘Bootstrapped’ CP design is used in the clock-generating PLL
studied in this thesis. The advantage of the Bootstrapped architecture is
that it allows differential current steering, it can operate with low-swing UP,
DN signals. It is thus very prominent in PLLs that use high-speed reference
clock signals. The term ‘bootstrapped’ are appropriate because the voltage
following op-amp between the pull-up and pull-down current networks en-
sures that an equal voltage level is maintained on either ends such that the

pull-up current is equal to the pull-down current.

5.3 LF

TC1 = 72.766p F

== C>=561.27{F

Figure 5.4: Loop-Filter Implementation
Loop-Filter is designed using the design-procedure described in Chapter 4 in

the CPLL design procedure algorithm. The algorithm was implemented in
MATLAB to choose the values shown above in Figure 5.4.

32

5.4 VCOs

0.18um

Sum
0.18um

T-Cu=100fF

#
|

-

6

7

Figure 5.5: Single-Ended 3-Stage Ring Oscillator

A 3-Stage ring-oscillator is implemented with a driver inverter (as shown
in Figure 5.5 with full transistor-level sizing) whose size is fixed such that
the input capacitance seen by the divider remains constant while the VCO
frequency is changing. M8 and M9 act as the pull-up resistors, i.e. they are
PMOS transistors that are biased to be in triode/resistive region. In order
to ensure the oscillation starts, the gate of M9 is driven to ground while gate

of M8 is driven by the control voltage which alters the phase-delay between

the ring to vary to the oscillation frequency.

33

5.5 Divider

DO—

CLKD

DD D a 5Q
DFF
CLKD D a DQ

Figure 5.6: TSPC Based D Flip-Flop Architecture

|—D GJ D QJ D QJ

DFF DFF DFF
iCLKD—D a D> a > alDoCLK

Figure 5.7: Divider Architecture

The divider circuit consists of 3-DFFs that are connected together in the
manner shown in Figure 5.7 to realize a divide-by-8 operation. Division in
binary is essentially a left-shift operation; thus, tying the outputs of each
DFF to clock input of the next while connecting the input to the inverse of
output in a feedback ensures a left-shift operation. Since the PLL output
frequency is in the GHz range, the DFF design is very critical. To realize a
fast DFF with low clock-skew and delay a TSPC (True-Single Phase Clock)
architecture (as shown in Figure 5.6) is employed. The basic idea is that
when CLK is high transistors M1 and M9 are ON/OFF respectively and vice
versa, thereby preserving the state except when CLK goes from low to high,

in which case the output follows the data-input signal denoted by D.

34

CHAPTER 6

BEHAVIORAL LEVEL SIMULATION

6.1 Why Behavioral Modeling?

Traditionally SPICE is used as a common simulation engine to simulate
analog/mixed-signal circuit. However, when simulating large networks the
simulation times can become extremely long, thereby limiting the allowed
design revisions to the circuit designer. It is very tedious to describe the
behavior of a circuit using SPICE unless the complete physical transistor-
level structure of the circuit is known to the designer. Furthermore, the
SPICE simulation process is very technology dependent in that with tech-
nology scaling the SPICE models need to be updated as the older models
become obsolete and invalid for accurate simulation. The aforementioned de-
sign process has remained virtually the same over the past few decades and
even though the digital design synthesis process has progressed significantly
by incorporating electronic system-level (ESL) design automation techniques,
the mixed signal design process is very slow, laborious and therefore error-
prone. Digital design engineers, though working with millions of transistors,
have been able to automate the design flow, but analog designers have been
unable to do so even though most analog circuits only consist of tens of

thousands of devices.

6.2 Why Verilog-AMS?

Verilog-AMS is a high-level Hardware Description Language (HDL) used to
describe the structure and behavior of analog and mixed-signal systems. It
is an extension to the IEEE 1364 Verilog HDL standard and is very power-

ful in providing fast prototyping capabilities for mixed-signal systems. The

35

key advantage of circuit modeling using Verilog-AMS is that it provides a
single language and simulator ecosystem that can be shared between ana-
log, digital and system-level designers. Verilog-AMS leverages the superior
speed and capacity offered by traditional Verilog and allows event-driven
capabilities within analog model simulation, making it an attractive choice
when simulating highly complex mixed-signal circuits such as PLLs, CDRs,
ADCs, and DACs. The only pitfall of using Verilog-AMS is that it cannot re-
place traditional transistor level SPICE simulation completely as it does not
have synthesis capabilities like its digital counterpart Verilog. However, at
the onset of the design phase, using Verilog-AMS for circuit modeling is very
powerful for a mixed-signal circuit/system design engineer as it offers fast
prototyping/verification for behavioral level simulation, thereby expediting
the time-to-market for the system.

Verilog-AMS combines both Verilog-D and Verilog-A including a few ad-
ditional mixed-signal constructs to provide a HDL language capable of per-
forming truly mixed-signal simulation. Cadence has been the front-runner
in promoting the language making it an industry standard, and has led the
majority of the advancement efforts ever since its release in 2003. The power
of Verilog-AMS simulator in Cadence Virtuoso is that it can perform co-
simulation among behavioral analog/digital blocks described by correspond-
ing Verilog-A and Verilog-D models respectively as well as transistor-level
circuit blocks by running the Spectre simulation. When a circuit consist-
ing of transistor-level circuit elements, analog behavioral modules written
in Verilog-A and digital behavioral modules written in Verilog-D is simu-
lated, the AMS simulator in Cadence partitions the testbench into analog
and digital components. The simulator then merges the analog simulation
results from Spectre with the digital simulation results from NC-SIM and
the resulting output is plotted just like that in the case of traditional Spectre

simulation [4].

6.3 Basic Verilog-A/AMS Syntax

A typical skeleton of a Verilog-AMS code is shown in Figure 6.1 where the

main components of a Verilog-A/AMS code are listed.

36

‘include “"disciplines.vams"

1

2

3 wodule name(inputs, outputs)
4 parameter real var = 0;
5 input inl;

6 output outl, out2;

7 electrical outl,out2;

8
9

analog
10 begin
11
12 ----code logic-----
13
14 end

15 enduodule

Figure 6.1: Verilog-AMS Sample Code

In the first line of the sample code shown in Figure 6.1 [4], we include
the ‘disciplines.vams’ header file. This file is a collection of physical signal
types that are commonly used in Verilog-AMS and are thus referred to as
‘natures’. Electrical disciplines consist of ‘voltages’ and ‘currents’ and are
used most commonly during mixed-signal system modeling where ‘voltage’
and ‘current’ are ‘natures’. Every Verilog-AMS component is defined as a
‘module’ and modules are the basic building blocks of any given Verilog-
AMS files as they describe the component being modeled. Ports are the
points where connections are made to the given component. Every port is
required to have a direction associated with it, and by default in Verilog-
AMS language there are three types of ports: input, output and inout.
The keyword electrical signifies that the signals associated with the ports
described as electrical are of ‘voltage’ and ‘current’ natures. Additionally,
analog is the keyword after which point the Verilog-AMS compiler starts
actual modeling as the logic/process starts after the ‘analog begin’. Finally,
every Verilog-AMS component code should end with the word endmodule

as it signifies the point at which the compiler stops parsing of the code [4].

37

6.4 PLL Simulation in AMS Using Cadence Virtuoso

6.4.1 PFD+CP

1. Create a new library and name it ‘PLLBehav’. Now within the Library
Manager window, click on File — New — Cell View and call the new
VerilogAMS file pfd. Choose the ‘VerilogAMSText” option from the
drop-down Menu as shown in Figure 6.2. Click ‘OK’ and a text editor

window will open up.

2. Figure 6.3 shows the ‘PFD’ code used in the design. The PFD is
a completely digital circuit; thus, this code is essentially in Verilog-
D syntax where the UP, DN signals are generated by comparing the
rising edges of the flip-flops that have a CLK signal of Frgr and Fpry

respectively.

800 |% New File
File

Library FLLEEhay

Call pfd

Wimw wverilogams
Type weriogamsTet |3
Application

Open with W etlog-AMS n

| Always use this application for this type of file

Library path file
Jhome /Verilogfekel80feds. 1ib

Cancel /| Help
Figure 6.2: PFD Verilog-AMS Code Setup

38

1 //Verilog-AMs HOL for "BehavPLL", "pfd" "verilogams"
2

3 “include "constants.vams"
4 “include "disciplines.vams"
5 “timescale 10ps / 1ps

6
7 module pfd (up,dn,upb, dnb, fref, fdiv);
8

9 input fref;

10 input fdiv;

11 output up,upb,dn, dnb;
12

13 wire fv_rst, fr_rst;

14 wire reset;

15 reg q0, ql;

16

17 assign fr_rst = reset | (g0 & gl);

18 assign fv_rst = reset | (g0 & gl);

19 assign reset = fref & fdiv;

20

21 always @ (posedge fdiv or posedge fv_rst) begin
22 if (fv_rst) g0 <= 0; else g0 <= 1;

23 end

24 always @ (posedge fref or posedge fr_rst) begin
25 if (fr_rst) gl <= 0; else ql <= 1;

26 end

27 assign up = ql;
28 assign dn = qo;
29 assign upbh = ~qo;
30 assign dnb = ~ql;
31 endmodule

Figure 6.3: PFD Verilog-AMS Code

3. Once you have written the code as shown in Figure 6.4, save and exit
the text editor. A pop-up window like Figure 6.4 will open up. Click
‘Yes’ to generate the symbol for the ‘pfd’.

® O O |x| Cellview symbol do...
Cellview pfd symbol does not exist

\.) Do you want to create it?

Yes Mo
—_—

Help

Figure 6.4: PFD Verilog-AMS Symbol

4. Within the ‘PLLBehav’ library you created above, click on File —
New — Cell View and call the new schematic pfd_tb as shown in
Figure 6.5. Double-click on this cell-view and a schematic window will

open up.

39

enn %| New File
File

Library FLLBehay n
call pEd_th
Wiswi schematic
Type schematic
Application
Cpen with Schematics L n
— Always use this application far this type of file
Library path file
/hone /¥erilog/cktl80/cds 1ib

m _Cancel /| _Help

Figure 6.5: PFD Verilog-AMS Schematic

5. In order to create a circuit in the schematic editor, we need to add
‘instances’ or circuit-components like transistors, supply nets and wires.
To add an instance press I from your keyboard. This will open up a
‘Component Browser’. Choose the ‘PLLBehav’ library and within it
select the symbol for ‘pfd’. Repeat the same process to add the ‘vpulse’
components found in the ‘analoglib’ library. Make sure the ‘fref” and
‘fdiv’ sources have a 100ps delay between each other. Figure 6.6 shows

what your test-bench schematic should look like.

Figure 6.6: PFD Verilog-AMS Testbench

6. When simulating Verilog-AMS files in Cadence Virtuoso, we need to
create a ‘config’ file whose job is to link the analog test-bench sources
and the verilog simulation engines together. In order to do so, within
the ‘pfd_test’ cell-view click on File — New — Cell View and call
the new config pfd_test as shown in Figure 6.7. Double-click on this
cell-view and a New Configuration window will open up. Click on ‘Use
Template’, choose the AMS template and configure the setup as shown
in Figure 6.8(a). Finally the configuration setup will look like that

40

shown in Figure 6.8(b), so click on ‘Save’ and press ‘Open’. Now a

window like the schematic view will open up but this time it will have
config in the title.

800 N\ New File

File

Library PLLBehay

Cell pfd_test]

Wiew config

Type config n
Application

Open with Hierarchy Editor '

__ Always use this application for this type of file
Library path file

shome/Verilog/ektl80/cds. 1ib

m Cancel Help

Figure 6.7: Config File Creation

800 [x] New Configuration
Top cell
Library: PLLBehav -]
(O B 800 \| Virtuoso® Hierarchy Editor: New Configuration (Save Needed)
Flle Ecit View Pl Hel 3
view: [schemat B Fle Eet tiew Pugns ben cadence
o B i@ & 1B B
Global Bindings. =
Top Cell 718] |_Global Bindings 78X
Liorary List:"myLib
— Library: ‘PLLBehav Library List. myLib
Viewlist | systemverlog schematic verilaga whd vhdiams wieal
Cel: prd_test iew List eriloga vhl vhdiams wreal
STp I specte e View: schematic
Constraint List it ez spectre e/
Open Edit Constraint List
Description —
Defaull config view template for 055-based and Cellview-based Verlog- —_—
AMS neflisters in 4DE el YRy Tree View
Cell Bindings
Please remember to replace Top Cell Library, Cell, and View
Telds with the actusl names used! by your design. Library T Cel [~ ViewFound [ViewToUse | _Inheried view List |
BehavPLL [verllogams specite spice veriog v.
PLLBehay pid_test schematic spectre spice veriog v.
analogLin vpulse spectre spectre spice veriog v.
L3P \Cancel) \JUse Tempiate) \ Help,/ Il Namespace: CDBA _ Filters: OFF
y 25(66) | > P

(a) (b)

Figure 6.8: Config File Setup

7. We will simulate our circuits using Cadence AMS Simulation engine.
AMS is capable of simulating Verilog-AMS as well as Spectre com-
ponents. Spectre is a variant of HSPICE developed by Cadence and

provides greater accuracy, speed and flexibility especially when dealing
with mixed signal circuits.

8. Make sure you first ‘Check and Save’ your config file and click on
Launch — ADFE to open up the ADE window.

41

9. Click on Setup — Simulator to make sure the Simulator is set to AMS.

Select the output nodes and choose a transient simulation for 100ns as

shown in Figure 6.9.

8 00 [%] Virtuoso® Analog Design Environment (1) - BehavPLL pfd_test config
Launch Sgssion Setup Analyses Variables Outputs Simulation Results Tools Help cadence
== R =" =
Anal 78 x| =
Design variahles yoes B —
_ Type | Enshle| Arguments =
Mame | Valug [|| tran ¥ 01000 moderate Gl
=
®
Outputs 28X Q
~ MamesSignaliE=pr | Walue| Plot | Save| Save Options |
4y fiv FIRIF] s Ii
5 fref v v ves
5 DN v v ves
4 UP FEERE
N Plat after simulation: |Auto ' Plotting mode: Replace ']
limouge L: M: R:
1) | | Status: Ready | T=27 C | Simulator ams(Spectre)Mode: batch | State: ams_stateMarz0 4

Figure 6.9: PFD Verilog-AMS ADE Outp Window

10. In the final output waveform shown in Figure 6.10 it is clear that the
PFD is functioning correctly. Notice that the UP,DN pulses are ap-
propriately modulated as ‘REF’ and ‘DIV’ signals diverge from one
another.

42

Transient Response

Mame

I iy
I fref

-l /DN

L AUP

11.

12.

1Y | R0 1 U B A n B 3
® 2.0 4
& 1
] — - T p— = —— — - ~—
L Ll u 1 1 1
e | Ll U 1 1 1)
— 11 E ! i
154 it 1 I AR
| i ' 1 oo o) of o) of sl]efs |t
L Ll u 1 L L] 1 1] 1 1] 1 1 1 L L} 1
l 1 u 1 L L] 1 n 1 n 1 1 1 LN L} 1
L 1 I of oo vp et pagrpn ot
[1 o of oo vp e gt
i 1 IEEEEHHHHHHB A
i 1 I EHEHHEHHHHE R
;107 il 1 a 0]] R R R R AR O
= : : : : LRI R AR L :
[b ' 1 H '
Q L 1 n 1 1
= p 1 : :
q ['
[i i 1
5 A E:-:- el lipe i e I E E E
IR EED a i 1
IR HEEHEHEE DR d I Ol S N O
IEHEEHEHHEHEHEH 1 oo of of o of sl]ofs s
I EEHHHHHHAHHHEH 1 I EHEHHHHHHB R
HE T 1 oo o) o) o o alu)l
J f I I I B Y O B O R ! F I] B] Y I R R
L Ll 1 L} H) H) H L} 1 1] 1 1 U d 1 L 1| L} [1 [1] 1 1] 'R I 1
(U0 N R R A R e R e R e S LN . = i il et bbbt g 1)
@ 1 a - " o
0]--.l PN I S S
1
@ |,]
————T—1—
0.0 250

Figure 6.10: PFD Verilog-AMS Simulation Output

Within the ‘PLLBehav’ library follow the steps described earlier to

create a model for the CP as shown in Figure 6.11 and save the file as
‘ep’.
1 //Verilog-AMS HDL for "BehawPLL", “cp" "uerilogams"|
“include "constants.vams”
“include "disciplines.wams"

2
B
4
5 "timescale 1l@ps / 1lps
6
7
8

module cp (pout, nout, up, dn);
parameter real cur = 1m; // output current (A)

9 input up, dn;

10 output pout, nout;

11 electrical pout, nout;
12 real out;

13 analog begin
14 @(initial step) out = 0.0;

15 if (dn && 'up)

16 out = -cur;

17 else if (!dn && up)

18 out = cur;

19 else out = 0;

20 I(pout, nout) =<+ -transition(out, ©.G, 1@n, 1@n);
21 end

22 endmodule

Figure 6.11: CP Verilog-AMS Code

Figure 6.12 shows the ‘PFD+CP’ testbench schematic. Create a new
schematic named ‘cp_test’ as well as a config file following the same
procedure as the PFD. When simulating using the ADE AMS simulator

follow the procedure similar to that shown in Figure 6.9.

43

Figure 6.12: PFD+CP Verilog-AMS Testbench

13. One of the powerful advantages of behavioral modeling is that we can

easily alter values of design variables to modify the functionality of
a block. In the ‘config’ testbench file if you click on the ‘CP’ block

and press q, a window as shown in Figure 6.13 will appear. Enter the

appropriate value of charge-pump current as per the design objectives.

enn
I

|| Apply Ta

Show

_ Browse
Property

Library Mame
Cell Mame
Wiew Name

Instance Mame

User Property

madelhame
parthame

wendorMame

CDF Parameter of view

cur

x| Edit Object Properties

only current n instance n

_ system & user & CDF

__ResetInstance Labels Display
Walue

BehavPLL
cp
symhbol
110

Add | Delete

haster Value Local Walue

cp

verilogFormalPr. s i niEehavelodel

verilogams :

Téu

m _Cancel) Apply) Defaults || Previous |

Moty

Display
L - |
L - |
off n
value n

Display
L - |
off n
off n
L - |

Display
off n

Mext)\ _Help

Figure 6.13: CP Verilog-AMS Testbench Variable Setup

14. The purpose of the charge-pump is to convert the digital PWM signal

outputs from the PFD into a current. As seen in the code and from

the final output waveform shown in Figure 6.14, it is clear that the

44

‘PFD+CP’ is functioning correctly. When UP is high the current the

pull-up current source is on and when DN is high the pull-down current

source 1s on.

Transient Respense

Mame |V\s |
Ly @ | 20 3
L ffref @
15 ~
210 B
i
g
=5 4
oo 4
. 5 4
H . o n ul il i
Il /DN > o :I...l. E.....l.....l it et hrmed bt bt el e 4
1
AP @ | :|
- A3pout @ 3000 7
2000 3 :
¥
. looo 4 '} ;
s
2 o il.
= 00 H mtr ety e - " u f - -]
g i [B I S i
=] ® o R H
1000 SN R SR By
f L Wi ooy
2000 3 R
3000
T — ———Tr T ———— T
0.0 25.0 50.0 75.0 100
time {ns)

Figure 6.14: PFD+CP Verilog-AMS Simulation Output

6.4.2 LF

We use the analog loop-filter as shown in Figure 5.4.

6.4.3 VCO

1. The VCO is the most critical component of the PLL we try to model
using Verilog-AMS because it allows us to behaviorally estimate the
jitter specifications. Within the ‘PLLBehav’ library follow the steps
described earlier to create a model for the VCO as shown in Figure
6.15 and save the file as ‘vco’. Only the white-noise jitter is considered
in this design and it is modeled by a Gaussian white-noise probability

distribution function.

45

module veo (v_ osc_out_sin, osc_out_sq):
input v_in;

output osc_out_sa;

electrical v_in:

electrical osc_out_sa:

parameter real Vmin=C; /
parameter real Vmax=vmin+! from (Vmin:inf); /
parameter real Fmin=: from (0:inf);

12 parameter real Fmax=2:S from (Fmin:inf);
parameter real Vamp = from [0:inf);
parameter real ttol=lu/Fmax from (0:1/Fmax);
parameter real vtol = 1e-9: /v
parameter integer min pts_update=:2 frem [2:inf): um ed for update
parameter real tran_time = 10=-12 from(0:0.3/Fmax); //
parameter real jitter std ui = 0 from [0:1):

real freg;

real phase:
integer n;
integer sesd;
real jitter_rad:

real dPhase:
real phase_ideal;
analog
Elbegin
@(initial_step)
=] begin
seed =

n=o:
32 dPhase = 0
3 jitter_rad = jitter_std_ui#2%'M PI;
end
freq = ((V(v_in) - Vmin)*(Fmax - Fmin) / (Vmax - Vmin)) + Fmin;
$bound_step(1/ (min_pts_update*freq));
if (freq > Fmax) freg = Fmax;
if (freg < Fmin) freg = Fmin;

phase_ideal = 2% M PI*idemod(freq, . . -0.s) s
phase = phase_ideal + dPhase;
41 @(cross(phase_ideal + 'M_PI/2, +., ttol, vtol) or cross(phase_ideal - M PI/Z, +., ttol, vtol})
2 g begin
43 dFhase = Srdist_normal(seed,”,jitter_rad);
end
45 @(cross(phase + "M PI/2, +1, ttol, vtol) or cross(phase - ‘M PI/2, 41, ttol, vtol))
6 B begin
n = (phase >= -"M PI/2)&&(phase < M _PI/2):
end
¥(osc_out_sq) <+ transition(n?Vaemp:l, 0,tran_time);
ena
endmodule

Figure 6.15: VCO Verilog-AMS Code

2. Figure 6.16 shows the ‘VCO’ testbench schematic. Create a new schematic
named ‘vco_test’ as well as a config file following the same procedure as
the PFD. When simulating using the ADE AMS simulator follow the

procedure similar to that shown in Figure 6.9.

Figure 6.16: VCO Verilog-AMS Testbench

3. Just like in the case of the ‘CP’ in the ‘config’ testbench file, if you
click on the ‘VCO’ block and press q, a window as shown in Figure
6.17 will appear. Enter the appropriate value VCO design parameters

as per the design objectives.

46

800 |%| Edit Object Properties

Apply To only current n instance n

Show __ system @ user w CDF
Browse Reset Instance Labels Display
Propery Value Display
Library Mame EehavPLL off n
Cell Name oo off '
Wigw Mame symbol off n
value n

Instance Mame I

Add Delete Itodify
User Property haster Walue Local Value Display
interfacelastCh. 21 01.08:30 2014 off '
modelMName weo off n
parttame vco aff n
wendortlame off '
o n

=

verilngFomalPr sy intEehaveradel

CDF Parameter of view \verilogams n Display

Wmin i} off '
Fmin 0.9e+09 off '
Fmax 1.8e+09 off '
“Wamp 1.8 off '
winl 1e-09 off '
min_pts_update 3z off '
tran_time le-11 off '
jitter_std_ui 0.0z off '
tol Ee-16 off '
Wmax 1.8 off '

=

Cancel ;| Apply Defaults Previous ext Help

Figure 6.17: VCO Verilog-AMS Testbench Variable Setup

4. The VCO circuit is supposed to generate a periodic square-wave output
at the desired frequency of interest (as a function of the control voltage)
with a certain jitter level which in our case is chosen to be 2% Unit-
Interval (UI) of period. From the final output waveform shown in

Figure 6.18 it is clear that the ‘VCO’ is functioning correctly.

47

Transient Response
RERE

L et @ 2.0 1
- Aout @ 1
MO MEe ey A AN PO BCrysS e
1.5 1
5710+
<
E
o
=
5 A
0.0 1~ LA A4 L Ll L L L e L L L L L e] L L L)

0.0 5.0 10.0 15.0 20.0
time (ns)

Figure 6.18: VCO Verilog-AMS Simulation Output

6.4.4 Divider

1. Divider is essential when designing a clock-generating circuit as we need
to scale down the VCO output clock to the reference frequency level
such that the two signals can be compared. Within the ‘PLLBehav’
library follow the steps described earlier to create a model for the Di-
vider as shown in Figure 6.15 and save the file as ‘div’. Figure 6.19

shows the code to implement the divider in Verilog.

48

1 //Verilog-AMS HDL for "BehavPLL", "divider" "verilogams"

“include "constant 1s"
“include "disciplines.

“timescale 1Gps/ 1lps

vams"

module divider(out,clk);
input clk;
9 output out;
18 parameter divide ratio = 8;
11 reg out;
12 integer i=0;

00~ O LW

13

14 always@(posedge clk) begin

15 if (1 < (divide_ratio/2)-1) begin

16 out = 0;

17 i=1+1;

18 end

19 else if (1 == (divide_ratio/2)-1) begin
20 out = 1;

21 i=1+1;

22 end

23 else if (1 < (divide_ratio)-1) begin
24 out = 1;

25 i=1+1;

26 end

27 else if (1 == (divide_ratio)-1) begin
28 out = 0;

29 i=o0;

30 end

31 end

32 endmodule

Figure 6.19: Divider Verilog-AMS Code

2. Figure 6.20 shows the ‘Divider’ testbench schematic. Create a new
schematic named ‘div_test’ as well as a config file following the same
procedure as the PFD. When simulating using the ADE AMS simulator

follow the procedure similar to that shown in Figure 6.9.

Figure 6.20: Divider Verilog-AMS Testbench

3. Just like in the case of the ‘CP and VCO’, in the ‘config’ testbench file
if you click on the ‘Divider’ block and press q, a window as shown in
Figure 6.21 will appear. Enter the appropriate value of divide ratio as

per the design objectives.

49

8anon |x| Edit Object Properties

Apply To only current n instance n

Show _ system » user ¥ CDF
Browse Reset Instance Lahels Display
Property Walue
Lilarary Matme BehavPLL|
Cell Mame divider
Wigw Mame symbol

Instance Mame I3

Add Delete hdodify

User Property IMaster Valus Local Walue

interfacelastCh. 21 g3.02.14 2014

maodelNanme divider
parttame divider
vendorklame

verlogFormatPr. >rintBehavelfode L

CDF Parameter of view verilogams n

divide_ratio 3

Cancel | Apply | Defaults || Frevious
AREY

Display

EaNE

Eokk

Display

mbkkk

Display

:

Figure 6.21: VCO Verilog-AMS Testbench Variable Setup

4. The divider circuit is supposed to generate a periodic square-wave out-

put that is fraction of the VCO output frequency. From the final output

waveform shown in Figure 6.22 it is clear that the ‘Divider’ is function-

ing correctly in that it divides the VCO output signal by a factor of

8.

Iame

i /divideout

-l #vco_in

‘\f’isl\ﬂ

@& S0

@ 0.0v

1
4]

Wreal (V)

2.0

16

1.2

RU [y I -

0.0 5.0 loo

time {ns)

Figure 6.22: Divider Verilog-AMS Simulation Output

50

6.4.5 Complete PLL Analysis with Jitter

1. Create a new schematic within the ‘PLLBehav’ library and name it
‘PLL’. Your schematic should look that shown in Figure 6.23. Now
create a config file for this setup and at the end your configuration
window should look like Figure 6.24.

I

Figure 6.23: PLL Verilog-AMS Testbench

800 % Virtuoso® Hierarchy Editor: (BehavPLL PLL config)
| Eile Edit Miew Plugins Help (éden(e
| o
o = &l kL @ | | G
| Top cen 7@ X||_Global Bindings G
Library: BehawPLL Library List myLib
Cell: PLL Wiew List: spectre spice verilog veri | ..
View: schematic
Stop List: specire
Open | Edit Canstraint List:
Table View Tree View
Cell Bindings
Library | Cell | Wiew Found Wiew To Use | Inherited Wiew List |
EehavPLL Filter schematic spectre spice verilog ..
BehavPLL PLL schematic spectre spice verilog ..
EehavPLL cp verilogams spectre spice verilog ..
BehavPLL divider verilogams spectre spice verilog ..
EehavPLL pfid verilogams spectre spice verilog ..
BehavPLL vCo verilogams spectre spice verilog ..
analogLib cap spectre spectre spice verilog ..
analagLib res spectre spectre spice verilog ..
analogLib vio spectre spectre spice verilog ..
analagLib vpulse spectre spectre spice verilog ..

Mamespace: COEA Filters: OFF
e

Figure 6.24: PLL Verilog-AMS Config Setup

2. Using the steps described earlier in this chapter, configure your ADE

window as shown in Figure 6.25 and simulate the circuit.

51

800 %/ Virtuoso® Analog Design Environment (2) - BehavPLL PLL config
Launch Session Setup Analyses Variables Outputs Simulation Besults Tools Help cadence
%6 8= & 3= & &
Analyses Zii‘,l -
Design Yariahles oy
_ Type | Enabls| Arguments =
Tame | Walue | || tran v 0100 conservative @
k=
*®
Outputs el L
_ MNamesSignal/Expr | Value| Plot| Save| Save Options | I
1 voul ¥ ¥ yes
2 viiv ¥ yes
Evref v v yes
4_Vclrl v 1 yes
5 o v v =
g UP v v |yes
Zfreq ¥ ¥ dl
S Plot afler simulation; |Auto n Flotting mode: Replace '
L |
ntmouse L: h: R
Z(E)‘ ‘ Status: Ready |T:27 (= | Simulator: ams{Spectre)iode: batch ‘ State: ams_stateAprz AI

Figure 6.25: PLL Verilog-AMS ADE Setup

3. The PLL circuit outputs are shown in Figure 6.26. It is clear that
the PLL achieves lock within the first 100ns because in the testbench

we provide an initial condition of V,; = 0.9V and keep the currents

at the loop-filter capacitors at an initial condition of OA. These initial

conditions are provided to ensure that the simulation time is small.

From the final output waveforms it is clear that the ‘PLL’ is indeed

functioning correctly.

Kl BehavPLL PLL config [E)

Transient Re
Name

- ot

o ediv

. Jvref
- Ve

. /ON
. /UP

. g

T T T T
250 500 750 looo
time (ns)

Figure 6.26: PLL Verilog-AMS Simulation Output

52

4. To simulate the jitter at the VCO output during lock-condition, se-

lect the vout waveform, click on Measurements — EyeDiagram and

configure the setup as shown in Figure 6.27. Your final output should

look like that shown in Figure 6.27 once you click on ‘Plot Eye’. The

simulated edge-to-edge jitter is 0.96ps which is extremely good. How-

ever, it is important to note that this number is not realistic as we

have only accounted for random jitter caused by white-noise and the

model is only behavioral so any transistor-level non-idealities are not

captured. Nevertheless, behavioral modeling is very powerful in per-

forming rapid prototyping of the PLL circuit elements and performs a

system level noise/timing budget for the design before delving straight

into transistor level design.

k) BehavPLL PLL config bkl window1s B

Transient Analysis

Mame

B eye_PLLyout @

Wieal (V)

200.0 300.0 400.0

time (ps)

500.0 600.0

umouse L ¥

Figure 6.27: PLL Verilog-AMS Jitter

53

[_Eve Diagram

5

=
%

SignalfERpr Names |
PLLvout

Stark'Stop 7.5u 7.55u
Period ' 171.de3

 Edge Triggered Eye Diagram

Signal PLLvout

Threshold 0.3 Offset 0

CrossType [ising B
New suswindow g

Plot Motle
o Intensity
_ Advanced Options
select Eye eye_PLLvoUL
Threshold

Level 0

werange 40

y-range 0
Level 1

60 %
100 %

w-range 40
y-range 50

Bins 10 Sampling Interval
Eyaiuate

Outputs

Measurement _|Value |

Plot Eye

= [

CHAPTER 7

TRANSISTOR LEVEL SIMULATION

7.1 What is SPICE?

Simulation Program with Integrated Circuit Emphasis (SPICE) is a general-
purpose circuit simulation program that was originally developed at the Uni-
versity of California-Berkeley to serve as a numerical circuit solver that is
capable of performing DC, Transient, as well as AC analyses for electronic cir-
cuits. The simulator in general is capable of performing the aforementioned
analyses on circuits containing resistors, capacitors, inductors, independent
voltage and current sources, dependent sources, lossless and lossy transmis-
sion lines, switches, uniform distributed RC lines, and the five most common
semiconductor devices: diodes, BJTs, JFETs, MESFETSs, and MOSFETs.
Many variants of SPICE have been developed since with the most popular
ones being HSPICE and Spectre.

7.2 SPICE vs. Spectre

The Spectre circuit simulator is a variant of SPICE that was developed by
Cadence to simulate analog and digital circuits at the differential equation
level. Although at a high-level the Spectre and SPICE circuit simulators are
quite similar in terms of functionality, Spectre directly is not dependent on
SPICE and the two simulators also have differing syntax. The parent algo-
rithms for both are primarily the same in that both use the Modified Nodal
Analysis (MNA) method involving implicit integration methods, Newton-
Raphson, and direct matrix solution, but the source codes are not borrowed
from original open-source SPICE. Spectre is optimized for faster speed as well

accuracy compared to SPICE and is thus much more reliable and accurate.

o4

7.3 Transient, PSS and PNoise Simulation Overview

Transient response is the time-domain simulation response for a given circuit
and is used to study the time-domain behavior of voltages and currents at
any given node in a network. It is a powerful analysis method to study
amplifier circuits; however, in the case of oscillators it falls short in being
able to accurately characterize the harmonic behavior of the outputs. Thus,
to study oscillator, mixer circuits or for that matter any circuit that has a
time-varying or periodic nature, the Periodic Steady State (PSS) analysis is
the preferred method of simulation.

PSS is a large-signal analysis tool and is powerful in accurately determin-
ing the approximate small-signal period of the circuit being analyzed. It
uses the Iterative Shooting Newton method to algorithmically determine the
fundamental frequency of the circuit/system based on the input-source fre-
quency excitation. In PSS, a circuit is evaluated for one period of the target
frequency and this period is dynamically adjusted until all node voltages and
branch currents fall within a specified tolerance level. Thus, when simulating
large networks the PSS simulation often fails to converge and the time-step
needs to be manually adjusted. It is also possible that the simulator is just
not robust enough for PSS to converge if the time-step is made too small.

The first step in a PSS simulation is to perform a transient simulation on the

1
ffund

time-step adaptively such that the voltage and currents at stabilize within

network from time ¢t = 0 to t = . The next step is then to adjust the
the threshold levels set for the start and stop times of the shooting interval.
Figure 7.1 further describes this phenomenon graphically. Note: It is critical
to remember that PSS simulation is only valid, and thus will only work, if
the circuit/system being analyzed is periodic as the fundamental assumption

of PSS analysis is periodicity.

The signal starts ata The starting point is adjusted
point v; doesn't by the shooting method to
result in periodicity. result in periodic steady state.

All node voltages
Transient Analysis and Admittance
Matrices are saved

Figure 7.1: PSS Simulation Algorithm

95

As discussed in earlier chapters, when studying oscillators and PLL circuits
the phase-noise is a very important parameter to calculate/simulate. Phase
noise is the most significant source of noise in oscillators, and since it is
spectrally centered around the fundamental oscillation frequency, methods
like filtering cannot eliminate it. PNoise analysis engine within Spectre is
equipped to predict the phase-noise, as well as the total-noise profile which
includes thermal, flicker and shot noise. Once the PSS simulation for the
circuit being analyzed has been completed, the PNoise analysis can be started
and it computes the frequency convention, noise-folding and aliasing effects

for the circuit/system.

7.4 PLL Simulation in Spectre Using Cadence Virtuoso

This section presents a detailed step-by-step tutorial on conducting transistor
level simulations using Cadence Virtuoso’s Spectre circuit simulator engine.
First, an inverter circuit used inside the PFD is described to illustrate the
basic steps required in creating a new schematic and testbench. Second, an
in-depth VCO simulation guide illustrates the steps involved in performing
PSS and PNoise simulations. Lastly, the full PLL consisting of the PFD,
CP, Filter, VCO and Divider blocks is simulated at the transistor level along
with the various steps involved in validating lock condition, noise profile and

transient response.

7.4.1 Creating a New Schematic

1. Create a new library and name it PLL. Now within the Library Man-
ager window click on File — New — Cell View and call the new
schematic ¢nv. Double-click on this cell-view and a schematic window

will open up.

2. In order to create a circuit in the schematic editor we need to add
‘instances’ or circuit-components like transistors, supply nets and wires.
Since we use an inverter as an example, recall that we need one NMOS
and one PMOS transistor; thus, to add an instance press I from your

keyboard. This will open up a ‘Component Browser’. Choose the

56

‘analogLib’ library. You will notice all the components housed within
the ‘tsmcl8rf’ library listed. The key trick to know is that you can
search for a specific component from the ‘Filter’. Search for ‘nmos2v’

and follow the steps outline in Figure 7.2.

Virtuoso® Schematic Editor L Editing: TestLib inv schematic

|
|
| Launch File Edit View Create Check Oplions Migrate Window Help cidence
|
. = o~ e S —
ER=N"] F 0 mx Qe o e o-7 FILQAEFE B 1L L= BB
| = B -
| v~ \Workspace: | Basic BE Gy S b o T8 [8-
Havigator 28 x
Default -
' -
Mame |
| inv
800 X| Add Instance
Library temclért B .
¥ [remeli EEee (| Library Browser - Add Instance
Cell rmos2v
| Show Categories
L= <D0l Library cell view
bl tmet B nmosz2y symbal
] T G & N |[Fro T | [mos_varaa B View | Lock |
IR 7 ol e oni =R ||anatoatin mos_var_b B
o all terminals @ registered terminals only nasie e var b3
ctisDefechLib
Amay Rows 1 Columns 1 cds_asserions nmosZy_mis hspices
cds_inhiconn nmoszvdrm spechs
42 Rotate Ak Sideways = Upside Down cis_spicelib nimasay
= = == = connectLib nmosdv_tiis |
Miodel name o ieee nmos v
Ll | |ncintemal = || | nmascap
description inal ¥T NMOS transistor ncmodels nmosmzy
neutils nmosmvt3e
(M) 180n ¥ sdliliby nmoshvizy
stif NS vidy
w (M) u synopsys npn
npnz
(il gty 2o 1 Wital_memary | |npns
Hurker of Fingers 1 = [Inan10 —
Muliplier B _Close _Filtars..._ _Display.. _Help_
i

(a)

‘ Virtuoso® Schematic Editq @ O O | Add Instance

Launch FEile Edit Wiew Create Check Options Migrate Window Library

L @E 4 0@X @I s ¢ =

View spectre
- - ‘Workspace MEJ G
I Names

7 Default B. ¥ Add Wire Stubs at
a 8- = allterminals & registered terminals only

Browse

Name - | Afray Rows 1 Columns 1
[
‘ m‘n Emzz;:g _ A2 Rotate | | Ab Sideways | |3 Upside Down
Model name nch
description inal ¥T MMOS transistor
(MY 180n M
w (M) 2 M
total_width(hda) Zu M
Mumber of Fingers 1
ultiplier 1
Property Editor 78X total_i 1

- Hard_canstrain v
5D swap (]
Calc Diff Params v
Source_area 9.6e-13
Drain_area 9. 6e-13
Source_periphery_(M) 4 960

M G —] . Drain_periphery_(M) 4,960 1

mouse L: mouseAddPi(y : f =
1(3) | Point at loation for the instance | @ JCancel)\ Defaulis)\ el A, ;2

Figure 7.2: Inserting NMOS Transistor on Schematic

o7

3. Similarly, following the same steps as (2), add a PMOS transistor to
your schematic by choosing the ‘pmos2v’ transistor from the ‘tsmc18rf’

library. Your schematic should now look like Figure 7.3.

800 | Virtuoso® Schematic Editor L Editing: TestLib inv schematic

|
‘ Launch File Edit Yiew Create Check Options Migrate Window Help cédence
Les - 3 - § -
PR R R A e
|

Ul - - ||Workspace: Basic n ‘%EL. ’ﬁm E‘Q :ﬁ .LQ =l

Navigator 7 E X
|7 Detau B.
Q 8-
| MName - |

‘ = inv
@ Mo (moszy)
e (0 MT (pmos2y)

Property Editor 78X

|
|

|

|

|

| TS

‘ mouse L: schaingleSelectPt) h: schZoomFit(1.0 0.9) R: schHirousePopUpi)
@ | - | cmd. Sel: o

Figure 7.3: PMOS Transistor

4. In order to add wires to your schematic, press W from your keyboard
and make appropriate connections across all transistor elements. Figure
7.4 demonstrates the steps involved in labeling wires with a circuit

schematic. This will come in very handy during simulation, especially

when dealing with circuits with several components.

[HaNs] % Virtuoso® Schematic Editor L Editing: TestLib inv schematic
B Launch File Edit Wiew Create Check Options PMigrate MWindow RNCSH Help cadence
- . = — = - - 3 = |
Il L ¥ e & 4{}’ 0 %8 @ T 3 9 @ 48~T r X KX @ B8 | :lls " g T -
- |[warkspace: | asic B & 6% T oy T | B [g/ et Wirs viame|
LR Te— eS| = — — 1

(a)

8enn % Add Wire Name

W Met Expression

MNames VODA

Fant Height 0.0625 Bus Expansion & off _ on

Font Style stick n Flacement & single o multiple
Justification lowerCenter n Furpose ® lahel o alias

Entry Style fed offsct [l Bundie Display e horizontal _ vertical

Show Offset Defaults

4% Rotata

m _Cancel)| Defaults || _Help
—

(b)

Figure 7.4: Inserting Wire Names on Circuit

58

B -
(a)

Virtuoso® Schematic Editor L Editing: TestLib inv schematic

Launch FEile Edit Miew Create Check Opfions Migrate Window Help cadence

UbD Bd|I® 0mx 0o s ¢ -1 7 QK %>
= - Warkspace: Basic n|=E'u [,==.|0 s :ﬁ 1[}: Y T; a% ot

| Havigator =) x|
7 Default B.
Q B-

Mame - |

inv
rAD (nmos2y
kA1 (pmos2y

800 N Add Pin

Pin Mames IH

Direction input n Bus Exp
Usage schematic

Signal Type signal n

attach Met Expression: & No o Yes
ﬁ Property Mame
Default Met MName

Font Height 0. 0625 Font Sty

d2 Rotate | Ak Sideways

Il
. —

m _Cancel | Defaults |

mause L: mousesddPi) I: Rotate 90 R schHiMousePoplp)
103 | Paoint at location paint for the pin. Cmd: Pin - Sel: 0 !
(b)
800 x| Add Pin
Fin Mames VIDA
Direction inputCutput n Bus Expansion & of _ on
Usage schematic n Placement & cingle multiple
Sighal Type signal n

Attach Met Expression: & Mo U VYes
Property Mame
Default Met Mame

Font Height 0. 0625 Font Style stick

42 Rotate || Ak Sideways | |5 Upside Down | Show Sensitivity ==

m _Cancel | Defaulls | Help
(c)

Figure 7.5: Creating Pin Names

59

5. It is often advisable to add ‘Pin’ names to each of the IO terminals
in a circuit. Thus, to add pins to your schematic press P from your
keyboard or click on the pin symbol as shown in Figure 7.5 and make
appropriate connections across all IO ports. Figure 7.5 demonstrates
the steps involved in labeling wires with a circuit schematic.

Note: The ‘VDDA’ and ‘GNDA’ pins should be chosen to be ‘InputOut-

put’ when selecting the ‘Direction” during pin creation.

6. Finally your schematic should look like Figure 7.6. Now click on ‘Check
and Save’ icon (as shown in Figure 7.7) in the toolbar so that you can

move onto the next step of creating a symbol for the inverter schematic.

Figure 7.6: Inverter Schematic

8 00

Launch FEile Edit Miew Create

b =kt d 9 O

Check and Sawve
i - FroTkS]

Figure 7.7: Check and Save

60

7.4.2 Creating a Symbol

1. When dealing with large circuits its often advisable to generate symbols
for each sub-circuit in the design and perform all simulations by plac-
ing the corresponding symbols in a testbench. Figure 7.8 summarizes
the steps involved in generating a symbol from the inverter schematic

designed in the previous section.

(| Virtuoso® Schematic Editor L Editing: TestLib inv schematic |

|
Launch File Edit ¥iew [HEEEY Check Options Migrate Window Help cadence |
= A5 Instance... 1 A - Q @’
= 47! ¢ -7 7 |Q QAL LEE®E
1 Wire (narmowd k4 B O ! 1
- - - P i Q- -
I 1 e gt R T T e R -]
i Z

Havigator cal-) b ire Hams L

Default ' ‘Wirg Stubs and Names Space

Q n Net Expression...

Mate

& inv ® Fin... F

- (@) MO (nmos2v) EBlock. B

=) M1 (prmos2v) Mapping Schematic

L GHDA TEmE

[= 3

- L our Solder Dot e

.1 vooe Hote » From Bin List..

Lo GNDAFP_3 Patchcond From Instance...

B INF_D Frobe »

o OUTIP__1 X

LB VDDAP 7 MultiSheet.

Property Editor 7 A X

< il >

mouse L: schiingleSelectPt() M: schZoomFit(1.0 0.9) R: schHiMousePopUp(
2u) | > Cmo: Sel: 0 7

(a)

8enn %/ Cellview From Cellview

Library MName TestLib Browse

Cell Name inw

From Wigw Name |schematic n

To Wiew hame symbol

Tool / Data Type |schematicaymbol i3

Display Cellview o
I~

Edit Options

_Cancel | Defaults || &pply |_Help

(b)

Figure 7.8: Generating Symbol from Schematic

2. Once you create the symbol it will pop up in a new window. By de-

fault Cadence will generate a rectangular symbol, but you can edit the

61

generated symbol as per your needs. In our case we will edit the sym-
bol shape to make it resemble the traditional inverter symbol used in
conventional system design (as shown in Figure 7.9). To edit the shape
use the ‘Edit Pallete’ as shown in Figure 7.9(a) via a red highlighted

8 00 \ Virtuoso® Symbol Editor L Editing: TestLib inv symbol
Launch File Edit View Create Check Opfions Window Help cadence
="} % 0@ x QO L om e 1 7 IR Q& &8

O workspacs: Basic BE @ % * @ % @ / &][]

L4 YDDAP_2

tNamel

Property Editor (78X

ouse L: mouseSingleSelectPty M schHIMousePopUp) 7 sehHIMousePapUp)
2 | » | Cnd: 5el:0

(a)

. Virtuoso® Symbol Editor L Editing: TestLib inv symbol

neck Optons WindowHelp ¢

OV®s e rIRQ QR
BS @ 1%

(b)

Figure 7.9: Designing Schematic Symbol

7.4.3 PFD, CP, Filter, VCO and Divider Schematics

1. Using the steps mentioned in the subsections above, create a new
schematic as well as symbols for ‘nand2’, 'nand3’ and ‘nand4’ circuits
respectively. Make sure you change the symbol shapes for the nand

circuits to the conventional symbols shapes.

62

2. Create a new schematic and save it as ‘pfd’. Place the ‘nand2’,‘nand3’,'nand4’
and ‘inv’ symbols in the schematic and connect the four components
in the NAND-PFD form as shown in Figure pfd.

3. Create a new schematic and save it as ‘bias_amp’. Now recreate the
biasing op-amp that is part of the charge-pump schematic shown in

Figure 5.3.

4. Create new schematic and save it as ‘cp’. Place the biasing amplifier
created in the previous step and recreate the charge-pump circuit shown

in Figure 5.3 from section 5.2.

5. Create a new schematic and save it as ‘filter’. Recreate the loop-filter

circuit shown in Figure 5.4 from section 5.3.

6. Create a new schematic and save it as ‘vco’. Recreate the VCO circuit

shown in Figure 5.5 from section 5.4.

7. Create a new schematic and save it as ‘dff’. Now recreate the biasing
D Flip-Flop that is part of the divider schematic shown in Figure 5.6.

from section 5.5.

8. Create a new schematic and save it as ‘div’. Recreate the Divider

circuit shown in Figure 5.7 from section 5.5.

7.4.4 Creating a Testbench

Create a new schematic following the steps outlined in the earlier sections
and name it ‘Tb_pfd_cp_filter’. This will be the testbench schematic from
which we will run all our simulations to test that the PFD, CP and the
Filter are functioning as expected. Insert ‘vdc’, ‘gnd’ and two ‘vpulse’ from
the Component Library by navigating to the ‘Analog Parts’ library. Figure
7.10 shows the initial conditions to be set for the voltage sources ‘vdc’, ‘vpulse
for Vref’” and ‘vpulse for Vdiv’, respectively and Figure 7.11 shows what your
testbench schematic should look like at the end of this step.

63

8 .00 || Edit Object Properties

anly current ' instance B

_ system @ user » CDF

Apply To

Shows

Browse Reset Instance Labels Display

Property Yalue

8.00

only current n instance B

_ system & user ¥ CDF

Apply To

Showy

Browse

] Edit Object Properties

Reset Instance Labels Display

Property Walue

Display

Library Mame analogLib

EY

Cell MName wpulse

E}

View Name

syabol

Instance Name V1

Display

Library Name analogLib

Add Delete

Madify

ES

bbk

User Property Master Value

Cell Mame wvde

Local Value

Display

Ivsignaore TRUE

View Mame symbal

Instance Name V2

Add Delete

Modify

CDF Parameter Walue

off B
off B
off B
off B

Fregquency name for 1/period

User Property haster Value

Local Value

Noise file nanme
Display

lvsigniore TRUE

CDF Parameter Walue
Moise file name

Number of noise/fre pairs il

DC valtage
AC magnitude
#C phase

®F magnitude
PAC magnitude
PAaC phase

Temperature coeficient 1

Number of noisesfreq pairs 0

off B

Display

DC voltage
AC magnitude
AC phase

XF magnitude
PAC magnitude
PAC phase
Voltage 1
Yoltage 2
Periog

Delay time

Rise time

off B
off B
off B
off B
off B
off B
off B
off B
off B
off B

iff

-

Display

u

2|5 [52]|53]|32

EY

ENE

ES

Temperature coeficient 2

B i

'l -

- < il

B bk bbkbbhbbLt

@D cencel) spply | Defaults

Apply To
Show

Fravious)(_Next)(_Help ,

Cancel | Apply | Defaults

Previous

=

ext

[-
z
=

N

(b)
[\ Edit Object Properties

only current B instance B

_ system o user » CODF

AC magnitude
AC phase

HF magnitude
PAL maghitude
PAC phase
Yoltage 1
WYoltage 2
Period

Delay time

Rize time

Browse Reset Instance Labels Display
Fraoperty valug Display
Library Name analoglib| off B
Cell Name wpulse off B
View Name symbol ot B
Instance Mame w2 off B
A Delate Modify

User Property Master Valug Local Value Display
Ivslgnore TRUE off B £
CDF Parametar valug Display

Frequency name for 1/period ift
Muoise file name il
MNumber of noise/frey pairs a

DC voltage it

ENE]

it
ov iff
18%
4 0ln s
~100p = it

E]
|

B
16

JoLbbkbbbhbbibb

Defaults Frevious Iy

m Cancel _ Apply et Help /|

()

Figure 7.10: Sources in PFD+CP+Filter Testbench

64

Figure 7.11: PFD+CP+Filter Testbench

Now create a new schematic and name it “Tb_vco’. This will be the test-
bench schematic from which we will run all our simulations to test that the
VCO is functioning as expected. Insert ‘vdc’, ‘gnd’ and two ‘vdc’ from the
Component Library by navigating to the ‘Analog Parts’ library. The initial
conditions to be set for VDD are same as shown in Figure 7.10(a), while for
the second ‘vdc’ source the DC voltage should be set to a parametric variable
‘vetrl’. Figure 7.12 shows what your testbench schematic should look like at
the end of this step.

Figure 7.12: VCO Testbench

Finally, create a new schematic and name it ‘Tb_div’. This will be the
testbench schematic from which we will run all our simulations to test that
the VCO is functioning as expected. Insert ‘vdc’, ‘gnd’ and a ‘vpulse’ from
the Component Library by navigating to the ‘Analog Parts’ library. The
initial conditions to be set for VDD are same as shown in Figure 7.10(a),
while for the second ‘vpulse’ source they are shown in Figure 7.13. Figure
7.14 shows what your testbench schematic should look like at the end of this
step.

65

8 00 | Edit Object Properties |

Browse Reset Instance Labels Display

Pm.peny o walle i Display |

Library Name analogLib| off H

Cell Name vpulse i - |

View Nare symbal A - |

Instance Mame w1 off H

Add Delete kodify

User Propety haster \;’a.lue Lo.cal Walue . Display

Ivslgnore TRUE oif n

CDF Parameter walle Display

Frequency name for 1/period off H
Moise file name L - I

Number of noise/fraq pairs 1] off H

DC voltage 18v L - |

AC magnitude L - |

AC phase L - |

HF maghitude L - |

PAC maghitude L - |

PAC phase L - |

Violtage 1 nv L - |
Viltage 2 18v o B
Periad 1/1.6e0 = - i |
Dielay time 0= off H U|

Rise time alp = L - |
Fall time alp = L - | '

Pulse width 232.5p s L - |

— & =
- _Cancel /| _Apply /| Defaults | Previous | Mext | Help

Figure 7.13: Vpulse configuration for Divider

Figure 7.14: Divider Testbench

66

7.4.5 Circuit Simulation Using Spectre

7.4.6 Launching ADE

1. We will simulate our circuits using Cadence Spectre Simulation engine.
Spectre is a variant of HSPICE developed by Cadence and provides
greater accuracy, speed and flexibility especially when dealing with

mixed signal circuits.

2. Make sure you first ‘Check and Save’ your testbench schematic and
click on Launch — ADFE to open up the ADE window as shown in
Figure 7.15.

3. Click on Setup — Simulator to make sure the Simulator is set to

Spectre as shown in Figure 7.15.

%/ Virtuoso® Analog Design Environment (1) - TestLib Th_inv schematic

Launch Session Em snalyses Yariables Outputs Simulation Besults Tools Help cadence

(RIS i
I'=] Simulator 78x] —
Design Wariables High-Performance Simulation ... —) Gac
ahle| Arguments | Srcw
MName || & Model Libraries ... y
i° Temperature .. @
e Stimuli lt:-'
.
Simulation Files
MATLABSimulink 3 X
&) Environment ... 6
Outputs 78X
MName/Signal/Expr | Yalue | Plot| Save| Save Opfions |
-I“u,
. Plat after simulation: |Auto n Flotting mode: Replace n |
nmause L I: ; R
;]
4010 | SimulatorDirectorysHost . | Status: Ready | T=27 C | Simulator. spectre

(a)
B O O || Choosing Simulator/Directory/Host -- Virtuoso® Analog...

Simulator M

Project Directory

Host Mode & |ocal o remote o distributed

Hiost

Remote Directory

m Cancel Defaults Apply Help

(b)

Figure 7.15: Simulating Circuit with ADE

67

4. Now click on Setup — Model Libraries to configure the Spectre model
files. Figure 7.16 shows the path you need to browse to in order to get
the correct model files for the PDK. You most likely would not need to
manually type the model file paths as Virtuoso should take care of it,
but in case you do the path is listed.

8 00 |%/ spectre0: Model Library Setup
|Model File | Sectian |
B- Global Model Files
L] =Click here to add model file= - 4

EEEC

(0139 Cancel | Apply Help

(a)

8 00 |\ spectre0: Model Library Setup

| Madel File |Section |
Bl Global Madel Files

- o home/EEAPPETSMCDT 84sme 1 8T /models/spectre/ 0158 sCs
= [home/EEAP re/rll B
- o thome/EEAPPS/TSMCDT 8Asme 16 /models/spectre/d018 scs
- o fhome/EEAPFS/TSMCDT 8Asme 1 G /models/spectre/d016 scs
- o fhome/EEAPPSTSMCDT 84smel G /models/spectre/M016 scs
- o fhome/EEAPPS/TSMCDT 84smel i /modelsispectre/M0186.scs
- o fhome/EEAPPS/TSMC01 Sdtsme 1 ry. /models/spectre/rl1 & scs
- o fhome/EEAPPSTSMC01 Sdtsme1 &Y. /models/spectre/rl1 & scs
- o fhome/EEAPPS/TSMC01 S/tsme1 Gy /models/spectre/l1 & scs
- o fhome/EEAPPSTIMCDT 84sme 1 S /models’spectre/ 015 scs
- o fhome/EEAPPSTIMCDT 84sme] S /models/spactre/ 015 sCs
 home/EESPPETEMC0T8Asme 1 8 /models/spectre/ 015 scs
 home/EESPPETEMC0T8Asme 1 8 /models/spectre/ 015 scs
o home/EEAPPETEMC0T8Asme 1 8 /models/spectre/ 018 sCs
- o fhome/EEAPPETSMCDT 84sme 1 8T /models’spectre/ 015 505
- o fhome/EEAPPETSMCDT 84sme 1 8T /models’spectre/ 018 505
- o thome/EEAPPS/TSMCDT 8Asme1 8/ /models/spectre/d018 scs
- o thome/EEAPPS/TSMCDT 8Asme1 8/ /models/spectre/d018 scs
- o fhome/EEAPFS/TSMCDT 8Asme 1 G /models/spectre/d016 scs
- o fhome/EEAPPSTSMCDT 84smel G /models/spectre/M016 scs
- o fhome/EEAPPS/TSMCDT 84smel i /modelsispectre/M0186.scs
- o fhome/EEAPPSTIMCDT 84sme i /models/spectre/r015.scs
- o fhome/EEAPPS/TSMC01 Sdtsme 1 ry. /models/spectre/rl1 & scs
- o fhome/EEAPPS/TSMC01 S/tsme1 Gy /models/spectre/l1 & scs

- _|=Click here to add model file=

EEE

Cancel |_apply) _Helg

(b)

Figure 7.16: Configuring Model Files

7.4.7 PFD+CP+Filter ADE Setup

1. Transient analysis of any circuit is key to study the time domain be-
havior. We will simulate the PFD+CP+Filter testbench and observe
the resulting plots for ‘UP’, ‘DN’; signals to ensure that the PFD is

functioning properly.

68

2. In ADE window click on the AC,DC,Tran icon on the right pane.
Choose the ‘tran’ simulation type, pick the stop time to be 100ns and

choose ‘moderate’ in the ‘Accuracy details’.

3. Click on Variables — Copy From Cellview and insert the filter pa-

rameters as shown in Figure 7.17.

4. Click on the green ‘Play’ button to run the simulation and the plots
should automatically pop up in a new output window. If you right click
on the name of the signal listed in the left panel, you can navigate to
options that change the thickness and color of the output waveform.
Additionally, right-clicking anywhere on the output window and navi-

gating to ‘Graph Properties’ allows you to alter the background color

1800 1\ Virtuoso® Analog Design Environment (1) - PFD boottrapPFD_test schematic
Launch Session Selup Analyses Variables Quipuls Simulation Results Tools Help cadence
&l s |83t d
Analyses 28X
Eodgn verEEs Type. | Enable| Arguments i ®
B Hame I Valug | | g tran v 0100 conserval tive Sim Typé o
1 c1 72.766p M -
o c2 561.27f - =
B = Pick Outputs
x
Slmulate

Outputs 28 x|
Name/SignakExpr | value| Plot| Save| Save Options | L
out ally -

4 Cur_s
2 DN
5 DN
4 UF
5 UPD
5 REF
2 DIV

Plot atter simulation: 2uto g
nmouse L " .
uil ‘ Sy | Status: Ready | T=27 C | Sitnulator: spectre | State: spectre_stateMart4 !

Figure 7.17: PFD+4CP+Loop-Filter Testbench ADE Window

g KK &R
YY)
]

el
2

2

(= @ 2
R
t

8

J

5. Your final output waveform should look like that shown in Figure 7.18.
Notice that the UP,DN pulses are appropriately modulated as ‘REF’
and ‘DIV’ signals diverge from one another; thus, the PFD is indeed

functioning correctly.

69

Fri Mar 14 04:12:42 2014

T T A T

r T T T T
0.0 2.0 S0.0 75.0 100
time (ns)

Figure 7.18: PFD Spectre Simulation Output

7.4.8 VCO ADE Setup

Recall from the earlier sections that for oscillators it is critical to perform
Transient as well as PSS simulations. We will therefore simulate the VCO
testbench and observe the resulting transient and PSS simulation outputs
for ‘Vout’ signals to ensure that the VCO is functioning properly. Addition-
ally, since the VCO is the major noise contributor to the PLL, we will also
characterize the VCO Phase-Noise by performing PNoise simulation on the
testbench.

1. In ADE window click on the AC,DC,Tran icon on the right pane.
Choose the ‘tran’ simulation type, pick the stop time to be 4us and

choose ‘moderate’ in the ‘Accuracy details’.

2. Click on Variables — Copy From Cellview and insert the PMOS,
NMOS width and ‘vetrl” parameters as shown in Figure 7.19.

3. Click on the green ‘Play’ button to run the simulation, and the plots
should automatically pop up in a new output window. If you right-click
on the name of the signal listed in the left panel, you can navigate to
options that change the thickness and color of the output waveform.
Additionally, right-clicking anywhere on the output window and navi-
gating to ‘Graph Properties’ allows you to alter the background color

as well.

70

® 00 [\ Virtuoso® Analog Design Environment (2) - PLL VCO_Ring_Osc_test schematic

Launch Session Setup Analyses Wariables Oulputs Simulation Results Tools Help cadence
b gl |8 =& dEE
7 8 x| =
Design variables fnalyses B —
 Type | Enabie| Arguments | =,
B Hame | Walug | |5 tran] 1 4y conservative
1 Vet 300m 2 nss v 1.6G 16 moutdndl P
2 in M 5 proise v 102G S00K dvout fgnd! [
5 wp Tzu - = o
¥
Qutputs (=1=]x] O
 Hame/Signal/Epr_| Value| Plol| Save| Save Options |
| vout FEIFRED I_
P N [0 [
> Select on Schematic Outputs to Be Plot Plot after simulation: kAu\D ' Plotting mode: Bep\ace '

L |
Iimause L el

R
5(3) | Chooss Analyses | Status: Seleciing_ouipuls 1o be plotied... | T=27 ¢ | Simulator. spectre

Figure 7.19: VCO Testbench ADE Window

4. Your final output waveform should look like that shown in Figure 7.20.

Notice that the output node voltage ‘vout’ is oscillating thus the VCO
is indeed functioning correctly.

Transient Analysis ran’ time = (0 -

) Sat Mar 15
hiame | is[wetr |

. fvout @
. et @

SRR A

0.0 5.0 10.0
time (ns)

15.0 20.0

Figure 7.20: VCO Transient Simulation Output

5. For a VCO, a key figure-of-merit is the control voltage tuning range.
Thus, we have to perform a parametric analysis in order to observe
the change in ‘frequency’ as well as Ky oo as a function of ‘Vetrl’. In
order to do so in the ADE setup window click on T'ools — Parametric
Analysis and a window like Figure 7.21 should pop-up. Within the
parametric analysis window, when you double-click on the variable box,

a drop-down list will show up from which you should pick ‘vetrl’.

71

800 |3 Parametric Analysis - spectre(0): PLL VCO_Ring_Osc_test schematic
File analysis Help cadence

Il Running vcirl=0.5 13 remaining

ol z%|ﬁE| ¥ O O =& ~ | Run Mode: Sweeps & Ranges B| © |

Variahle | walue | Sweep? | RangeType | From | To | Step Mode | Step Size Inclusion List | Exclusion List |
[i ~ From/To o 1.8 Linear Steps

Wit

I 26%

TEUCCETTTOT
|simu\ate...

ol

9 | Delete selected rows

Figure 7.21: Vctrl Parametric Analysis Setup

To run the parametric analysis, click on the ‘Play’ within the Parametric-

Analysis window. This setup is basically going to run the transient

To—From

simulation StenSioe

VCO.

times by varying the control-voltage input to the

6. To plot frequency vs. Vetrl and Ky oo vs. Vctrl we need to use the
‘Calculator’ tool in-built within ADE. Click on Tools — Calculator.
The Calculator window as shown in Figure 7.22 will open up and within
it now you should select ‘Vt’ from the toolbar. The schematic will
open up, so within the schematic select the ‘vout’ node. From the
‘Function-Panel’ within the Calculator window choose the ‘frequency’
and ‘average’ functions to make up the function shown in Figure 7.22.
Now go back to the ADE window, click on the right-pane and select
the ‘Pick-Outputs’ button. A window will pop up so within it select
‘Get-Expression” and name it ‘freq’. This will bring the expression you
just created in the Calculator so that you can plot it. Conversely, you
can also click on the ‘plot’ button shown in the red-box in Figure 7.22
to plot the expression; however, doing so makes the title of plot look a

little too crammed.

72

800 [%| Virtuoso (R) Visualization & Analysis XL calculator
File Tools View Options Constants Help cadence

HH In Context Results DB: none specifed
|

Il app plot erplot

vt [ovde [Lws | wop wvar | wvn w 5P vewr o hp ooZm

LAt Laif [K Jide LIS —oopt omp | oovn2

Loz L IyR wogd L odata

le o Family _ wave |« Clip \@ ew suwinow [Rsctanguar || 58 | B

Key ... & x| averageiifreq YT/ vout"y "rising” PMame “time" 7mode “auta” Fthreshold 0.97]

7 i a3 !

4 g B

1 2 3 -

la % Pop T e Mae | " o

0l +\|4§E{a‘iﬂ‘m|ﬂ5'ﬁﬂ‘a"5| + MEI§|‘3]
[_stack & X

o |eveDiagram(vi"/Voutn®" Tresult "tran") 3u 3.05u 1/1.6G)

L |M(YYoutn" Tresult “tran®)

| |1.663E-6

o |average(clip(i("/17/1 3/currentout” Tresult “tran™) Ou 1.2u J)

Function Panel & X
o 2

1o acos b1t convolve dBm evmGAM freq gainkargin - gpc_gain ifreq ipn Ish oversho
10" acosh bandwidth i delay evmGpsk freq_jitter getdsciWave groupDelay ih ipn¥ Rl Ishift pavy
FI asin clip cosh deniy exp frequency qmas at iinteg itime mag peak
En asinh compare cross dft eyeDiagram ga gmin qumx imag kf nc_freq peakToF|
azi atan compression dZa dfthh fallTime gac_freq gmsg harmanic int In ne_gain period_j
ahs atanh compression¥RI dB10 dnl flip gac_gain - gp harmanicFreq integ loadpull nf phase
abs_jitter average canjugate dB20 dutyCycle fourEval gainBwProd gpc_freq hista intersect lng10 nfmin - phaseDe
il i
17 3

7

Figure 7.22: ADE Calculator

7. Repeat the same steps as above to create an expression within the
calculator to compute the Kyco. Use the ‘deriv’ function within the
Calculator Function Panel to do so. Finally, click on the ‘Play’ button
within the ADE window to plot frequency vs. Vctrl and Kyco vs.
Vetrl curves. Your output should look like Figure 7.23.

Hane |hs |

—
™

. fren @

M1: 900.0m 1.675A5G

* Hl Kuco @

W2: 900.0m 652, 1050

Figure 7.23: Frequency vs. Vctrl and Kyco vs. Vetrl Simulation Plots

73

The Kyco calculated in Figure 7.23 is the value used to calculate the
required charge-pump current as well as C; and Cy values from the
loop-filter. In our case, the VCO output frequency is 1.675GHz with a
Vetrl=0.9V and a Kyco = 652.106MHz/V.

. Now, in order to simulate the VCO Phase-Noise we need to perform
the PSS, PNoise simulations. For the PSS simulation, in the ADE
window click on the AC,DC,Tran icon on the right pane. Choose the
‘pss’ simulation type, pick the parameters using those shown in Figure
7.24(a). It is critical to note that the beat frequency here is the target
frequency of the VCO and the reason we have to check the ‘oscillator’
option and select ‘vout’, 'gnd’ terminals from the schematic is because

by default PSS simulation expects a differential output.

. To run the PNoise simulation, in the ADE window click on the AC,DC,
Tran icon on the right pane. Choose the ‘pss’ simulation type, pick the
parameters using those shown in Figure 7.24(b). Its critical to note that
the phase-noise in the VCO is only dominant in the low-pass thus we
limit our simulation frequency range to be from 1kHz to 10MHz as after
the 10MHz the phase-noise will not cause any significant degradation
to oscillator output performance. Note: To view the PNoise simulation
results in the main ADE window click on Results — Direct Plot —
Main Form at which a window like Figure 7.25. Choose ‘Phase-Noise’
and click on the ‘Plot’ button.

74

® 1 0 x| Choosing Analyses — Virtuoso® Analog Desig...

Analysis tran o de w ac — noise =
A w sens o dematch o sth
“ pz i sp — envip & pss
o pac o psth U pnoise o pef @ O O x| Choosing Analyses -- Virtuoso@® Analog Desig...
~ psp o Opss o gpac w gpnoise Perindic Moise Analysis
gt o qpsp o hb « hhac
D]p i P55 Beat Frequency (Hz)
« hbnoise _ hbsp
Periodic Steady State Analysis Multiple pnoise _
Engine & Shaoting _ Harmanic Balance
Sweeptype default n Relative Harmonic
Output Frequency Sweep Range {(Hz)
Fundamental Tones
Weame Expr Value Signal Srold Start-Stop ' Start (15 Sop 100e€
1 wvout Sweep Type
 Paoints Per Decade Mone
P ' 1601
= Sosamtnic & Mumber of Steps
wout 1.6e9 1.66 Large n
Add Specific Points
ClearfAded Delete Update Fram Hierarchy
Sidebands
& Beat Freguenc! e
4 N Auto Calculate Method @ default o fullspectrumn
 Beat Period
Maximum sideband '
Cutput harmonics When using shooting engine, default value is 7.
Mumber af harmonics n 16
Output
Positive Output Mode Frout Select
=
accuracy Defaults (erpresety voltage ' R
egative Output Node Select
™ conservative _ moderate _ liberal J i b E——
Additional Time for Stabilization (tstab) Input Source
Save Initial Transient Results (saveinl) _ no _ yes (T - |
Qscillator o
Oscillator node+ fwout Select Noise Typs sources n
Osclllator node- /gnd! Select sources: single sideband (35B) noise analysis
& Calculate initial conditions (ic) automatically Nolse Separation _lyes _ no
separate noise into source and gain
Sweep] = =
@I cencel) Defaults) Apply) Help | @I cencel | Dsfautts | _Apply | Help

(a) (b)

Figure 7.24: VCO PSS & Pnoise Simulation Setup

800 |%| Direct Plot Form

Flotting Mode |Append '

Analysis
o pss @ phoise
Function

« Output Moise o Input Moise

« Moise Figure . Moise Factor

« MNFdsh Fdsh

' MFieee « Fieee

& Fhase Moise o Transfer Function

Loadpull Contour _

Add To Outputs | — Plot

= Press plot button an this farm..

m Cancel Help

Figure 7.25: VCO Phase-Noise Simulation Plot Step

The output waveform for the simulated phase-noise will look like Figure
7.26. In our case, we find that the Phase-Noise at a 1MHz offset is
equal to -94.32dBc/Hz, which is very reasonable for a ring-oscillator

type single-ended VCO topology.

75

Periodic Noise Response
Mame |Vis ‘ " ”1—%____“—1_—; I o

0.0 9

* MM Phase Noise; dBo/Hz, Relative Harmanic = 1 @
-25.0 o

-50.0

M2: 1 Q028MMHz 94.32233

(dBciHz) (dBciHz)

-75.0

-100.0

-125.0

0P
relative frequency (Hz)

Figure 7.26: VCO Phase-Noise Simulation Plot

7.4.9 Divider ADE Setup

1. We now simulate the divider testbench and observe the resulting plots
for ‘IN’, ‘OUT’, signals of the divider circuit to ensure its proper func-

tionality.

2. In ADE window click on the AC,DC,Tran icon on the right pane.
Choose the ‘tran’ simulation type, pick the stop time to be 100ns and

choose ‘moderate’ in the ‘Accuracy details’.

3. Click on the green ‘Play’ button to run the simulation and the plots

should automatically pop up in a new output window.

76

V] PLL TSPCDiv_test schematic [

b [¥is | (< 0 R o T E AL R Y ‘ FTA -]
N @ 2.0]
- [P W—— . e - -
I TR ET AR AN ETT AR R0 EAT
1.5
1.0 :
=
>
5
1
: i
1 1
0.0 J1L H.L..J..J..: JJ..I..-. |..|. -J ! -JJ\.
-5 T
0.0 5.0 10.0 15.0 20.0
time (ns)
(a)
& PLL TSPCDiv_test schematic 3
Mame |V|s‘ [" v I ‘ T “ I m ‘ m I -
LN @ 2.0 4
L jouT @ 1
1.5]
1.0]
=
>
5 :

0.0 4

-————
18 19 20 21 22
time (ns)

(b)

Figure 7.27: Divider Spectre Simulation Output

4. Your final output waveform should resemble Figure 7.27. Notice that
each half-wave of the output pulse comprises of four half-pulses of the
input, meaning the period of the output pulse is one-eighth of the input
pulse period. Thus, our divider is functioning properly in that it divides

the input pulse frequency by 8 with a small setup-time delay of 209ps.

77

7.4.10 Complete PLL Schematic and Testbench

1. Using the steps mentioned in the subsections above create new schematic

and save it as ‘PLL’.

2. Place the ‘pfd’, ‘vco’ and ’div’ symbols in the schematic, connect the

components in together and generate a symbol for the full PLL schematic

as shown in Figure 7.28.

Figure 7.28: PLL Schematic

3. Create a new schematic and save it as “Tb_PLL’. Design the testbench

schematic as shown in Figure 7.29.

Figure 7.29: PLL Testbench

4. In the PLL testbench choose the ‘Vref’ using the ‘Vpulse’ source within

analogLib and configure it as shown below in Figure 7.30.

78

N:Na¥o) % Edit Object Properties

Browse Reset Instance Labels Display

Froperty Walug Display

=

Library Mame analoglih|

=

Cell Name vpulse

Yiew Mame symhol i)

=

bbbk

Instance Mame vl

Add Celete rodify
User Property Master Value Local Walue Display

lvslgnore TRUE

E

CDF Parameter Walue Display

Frequency name far 1/period

Moise file name

Number of noisesftar pairs 0

DC voltage lavw

AC magnitude

AC phase

HF magnitude

PAC magnitude

PAC phase

=

Waltage 1 oy

Woltage 2 1.87% 1

=

Period En s

=

Delay time 100p s

=

Rize fime 100p s

=

Fall time 100p =

=

o

Fulse width Z2.4n s -

T i

m Cancel | Apply Defaults Previous ext Helpﬁ

Figure 7.30: Vpulse Configuration for PLL Testbench

7.4.11 PLL ADE Setup

Now that we have verified the functionality of each of the components of the
PLL at a transistor level, the final task is to characterize the PLL locking

behavior, overall phase-noise profile and jitter profile.

1. In ADE window click on the AC,DC,Tran icon on the right pane.
Choose the ‘tran’ simulation type, pick the stop time to be 4us and

choose ‘moderate’ in the ‘Accuracy details’.

2. Click on Variables — Copy From Cellview and insert the PMOS,
NMOS widths of VCO inverters, charge-pump output current, Icp,
reference signal period, and the loop-filter parameters as shown in Fig-
ure 7.31.

79

3. Click on the green ‘Play’ button to run the simulation and the plots

should automatically pop-up in a new output window.

‘800 | Virtuoso® Analog Design Environment {5) - PLL boottrapPLL test schematic

Launch Sgssion Setup Analyses Variables Outputs Simulation Besuls Tools Help cadence

I g 7 &= ds

Design variables " Type | Enable Arquments ,;E
Name alug IMi M
iF’eHud ‘Sn ! 5 pss F] 200k 20 ™|
2 lcp 71.603u 5 proise | 16 K 10M 1.80TK Aoutn fgnel K:
5 c1 F2.706R M
s cz 561.277 ®
G 5K
5 wn Su (%]
7 wp 12U Q
Quipuls 74 x|
 Name/SignabExpr_| value| Plot| save| Save Opiions |
L FRIFEED 1ol
5 17/DNb PRI ERELD
5 17/UF PRI ERELD
4 17/UFb PRI ERELD
= 17/ Scurrentout PRI =
g 17/vch PRI ERELD
7 Voutn PRI ERELD
17y PRI ERELD
3 output naise; ¥ 7 sgriHz) ¥ |2
10 Phase Noisefdouble si. ¥ |2
11 freq ¥ ¥
g v FRE] o
- Plot afier sinulation: Auia @ Pioting mace Feplace [
Iimouse L i R
18(34) \ | Status: Ready | T=27 € | Simulator: spectre | State: State_rishi_Mar13 '

Figure 7.31: PLL Testbench ADE Window

4. Your final output waveform should look like that shown in Figure 7.32.
Notice that the VCO input control voltage ‘vctrl’ is essentially flat and
settled thus the PLL is in steady-state lock state.

Transient Response

Mame ‘V\sl\ﬂ

ATy @ 178406Y

2
time (us)

Figure 7.32: PLL Settled Transient Simulation Output

If we zoom into a 50ns window we notice that there is a slight con-
trol voltage ripple, but the loop is approaching steady state lock point.
From Figure 7.33 the rippling behavior of ‘vctrl” can be seen to be
prominent for the first 10ns and then slowly decaying away as we ap-

proach 50ns time-frame.

80

Transient Analysis “tran’ time = (0 5-= 4 us) FriFeb 21 15:2402 2014

L el
L A7

. A7/0N @

EE
=E

T T T T
0.0 100 200 30.0 40.0 50.0
fime (ns)

ATIUP ®@ -

)
LA
b 1
—]

i
—
—

ransi onse
hiame [wis | BT

.

ATl @

(AR

o

-5

0.0 100 200 300 40.0 50,0
time (ns)

Figure 7.33: PLL Vctrl Voltage before Lock

5. Another method to verify that PLL is in steady-state locked condition
is to plot the output frequency versus time. Figure 7.34 shows that the
PLL achieves lock around 1us and remains locked to 1.6GHz output
frequency after that.

Thu Mar 613:22:52 2014

r T T T 1
0 1 2 3 4
time (us)

Figure 7.34: PLL Frequency Locking in Steady-State

To plot frequency we need to use the ‘Calculator’ tool in-built within
ADE. Click on Tools — Calculator. The Calculator window as shown
in Figure 7.22 will open up and within it now you should select ‘Vt’
from the toolbar. The schematic will open up, so within the schematic
select the ‘vout’ node. From the ‘Function-Panel’ within the Calcula-
tor window choose the ‘freq’ function to plot the PLL output frequency
with respect to time. Once again, like in the case of the VCO frequency
vs. vcetrl plot, go back to the ADE window, click on the right-pane and
select the ‘Pick-Outputs’ button. A window will pop-up so within it se-

lect ‘Get-Expression’” and name it ‘freq’. This will bring the expression

81

you just created in the Calculator so that you can plot it.

. Now, in order to simulate the PLL Phase-Noise we perform the PSS,
PNoise simulations. For the PSS simulation, in the ADE window click
on the AC,DC,Tran icon on the right pane. Choose the ‘pss’ simula-
tion type and pick the parameters using those shown in Figure 7.35(a).
Note that in this case the beat frequency will be the reference frequency
as that is the only fundamental input frequency to the PLL. Addition-
ally, the reason we do not have to check the ‘oscillator’ option and
select ‘vout’, 'gnd’ terminals from the schematic is that PLL is, as the

name suggests, not an oscillator.

. To run the PNoise simulation, in the ADE window click on the AC,DC,
Tran icon on the right pane. Choose the ‘pss’ simulation type, pick the
parameters using those shown in Figure 7.35(b). It is critical to note
that the phase-noise in the VCO is the dominant source of phase-noise
in the complete PLL, and since VCO noise is typically most prominent
at a 1IMHz offset, we limit our simulation frequency range to be from
1kHz to 10MHz as after the 10MHz the phase-noise will not cause
any significant degradation to oscillator output performance. One key
difference between the PNoise setup and VCO is that now the phase-
noise of interest is of the 8 relative harmonic to the fundamental

reference frequency because we have a divider ratio of 8 in our PLL.

82

@ O O x| Choosing Analyses -- Virtuoso® Analog Desig... @ O O x| Choosing Analyses -- Virtuoso® Analog Desig...
O pz —sp ooenvlp @ pss . o~ psp o Opss o gpac < fpnoise
o pac o psth O pnoise O pAd w gpAr « Opsp i hb hbac
o psp — Opss o gpac « gpnoise « hbnoise hhsp
o gpst ~ apsp o hib « hhae Periodic MNoize Analysis
« hbnoise hbsp
P55 Beat Frequency (Hz) 2004
Perindic Steacy State Analysis
Engine ® Shooting Harmonic Balance Multiple phoiss J
Sweeptype [elative ' Relative Harmonic 8
Fundamental Tones
Nane Epr Value Signal Srold Output Frequency Sweep Range (Hz)
(En-0) 200x arge Start-Stop Start 1k Stop 10e6
Sweep Type
 Points Per Decads Teor |
1/(5n-0) 200M Large n vl (LN & MNumber of Steps
Clear/Add Delete Update Fram Hierarchy Add Speciic Points L
& Beat F —_—
SR IR ooy Auto Caloulate ¥ E——
 Beat Period =
b Method @ default _ fullspectrum
Output harmanics Maximum sideband ' 16
e othamenice 20 When using shooting engine, default value is 7
Output
Accuracy Defaults (erpreset; Fositive Output Made | /Voutn Select
» conservative _ moderate _ liberal voltage '
— MNegative Output Mode dl
Additional Tine for Stabilization (tstab) 4w E P fgn \aSalecly
Save Infial Transient Results (saveinity _ no _ yes Input Soure
none n
‘ Oscillator _ |
Sweep u Hoiss Type (sowces [
Mews Initial Yalue For Each Paint (restart) Lino L yes sources: single sideband (SSE) noise analysis
MNaize Separation _yes _no
‘ Loadpull ~ | separate noise into source and gain
Enabled v Options LJ Enabled v Options L;J
et R et R
m Cancel Defaults Apply HeIpA m Cancel Defaults Apply He\p/A

(a) (b)

Figure 7.35: PLL PSS & Pnoise Simulation Setup

The output waveform for the simulated phase-noise will look like Figure
7.36. In our case, we find that the Phase-Noise at a 1MHz offset is
equal to -113.31dBc¢/Hz, which is very reasonable for an Integer-N clock
synthesizer PLL with an output frequency of 1.6GHz in steady-state.

83

ptpnoise)
Name ¥is |

-100.0 -

W Phase Noise; dBc/Hz, Relative Harmonic = 8 @

-110.0 +

-120.0 4

-130.0

-140.0 +

(dBciHz) (dBcHz)

-160.0 4

-160.0 +

-170.0 -

relative frequency (Hz)

10

Figure 7.36: PLL Phase-Noise Simulation Plot

8. Since clock generator circuits are responsible for generating the system
master-clock, the timing (deterministic) jitter as well as random jitter
are key figures-of-merit to minimize clock-induced timing errors during
transmission as well as reception of digital data bits. In order to char-
acterize the deterministic timing jitter we plot the PLL eye diagram
for a small time-interval once the PLL is in lock condition. Similar
to the frequency measurement, we plot the eye diagram by exporting
the ‘vout’ curve into Calculator and using the ‘eyeDiagram’ function

as shown in Figure 7.37.

8 00 [\ Virtuoso (R) Visualization & Analysis XL calculator

File Tools Yiew Options Caonstants Help cadence

”|-| In Context Results DB: /homedishissimulation/hootrapPLL_test/spectre/schematic/psf

Il app plot erplot 0
) Yt
[T

|| ot & Family o wave | clip | T oS (Hew subwindow [@Rectanguiar B i | B

o~ wdC - ME — op W War — ¥h o 8P oWt o hp o oZm

M
if

—de | ods | opt omp | wvng | Lzp Lyp oogd L data

Key ... &% | eyeDiagramfe("/voutn” Tresult "ran") 3u 3.05u 11 5G|

o [0 [|

P R |

1 b sl L

0l o D B e | B R | G B ve 2

Figure 7.37: Eye Diagram Setup for PLL Output

In Figure 7.38 we see that the output voltage eye for the PLL has some

deterministic timing jitter associated with it.

84

eyeDiagram(v('/Vourn" Presult " 6G) Wed Mar
Mame Jvis |

Bl 1°]
B eyeDiagram(ve'sVoutn® Zresult "ran”) 3u 3.05u 116G) @ 2.0 5
1.5
1.0
=
>
5 A
0.0
; T T T T T T !
0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0
time (ps)

Figure 7.38: PLL Output Eye Diagram Plot

If we zoom-in to the plot, in the area of the ‘vout’ rising-edge, and

place markers at points where the voltage passes 1.0V, we notice that

the deterministic timing jitter of our PLL as shown in Figure 7.39 is
5.62ps.

eyeDiagramiv(’/Voutn’ Zresuft "ran’) 3u 3.05u 1/L.6G)
rarme ‘\/\s ‘

B eyeDiagran(v(*/Voutn® Tresult tran’) 3u 3050 1166) @

250.0 300.0 350.0 400.0 450.0
time (ps)

Figure 7.39: PLL Deterministic Jitter Plot

Finally, to calculate the random edge-to-edge jitter of our PLL we
need to re-run the PNoise simulation but this time with jitter. In
order to do so change the ‘Noise-type’ in the PNoise setup shown in

Figure 7.35(b) to ‘jitter’. Once you have run the PNoise simulation

85

with jitter, navigate to Results — Direct Plot — Main Form from
the main ADE window and a window like Figure 7.40 will pop up.
Choose ‘Jee’ and pick an event-time at a point where PLL is in steady-
state lock. You can also choose a specified BER. In modern links the
BER is typically 1072, but we plot the jitter over various BER ranges

as shown in Figure 7.41.

i Direct Plot Form (on natcsi.ece.illinois.edu) x

Analysis

o pss o tdnoise

& proise jitter

Function

< Threshold Hing @ Jes

Q Jo O Jeo
Event. Tine 2.50603n |3
Sigral Level o vns @ peak-to-peak
N - |
Hodifier =

® Second w UL o ppm

Integration Linits

Start Frequency (Hz 1K

Stop Frequency (Hz! 1M

3dd To Outputs—

Plot
CELE DTS =0

o
> Press plot butten on this form,.. v

@@ el Hele

Figure 7.40: PLL Random Jitter Plot Setup

[drplJitt
Hane

50.0

~ M Jee[Second]isvent=2,50603nber=1e-12 @
~ M Jee[Second]:event=2 50603nber=1e-3 @
B Jee[Second] sevent=2,50603n:her=12-9 @
B Jes[Second] ievent=2,50603n ther=1-15 @&

peak-to-peak (fSec/sqri{Hz))

o
relative frequency (Hz)

Figure 7.41: PLL Random Jitter Plot

This concludes the characterization of the clock-generator circuit at a

transistor level and we have successfully verified its proper functionality.

86

CHAPTER 8

DISCUSSION

8.1 Conclusion

Overall, thus far in this thesis the foundational motivation for the use of
High-Speed Serial Links has been described, fundamentals of PLLs as well
as Charge-Pump PLLs have been covered, and an in-depth step-by-step tu-
torial on design/simulation of an on-chip clock synthesizer at both a be-
havioral level using Verilog-AMS and transistor level using Cadence Spectre
have been described. The designed PLL based clock-generator circuit de-
scribed in Chapter 5 operates at an output frequency of 1.6GHz at lock with
-113dBc¢/Hz phase-noise, 5.62ps deterministic jitter and 5.27ps edge-to-edge
random jitter at a BER level of 107!2. Although many design improvements
can be made at the circuit level to optimize the phase noise and jitter per-
formance of the clock-generator circuit, the motivation for this thesis was to
provide a tutorial style training manual for a student pursuing mixed-signal
IC design at the beginning of their graduate studies; thus, the circuits used
for the Integer-N synthesizer are very basic/standard. In this last chapter
to conclude the thesis, a summary of future design improvements for the
circuit designed/simulated in this thesis is outlined from both a system as
well as circuit architecture level. Lastly, an outline of the potential areas of
research to explore in the field of high-speed serial links design with a signal
integrity focus is presented. Often times when pursuing graduate work in
a diverse and mature field of Electrical and Computer Engineering such as
Mixed-Signal Circuit design, especially with a focus on Signal Integrity, a
new student needs some guidance and initial training to jump-start their ca-
reers. Therefore, the final section of this thesis concludes with a few words of
advice for new students pursuing this field of study to enable them in solving

unexplored areas within this field.

87

8.2

Future Work

8.2.1 Design Improvements

The PLL based clock-generator circuit designed and simulated in this thesis

is very basic and is not optimized for optimal phase-noise and jitter perfor-

mance for use as an on-chip clock signal in modern day high-speed serial links.

Such a simple circuit topology was however chosen in order to simplify the

complexity of the system and allow non-circuit designers, especially engineers

in the field of signal integrity, to understand the basics of the mixed-signal

circuit design/simulation flow using the ubiquitous tool like Cadence Virtu-

0so. The following list outlines some of the design changes that enhance the

speed as well as robustness by optimizing the phase-noise, jitter and power

consumption of the on-chip synthesizer:

1.

Replace the NAND-PFD with other PFD topologies such as Pass-
Transistor or Glitch-Latch Flip-Flop.

. Implement an actual biasing current-sink in the Charge-Pump and

drive this sink by an external off-chip voltage signal. Additionally, im-
plement a differential charge-pump to minimize the CP induced noise
and UP/DN current mismatch.

If using a ring-oscillator VCO topology, bias the circuit using a self-
biasing circuit to reduce the control voltage ripples as well as suppress
the supply-induced noise. Additionally, the oscillator should be made
differential instead of single-ended as this would greatly improve the

phase-noise and jitter performance [9].

Implement a TSPC Split-Output latch within the divider or a modified
variant of it to reduce the divider-induced delay which translates into

additional jitter at the output.

Consider implementing a LLC-tank based VCO. Although it will increase
the area of the circuit, the phase noise and jitter performance will be
much better than even a differential ring-VCO design [10, 1].

Perform Monte Carlo analysis within Cadence ADE XL to optimize the

design over PV'T corners to select the optimal sizing for the transistors.

88

7. The industry-wide trend is to move towards all-digital PLLs. Digital
PLLs offer many advantages over analog PLLs mainly in the fact that
they eliminate the need for an analog loop-filter as well as a charge-
pump, thereby saving area and power consumption. The disadvantage
currently however is that quantization noise associated with the Time-
to-Digital Converter (TDC) inside a digital PLL severely degrades the
phase noise of the system. Thus, even the current state-of-the-art
DPLLs are no match in terms of spectral purity performance at high-
speeds compared to the analog PLLs. However, with improvements
in transistor scaling and machine learning algorithmic noise-tolerance
methodologies in digital signal processing, as well as stochastically en-
hanced circuit design techniques, the future really lies in the study of
synthesizable DPLLs. Thus, this area of study should definitely be of
utmost priority while performing research on clocking circuit design for

high-speed serial link applications [11, 12].

8.2.2 Signal Integrity Focus

In the realm of signal integrity (SI) engineering, the principle of utmost
importance is to ensure robust signaling between a driver transmitter and a
receiver across a channel medium. As clock frequencies and the associated
data rates keep rising with technology scaling and advances in SE'T while the
channel bandwidth remains roughly the same and package sizes rapidly scale
down, the need for superior SI designs in high-speed digital systems is at
an all-time high with demand only increasing in the upcoming years. Since
the off-chip I/O BWs become the major design bottleneck while demand for
low-power designs becomes ubiquitous, it is critical to study SI problems in
high-speed serial links.

Typical high-speed serial links are limited by the electrical PCB channels;
thus, being able to model all the effects of the channel is key to designing
robust systems. The skin-effect has become a major problem in PCB trace
channels as the high-frequency signals experience a large series resistance due
to current migration toward conductor outer surfaces, and traditional mod-
eling techniques are no longer useful as they assume the metal surfaces are

perfectly smooth, whereas in reality there is a significant roughness present

89

which is actually random in nature. Furthermore, the frequency-dependent
dielectric-losses experienced along these PCB substrates are difficult to char-
acterize due to lack of the required sophistication in measurement techniques
as well as statistical modeling. Measurement is a challenge because for ac-
curate models the setup needs to be passive as well as causal, both of which
are very difficult to ensure in practice. Therefore, statistical modeling of the
substrate effects would be extremely valuable to enhance the understanding
of the channels used in high-speed interface systems. Recall that a backplane
or PCB trace can essentially be treated as a transmission line; thus, being
able to quantitatively characterize propagation delay, system characteristic
impedance, as well as discontinuities during high speed signaling will be very
valuable in easing out equalization requirements on both TX as well as RX
sides [13].

Overall link performance is analyzed in terms of the TX/RX timing jitter
as well as BER specifications. Since the channel is fixed, as mentioned earlier,
one prominent method to combat the jitter and ISI-inducing effects of the
channel is to perform equalization. Sophisticated TX pre-emphasis equaliza-
tion and RX side adaptive DFE are vital to link designers as the data rates
approach the Tb/s ranges over the upcoming years while the off-chip 1/0
BW remains about the same. Lastly, formulation of a robust statistical BER
analysis and time-domain empirical jittery analysis framework involving all
interference sources for any given HSSL will be key to fully characterizing the
non-idealities present in links today without the need to over/under design

at a circuit level.

8.2.3 Steps for New Students

When embarking on a journey to study and solve new problems in the field
of High-Speed Serial Link design, whether it be specifically in the area of
clocking circuits, equalization or signal integrity, it is critical to have strong
system-level understanding of the HSSL architecture. Once familiarized with
the system level basics of links, the student (if interested in circuit design)
should take ownership of a specific block within the overall link and focus on
optimizing it for low-power, high-speed applications. Conversely, students

interested in exploring signal integrity issues in HSSLs should familiarize

90

themselves with Behavioral modeling as well as basics of transistor-level de-
sign and simulation analysis so that they explore new HSSL architectures
that have high signal integrity even at multi-GHz to THz speeds.

Ideally, in order to make meaningful contributions in the field of HSSL
designs, a strong knowledge-base in fields of Integrated Circuits, Electromag-
netics, RF/Microwave theory and Digital Signal Processing is key. Thus, at
the onset of their graduate career students performing research in the area
of robust, fast-signaling HSSLs should take the fundamental graduate-level
courses in areas of Digital IC Design, Analog IC Design, Phase-Locked Loop
Design, Electromagnetics and DSP. Lastly, ability to exercise the EDA tools
like Cadence Virtuoso, Agilent ADS, Ansys HFSS as well as programming
in MATLAB and Verilog are essential in order to gain hands-on experience

and perform rapid-prototyping of new research ideas.

91

APPENDIX A

CADENCE VIRTUOSO INSTALLATION
GUIDE

A.1 Introduction

The motivation for this manual is to provide a step-by-step tutorial on in-
stalling Cadence Virtuoso IC 6.15 tools from scratch, configuring the envi-
ronment and using the tool to design and simulate circuits. In this short-
tutorial users are exposed to the complete steps involved in configuring their
machine to run the Cadence Virtuoso IC 6.15 design environment along with
its ancillary softwares, converting their host computer into a server, remotely
connecting to it and launching the Virtuoso simulator engine from the termi-
nal window followed by a detailed guide to create their own custom circuits

and simulate them using the Cadence Spectre circuit simulator.

Cadence is an Electronic Design Automation (EDA) environment that in-
tegrates various circuit design and verification applications and tools (both
in-house proprietary as well as external third party vendor tools) in a single
framework allowing unified IC design and verification in a single environment.
The tools are generic and allow the designer to configure the environment
depending on the fabrication technology of choice by installing the appropri-
ate PDK (Process-Design Kit).

This tutorial document is not intended to be a one-stop reference for all
the features available in Cadence Virtuoso Design Environment. Instead, it
is only meant to be a quick-start guide for circuit designers to be able to use
the EDA tool to effectively simulate their designs for quick prototyping and

verification of their designs.

92

A.2 Environment Setup

A.2.1 Installing Cadence Virtuoso

1. Cadence Virtuoso design tools only work on Linux OS and best on
RedHat based systems. In the scientific community a stable OS ca-
pable of running Cadence well is Scientific Linux which is an open-
source Linux OS inspired from RedHat Enterprise Linux OS. Install
the SL 6.4 64-bit x86 version from [http://ftpl.scientificlinux.
org/linux/scientific/6.4/x86_64/iso/ |. Make sure you install
the SL-64-286_6/-2013-03-21-Fverything-DVD1.iso and SL-64-186_64-
2013-03-21-FEverything-DVD2.iso as it is the full enterprise version.
Note: If your machine is 32-bit you can also install the 32-bit version
from [http://ftpl.scientificlinux.org/linux/scientific/6.5/
i386/iso/http://ftpl.scientificlinux.org/linux/scientific/6.
5/1386/1is0/].

2. Once you have installed the OS, make a new directory under the path
/home/EFEAPPS and name it CADENCE_INSTALL. In this tutorial
we will be installing ‘Virtuoso 1C6.15” suite, ‘MMSIM 11.1° (required for
Spectre/Spectre-RF simulators), ‘TUS8’ (used for Verilog simulations in
Cadence Design Suite), ‘HSPICE’ and a few ‘PDKs’ (Process Design
Kit). Download the Cadence Virtuoso 1C6.15 files (from your ftp file
sever) and store them in your computer under /home/EEAPPS/CA-
DENCE_INSTALL/IC615 folder. This folder is the location where you
will keep the raw installation files during installation.

Note: When you are downloading your Cadence Virtuoso files from
your ftp server location they will most likely be in tar file formats.
You will have 7 files for Base version and 8 files for the Hotfix ver-
sion. First download them into your Downloads folder and then extract
the files one by one into the /home/EEAPPS/CADENCE_INSTALL.
Make sure while you untar your files you 'untar’ each ‘Base’ file into
the same folder and each ‘Hotfix’ file into the same folder so at the
end of the whole process you will have two folders inside the ‘CA-
DENCE_INSTALL’ folder named 1C06.15.011_Inx86. Base and 1C06.15.132-
615_Inz86.Hotfixr. Although all the installation will be performed from

93

the Hotfix files it is very important to also have the Base files ex-

tracted as a path to them will be needed during the installation setup.

. Before you start the installation process open up a terminal window

and type in su to make sure that you have root user privileges.

. A key feature of Scientific Linux environment to note is that if you ever
have any missing packages that cause an error you just have to type
in yum install PackageName in the terminal window. We will be
using this throughout the installation process when we encounter such

situations.
. Install the following packages:

a) yum install elfutils elfutils-libelf libXp

(a)
(b) yum install libXext.i686
(c) yum install libelf.so.1

)

(d) yum install libXrender.so.1
Note: You need these packages for InstallScape (Cadence Instal-

lation Wizard) to work.

. Create a new directory by typing:

mkdir -p /home/EEAPPS/CADENCE_INSTALL/IC615/. Now move
the extracted Base and Hotfix folders to the ‘1C6.15 folder you just

created.

. In the terminal window browse to the following folder:cd /home/EEAPP-
S/CADENCE_INSTALL/IC615/ 1C06.15.132-615_Inx86.Hotfix/CDROM1
and then type in sh SETUP.SH to start the installation process [14].

94

(] InstallScape(TM) Classic View -0 x

InstallScape(TM) Classic View C 5 denc e®

File Wiew Preferences Help

(J, X % * ti |EW[B' e w

View installed Configure Update Uninstall [Search & Install Control file LOCAl dife€toryfl Remove Favorite
releases releases releases releases releases install Mediainstall |Downloads Releases

Local directory/Media install

Frovide Feedback

a || | |AH Product Sectors "| | Go | Server Downtime
Privacy Policy

Filter releases by: : Select location of media

@ Release Name

) Family

ALL (1)

ICE15 (1)

Jusr/local{ CADENCE_INSTALL/IC6.1/1C06.15.132-615_Inx86.Hotfix/ CDROM1 |v|| Browse
Type in location of media directory or click on Browse to select a media directory

z

Continue:>

Figure A.1: Installing Virtuoso from Installscape Step 1

8. You will now see the following instructions so follow the steps indicated

below very carefully:

(a) Specify path of install directory [OR type [RETURN] to exit]:

/home/EEAPPS/IC615

(b) Directory /home/EEAPPS/IC615 does not exist. Create? [y/n]:
Yy

(¢) Do you have InstallScape for Inx86 platform installed somewhere
[y/n]? n

(d) Do you want to install InstallScape for Inx86 [y/n|? y
(e) Type the path to InstallScape installation directory [(q to exit)]:
/home/Cadence/InstallScape

9. Now a window like Figure A.1 will pop up so follow the instructions
shown in it to browse into the correct folder that contains the installa-

tion files.

95

10. From this point onwards follow the instructions shown in Figures A.2
through A.14 very carefully to complete the installation process for
Virtuoso. Make sure you do exactly as shown in these figures to ensure

the software gets installed properly.

11. Once you reach the last step as shown in Figure A.14 hit ‘Done’.

() InstallScape(TM) Classic View - o x

InstallScape(TM) Classic View (5 denc e®

File Wiew Preferences Help
' . %

v X B8 R Iy = o
Search & Install Control file Rermowve Favorite

Wiew installed Configure Update Uninstall
releases releases releases releases releases install Downloads Releases

Frovide Feedback
Privacy Policy

Filter releases by: ~ (lresultsforALL

¥
@ Release Name i

) Family Platf- = Type =
ICE15 (1) ;

Displaytame: IC-615 06.15.132 RHEL 4{lnxE&) Hotfix Felease
2| |Platform: Inx86

| |Downloadsize: 4881 MB

§§ Description: 1C-515 06.15.132 RHEL 4{Inx86) Hotfix Release
#| |URL:

Cancel Start Search Again

Figure A.2: Installing Virtuoso from Installscape Step 2

96

nstallScape(TM) Classic

a
InstallScape(TM) Classic View

x

- .
cadence
File View Preferences Help

v A ¥ R B

o
View installed Configure Update Uninstall [Search & Install Control file L0€al difeetoryf] remove Fawvorite
releases releases releases releases releases install Media install

Local directory/Media install

Downloads Releases

Provicle Feedback
Q| || e proguct sectars Server Downtime
Privacy Policy
Filter releases by:]|]
@® Release Name 1C-615_06.15.132_Inx86,
) Family v
IC615 (1) Choose Products

[1»

Check the products that you want to install and uncheck the products that you don't want to install.

D Name Size (MB) Version
CPIc-615 IC615_Inx86 7846

[yri11 11l:Cadence(® .. (1414 111~06.15.122~..
[P12141 64bit

12141_64hit:121..[376 12141_64hit~06,

CIr12141
Ll

12141:Cadence(. 1534 12141~06.15.13

Required Disk Space: 7846MB
Choose Install Options
Directories

Select Install directory (Available Space: 11375 MB)

[fusr/local/Cadence/ICs. 1 | [Juse defaults

Progress meter
Total Estimated time Elapsed:

Total Estimated time Remaining (approx).

Installing:
\ Iz |
Configuring

0% |
Cancel Install

Figure A.3: Installing Virtuoso from Installscape Step 3

InstallScape(TM) Classic View g x
InstallScape(TM) Classic View

- L
cadence
o File View Preferences Help

A B R W OC e £

59
View installed Configure Update Uninstall |Search & Install Control file Local directoryll permove
releases releases releases releases releases install Media install

Local directory/Media install

Favorite
Downloads Releases

Provide Feedhark
a | J |AH Product Sectors

Server Downtime
Privacy Palicy:

Filter releases by: <]
(® Release Name 1C-615_06.15.132_Inx86
© Family (Processing)
ALL (1 ¥
IC615 (1) . . =
Check the products that you want to install and uncheck the products that you don't want to install,
D Name Size (MB) Version ml
I PIC-615

IC615_Inx86 7846

ERYEEN
[IP12141_64bn

o FICIP12141
Y

111:Cadence(R) Desi...| 1414 111~06.15.132~Inx,

12141_64hit: 12141 _|376 12141_64bit~06.15

12141:Cadence(R) D... 1594 12141~06.15.132~|

Required Disk Space: 7846MB

Choose Install Options

Directories

Select Install directory (Available Space: 11375 ME)

[Juse defauits

Progress meter
Total Estimated time Elapsed: 00:01:16 hh:mm:ss Total Estimated time Remaining (approx): 00:03:14 hh:mm:
Installing: 2395902 K of 8035063 K (129 components of 426 components)

29%

Configuring:

[0% =
[}

Cancel Install

Figure A.4: Installing Virtuoso from Installscape Step 4

97

@
InstallScape(TM) Classic View

 File View Preferences Help

InstallScape(TM) Classic View

-ox

cadence’

View installed Configure Update

releases releases releases
Local directory/Media install

x

Uninstall
releases

Search & Install
releases

|

‘ ‘AH Product Sectors ‘v

Control file

install

—

e
Local directoryl| Remove

Media install

¥

Favorite

Downloads Releases

Filter releases by: 1] To complete installing this release, you must specify the following
@ Release Name media:
 Family .
IC 06.15.011 RHFL 4.0(Inx86) Base Release Disk 1
1C615 (L
[¢H] 5}
CIPIC-515
Cyri11 @
[y P12141_54bit
CIP12141
SaN Mount Pointz|NSTALL/ICS. 1/IC06.15.011_InxB6.Base/COROM 1|
Required Disk Space: 7846MB
Choose Install Options
Directories
Select Install directory (Availal
[Use defaults
Progress meter
Total Estimated time Elapsed: ~ 00:04:48 hh:mm:ss Total Estimated time Remaining (approx): 00:01;12 hh:mm:
Installing: 7666435 K of 8035063 K (385 components of 426 components)
Configuring
0%
] I
Cancel Install

Figure A.5: Installing Virtuoso from Installscape Step 5

@

Laetall€ canafTRN Claceic Vinwm

InstallScape(TM) Classic View

Cadence_ncvhd|64b10.20-5118Inx86_Config

Incvhdl (6471 10.20-51181 (c) Copyright 1395-2012 Cadence Design Sustems,
INCINTERNAL ., src/wsync. vhd :

errors; 0, warnings; 0
Incvhd] (64 10,20-s148: () Copuright 1335-2012 Cadence Jesign Sustens,
INCINTERNAL src/ sparse, vhds
errors: 0, warnings: 0
incvhdl (B4); 10,20-s118; (c) Copyright 1995-2012 Cadence Jesign Sustems,
INCHOTELS , src/top_nem, uhd
errors: 0, uarnings: 0
Incvhd] (641 10,20-5118: (c) Copuright 1395-2012 Cadence Tesign Systens,
+ /IEEE_vhdlans, sre/fundanent.al _constant, vhd;
errars: 0, warnings:
ncvhdl (64): 10,20-51181 (c) Copyright 1395-2012 Cadence Design Sustems,
+ /TEEE_vhdlans sre/naterial _constants, vhd:
errors; 0, warnings; 0
Incvhd] (64 10,20-s148: (c) Copuright 1335-2012 Cadence Jesign Sustems,
+ JIEEE _vhdlaws. sredelectrical _systens. uhd:
errors: 0, warnings: 0
incvhdl (B4); 10,20-s118; (c) Copyright 1995-2012 Cadence Design Susten
+ JIEEE vhdlaws, srodnechanical _sustens, hd:
ErPOFS: 0, warnings:
Incvhd] (64 10.20-5118: (c) Copyright 1995-2012 Cadence Design Systen
+ /TEEE_vhdlans sre/thernal _systens, vhd;
errars: 0, warnings: 0
Incvhd (6411 10,20-5118: (c) Copuright 1995-2012 Cadence Jesian Susten
+ /TEEE_vhdlans sre/energy_systens vhd:
errors; 0, warnings:
nevhd1 (£4): 10,20-s118: (c) Copuright 1395-2012 Cadence Jesian Susten
+ JIEEE _vhdlaws, sref luidic._systens,vhdz
errors: 0, warnings: 0
incvhdl (B4); 10,20-s118; (c) Copyright 1995-2012 Cadence Design Susten
+ IEEE _vhdlans, sredradiant _systews.,vhdz
ErFOFST 0, warnings:
Incpack (641 10.20-s118: (c) Copyright 1995-2012 Cadence Design Systen
This window will close in 20 seconds
Fun seteny ISCHPE_SLEEP <> to change to <> seconds
Press Enter to close this window

201948 17 161514 13121140 387654 3

Choose Install Options

Directories

Progress meter

Total Estimated time Elapsed.
Installing: 8038076 K of 8035063 K (426 components of 426 components)

Ine,

Ine,

Inc,

Inc.

Ine,

Ine,

Configuring: Configuring 2 of 9 components

Select Install directory (Available Space: 3115 MB)

00:06:15 hh:mm:ss

= @

x

cadence

move Favorite
nloads Releases

dback

r Downtime
Privacy Policy

[v]

32_Inx86

Tyou don't want to install.

[Tr

Size (ME) Version
7846
on ... 1414 111~06.15.132~Inx26
_64..|378 12141 64bit~06.15.13
esi.. (1594 12141~06.15.132~Inx86

Total Estimated time Remaining (approx)

[Use defaults

00:00:10 h:mm:ss

Cancel Install

Figure A.6: Installing Virtuoso from Installscape Step 6

98

@

LnetallC mamafTRAY Clasein \iam

Cadence_oaRedist22.41-p025Inx86_Config

InstallScape(TM) Classic View

lelcome to the Openficcess 2,2 Configuration Utility,

Inpartants Before continuing, first close all applications that use OperAccess
libraries. Then moke sure that there are no calHTurboServer processes running
(kill these processes uith the kill comand on LNIX/Linex),

Press Enter to continus (g to quit): iHHTH

This utility lets you specify a different Openficcess installation to use,

The current. installation is [Jusrlocal/Cadencer 06, 1/oa_u22,41,025]
Do you want to use a different Openficcess installation (u/nfq) 7 [u] ull

Choose Install Options
Directories
Select Install directory (Available Space: 3115 MEB)

Progress meter
Total Estimated time Elapsed: 00:06:15 hh:mm:ss
Installing; 8038076 K of 8025063 K (426 compenents of 426 companents)

Configuring: Configuring 2 of 3 compenents

Total Estimated time Remaining (approx).

o x

cadence

move Favorite
nloads Releases

Privacy Policy

32_Inx86

[T»

you don't want to install.

Size (MB) Version

7846
on...|1414 111~06.15.132~Inx86
_64..|276 12141 640it~06.15.13...
esi.. 1594 12141~06.15.132~Inx86 |_|

O use defaults

00:00:10 hhimm:ss

Cancel Install

Figure A.7: Installing Virtuoso from Installscape Step 7

@

LinetallC mmmalTRIN Flanels s
Cadence_oaRedist22.41-p025InxB6_Config

InstallScape(TM) Classic View

llelcone to the Openficcess 2.2 Configuration Ubility.

Inportant: Before continuing, first close all applications that use Openficcess
Libraries, Then nake sure that there are no oaliTurboSeruer processes ruMning
(kill these processes with the kill comand on UNI¥/Linux) .

Fress Enter to continue (9 to quit)s i"HHT*H

This utility lets you specify a different Dpenficcess installation to use.

The current installation is [/usr/local/Cadence/IC6.1/0a_v22,41,025]

Do you vant to uss a different Operficcess installation (w/n/a) 7 [yl uH
Please enter 'y', 'n'. or 'g' (to exit): n

This window will close in 20 seconds

Run setenw 1SCAPE_SLEEP <n> to changs ta <N> saconds

Press Enter to close this windou

191817 161514 131241 103 1

o x

cadence

nove Favorite
hloads Releases

Privacy Policy

32_Inx86

(D

you don't want to install.

Size (MB) Version
7846
on . |1414 111~06.15.132~InX86
64..|376 12141_64bit~06.15.13
esi... |1594 12141~06.15.132~Inx86 |_|

Choose Install Options
Directories

Select Install directory (Available Space: 3115 ME)

Progress meter
Total Estimated time Elapsed: 00:06:15 hh:mm:ss

Installing: 8038076 K of 8035063 K (426 components of 426 components)

Configuring: Configuring 3 of 9 components

Total Estimated time Remaining (approx):

[use defaults

00:00:10 hh:mm:ss

Cancel Install

Figure A.8: Installing Virtuoso from Installscape Step 8

99

@ Installscape(TM) Classic View =

talle [TRAN Claccic Vi

o x

1
= Cadence_lfvhdComp02.85-a002Inx86_Config

Procecding uith configuration of LfuhdConp

Suneray users nust install these libraries

Install Valid library and Sim prinitives? (<or> = n): °[
Install ML librery and Gate prinitives? (<er> = n):
Installing Leapfrog Analyzer and Design library,..
Library installation,..

urelocate 2.85-a002: (c) Copyright 1332-1997, Cadence Design Systens, Inc.
urelocate 2,85-a002; (c) Copyright 1332-1997, Cadence Design Systens, Inc,
urelocate 2.85-a002: () Copuright 1332-1387, Cadence Desian Sustens, Inc.

5 cadence

FG)
ove Favorite
loads Releases

Installation of Leapfrag Analyzer and Design Libraries complete

This window will close in 20 seconds
Run setenv ISCAPE_SLEEP <n> to change to <> seconds
Press Enter to close this uindow

0191817161514 1312111098761

Downtime
Privacy Policy

2_Inx86

You don't want to install.

[Tv

Size (ME) Version
7846

on 1414 111~06.15.132~InxB6

64...|376 12141 64bit~06.15.13

esi.. |1594 12141~06.15.132~InxB6

Choose Install Options

Directories

Progress meter
Total Estimated time Elapsed.

Select Install directory (Available Space: 3115 MB)

[Use defaults

00:06:15 hh:mm:ss Total Estimated time Remaining (approx)

Installing: 8038076 K of 8035063 K (426 components of 426 components)

Configuring: Configuring 4 of 9 components

00:00:10 hh:mm:ss

Cancel Install

Figure A.9: Installing Virtuoso from Installscape Step 9

LIRS Claceic A\

InstallScape(TM) Classic View

= Cadence CSRCOINdep07.25-p034_Config _mx

This window will close in 20 seconds
Run szteny ISCAPE_SLEEP <r> to change to <> seconds
Press Enter to close this window

201948 17 16 1544 134211 []

-0 x

cadence

FG)
ove Favorite
loads Releases

Provide Feedback
Server Downtime
Privacy Policy.

[v]

32_Inx86

tyou don't want to install

Size (MB) Version
7846

on ... |1414 111~06.15.132~Inx86

64..|376 12141 64Bit~06.15.13

esi... |1594 12141~06.15.132~Inx36

Choose Install Options

Directories

Progress meter
Total Estimated time Elapsed:

Select Install directory (Available Space: 3115 MB)

[JUse defaults

00:06:15 hh:mm:ss Total Estimated time Remaining (approx)

Installing: 8038076 K of BO35063 K (426 components of 426 components)

Configuring: Configuring 5 of 9 components

00:00:10 hh:mm:ss

Cancel Install

Figure A.10: Installing Virtuoso from Installscape Step 10

100

T 1

InstallScape(TM) Classic View

A

cor
Rur seten 1SCRPE_SLEEP <n> to chai
Press Enter to close this window

201918 17 16 15 14 13 []

Cadence_deft01.03-s044Inx86_Config

This window will close in 20 second:

o x

cadence

s

ngs to <> seconds
FG:)

ove Faverite

loads Releases

Provide Feedback
Server Downtime
Privacy Policy.

2_Inx86

you don't want to install.

Size (MB) Version
7846

on .. |1414 111~06.15.132~Inxg6

64..|376 12141_64b~06.15.13

esi.. |1594 12141~06.15.132~Inx86 |_|

Choose Install Options

Directories
Select Install directory (Available Space: 3115 MB)

[Use defauls

Progress meter
Total Estimated time Elapsed: 00:06:15 hhimm:ss Total Estimated time Remaining (approx):
Installing: 8038076 K of 8035063 K (426 tomponents of 426 components)

00:00:10 hh:mm:ss

Configuring: Configuring 7 of 9 components

Cancel Install

Figure A.11: Installing Virtuoso from Installscape Step 11

InstallScape(TM) Classic View ax

cadence

T 1 A

Cadence CSRCO07.25-p034Inx86_Config

The hierarchy has already been configured to use the cdsLib plugin,

This uindow will close in 20 seconds
Run setenw 1SCAPE_SLEEP <n> to change to <N> seconds
Press Enter to close this window

EC
ove Faverite

201918 17 1515 14 151211 10 3 [] loads Releases

Provide Feedback
Server Downtime
Privacy Policy.

32_Inx86

you don't want to install.

Size (MB) Version
7846

on .. |1414 111~06.15.132~Inxg6

64..|376 12141_64b~06.15.13

esi.. |1594 12141~06.15.132~Inx86 |_|

Choose Install Options
Directories

Select Install directory (Available Space: 3115 MB)

[Use defauls

Progress meter
Total Estimated time Elapsed: 00:06:15 hhimm:ss Total Estimated time Remaining (approx):
Installing: 8038076 K of 8035063 K (426 tomponents of 426 components)

00:00:10 hh:mm:ss

Configuring: Configuring 8 of 9 components

Cancel Install

Figure A.12: Installing Virtuoso from Installscape Step 12

101

@

InstallScape(TM) Classic View

- 0O x
= o
laetallc s e An
= Cadence ihdI06.15-5089Inx86_Config _ox cadence
Info: Starting NC Cleanup
MC-Clean up process conpleted successfully. Cheok the ./CleanliC.log File For nore details. r
This uindou uill closs in 20 seconds G
Run seteny 15CEPE_ SLEEP <n> to change to <I> seconds move Favorite
Press Enter to closs this uindos loads Releases
20131817 161514 131211 10987654 3 []
Provide Feedback
Server Downtime
Privacy Policy
]
32_Inx86
tyou don't want to install.
Size (ME) Version
7845
on .. [1414 111-06.15.132~Inx86
564|276 12141_64bit~06.15.13
esi.. 1594 12141~06.15.132-1nx86 | _|

Choose Install Options

Directories

Select Install directory (Available Space: 3115 ME)

Progress meter

Total Estimated time Elapsed: 00:06:15 hhmm:ss

Configuring: Configuring 9 of 9 components

Total Estimated time Remaining (approx):
Installing: 8038076 K of 8035063 K (426 components of 426 components)

[l use defaults

00:00:10 hh:mm:ss

Cancel Install

Figure A.13: Installing Virtuoso from Installscape Step 13

@

Installscape(TM) Classic View

File View Preferences Help

InstallScape(TM) Classic View

-oOx

cadence

v oA 8 R Ok

View installed Configure

e
Update Uninstall |Search & Install Control file LO€aldiFeetoryll pemove Favorite
releases releases releases releases releases install Mediainstall nownloads Releases
Local directory /Media install
Provide Feedback
Q, |\ ‘ ‘m\ Product Sectors "l Server Downtime
Privacy Policy
Filter releases by: D | Version | Download Status | Install Status | Configure Status
@ Release Name IC-615_06.15.132_Inx86 ‘os 15.132 /A Success Success
© Family

E

Ed

Figure A.14: Installing Virtuoso from Installscape Step 14

102

A.2.2 Installing MMSIM (Spectre/SpectreRF /HSpice)

1. Now that you have installed virtuoso in order to actually use the
HSPICE or Spectre simulation engines you need to install the MM-
SIM package.

2. Download the MMSIM installation files from your ftp server and keep
the tar files in the Downloads folder. You will have 3 files for Base ver-
sion and 3 files for the Hotfix version. Extract the files one by one into
the /home/EEAPPS/CADENCE_INSTALL. Make sure that while you
untar your files you ‘untar’ each ‘Base’ file into the same folder and each
‘Hotfix’ file into the same folder so at the end of the whole process you
will have two folders inside the ‘CADENCE_INSTALL’ folder named
MMSIM11.10.214_Inz86.Base and MMSIM11.10.617 Inz86. Hotfix [14].
Although all the entire installation will be performed from the Hotfix
files it is very important to also have the Base files extracted as a
path to them will be needed during the installation setup just like you

did during Virtuoso installation.

3. Open up the terminal window and create a new directory inside the
CADENCE_INSTALL folder by typing in mkdir -p /home/EEAAPS/-
CADENCE_INSTALL/MMSIM11.1/. Now move the extracted Base
and Hotfix folders to the ‘MMSIM11.1’ folder you just created.

4. In the terminal window browse to the following folder:
cd /home/EEAPPS/CADENCE_INSTALL/
MMSIM11.1/MMSIM11.10.617 Inz86. Hotfir/CDROM]1 and then type
in sh SETUP.SH to start the installation process.

5. You will now see the following instructions so once again follow the

steps indicated below very carefully:
(a) Specify path of install directory [OR type [RETURN] to exit]:
/home/EEAPPS/MMSIM11.1

(b) Do you have InstallScape for Inx86 platform installed somewhere
y/n]?y

(c) Type the path to InstallScape installation directory [(q to exit)]:
/home/Cadence/InstallScape

103

6. Now a window like Figure A.15 will pop up so follow the instructions
shown in it to browse into the correct folder that contains the installa-

tion files.

7. From this point onwards follow the instructions shown in Figures A.16
through A.22 very carefully to complete the installation process for
Virtuoso. Make sure you do exactly as shown in these figures to ensure

the software gets installed properly.

8. Once you reach the last step as shown in Figure A.22 hit ‘Done’.

@ InstallScape(TM) Classic View - o x

InstallScape(TM) Classic View cé d enc e®
File View Preferences Help

v X B R H = Fa L%

View installed Configure Update Uninstall |Search & Install Control file Le€aldirectoryll Remove Favorite
releases releases releases releases releases install Mediainstall |pownloads Releases

Local directory /Media install

o | A procuct sectors |+ |

edback
Downtime

vary Policy
Filter releases by: Select location of media
(® Release Name
© Family
“*No matching resulis found**
/usr{local{ CADENCE_INSTALL/ MMSIM11.1/MMSIM11.10.617_Inx86.Hotfix/ COROM1 [~] ‘ Browse|
Type in lacation of media directory or click on Browse to Select a media directory

Figure A.15: Installing MMSIM from Installscape Step 1

104

@

InstallScape(R) Classic View

- .
cadence
File View Preferences Help

% X i - Lo

View installed Configure Update Uninstall |Search & Install Control file
releases releases releases releases releases install

InstallScape(R) Classic View -0x

Remove Favorite
Downloads Releases

Provide Feedback

Server Downtime
Privacy Policy

(® Release Name

EOS Date
MMSIM111 (1)

Displayiiame; MMSIM 11,10.617 RHEL 5(nx&6) Hotfix Release
Platform: Inx86

Downloacsize: 1738 MB

Description: MMSIM 11.10.617 RHEL 5(nx86) Hotfix Release
URL

D

Cancel Start Search Again

Figure A.16: Installing MMSIM from Installscape Step 2

@

InstallScape(R) Classic View

- .
cadence
File View Preferences Help

‘ L ¥

AT . e A | Lo

View installed Configure Update Uninstall |Search & Install Control file Remowve Favorite
releases releases releases install Downloads Releases

InstallScape(R) Classic View -0 x

releases releases

Provide Feedback

* I IICTETT

Server Downtime

Privacy Policy

[»]
® Release Name
© Family

MMSIM 11.10.617 RHEL 50nx86) Hotfix Release
Choose Products

MUSIM111 (1)

Check the products that you want 1o install and uncheck the products that you don't want to install.
D

Narme Size (ME) Version
MMSIM111_Inx86 2528

I PMuSIM
[(yp32501

22501:Virtuoso(R) Spectr...| 1127 32501~11.10.617~Inx86

[yp33400 33400:Virtuoso Ultrasim ... 1929 33400~11.10.617-Inx86
INEEEES 33580:Virtuoso(R) RelXp... [2435 33580~11.10.617~Inx86 | |
o [|
Required Disk Space: 2528ME
Choose Install Options L3

Directories

Select Install

irectory (Available Space: 2969 MB)

[Jusr/local/ Cadence/MMSIMLL. 1 | [Juse defaults

Progress meter
Total Estimated time Elapsed:

Total Estimated time Remaining (approx)
Installing:

\ 3]
Configuring

\ \

Cancel Install

Figure A.17: Installing MMSIM from Installscape Step 3

105

@ Installscape(R) Classic View -o0x

InstallScape(R) Classic View cadence’

File View Preferences Help

View installed Configure Update Uninstall |Search & Install Control file Rermove Favorite
releases releases releases releases releases install Downloads Releases

Provide Feedback

Privacy Policy
@ Terms & Conditions X
« i »
Terms & Conditions
® Release Name
© Family Terms & Conditions -
TSIHLLL (1) MMSIM 11.10.617 RH Please read the following terms and conditions (Terms and Concitions') carefully. —
Choose Products This product, any additional related products or deliveratles, and any copies
of any of the foregoing (collectively, the *product(s)) are the
(el i] conficlential and proprietary property of Caclence Design
Systems (ncluding any of its subsidiaries, ‘Cadence’) or
third parties from whom Cadence has obtained rights and are =
LI PumsM protected by United States copyright laws, other local laws
Deazs and international treaty provisions. You may only use the a
product(s) undler a valid written license agreement with X85
[y paza Cadence and subject to the terms thereof. You agree not to .
distribute copies of the product(s) to others or allow use
INLEES by others, except as explicitly permitted under such written X86
— licznse agreement. You furiher agree (o take all reasonable

steps to protect the product(s) from unauthorized reproduction,
Required Disk § publication, use or distributian. f any product or portion

thereof is copied to or used on a computer connected to a network,
@ you must have a reasonabile mechanism in place to ensurg that

Choose Install O the product may not be used or copied by unlicensed peXons L

Directories. To help ensure that you are only using authorized copies of the
product(s), Cadence may utilize monitoring tzchnologies (o obtain
Select Install and transmit nen-proprietary data on unauthorized modifications
to the product(s). No such data will be collected or transmitted
[usr/local/Ca unless unauthorized modifications to a product or unautharized

hosting of the license server or product(s) are suspected
By downloading the product(s), you authorize that you have the
aunthority to act on behalf of your employer. By downloading or
Total Estimated using the procuci(s) you hereby agree 1o the use of such technology
Installing and transmission of such non-proprietary data by Cadence
The Cadence Privacy Palicy, which is incorporated into these
Terms and Conditions by reference, may be found at
Configuring http://www.cadence.com/pages/privacy.aspx. If ou do not
agree to the foregoing Terms and Conditions do not download]
any products and immediately destroy any copies of any of
the produci(s) and discontinue any use

Progress mete!

Cancel

S TT—_—
Figure A.18: Installing MMSIM from Installscape Step 4

@ InstallScape(R) Classic View -ox

InstallScape(R) Classic View (5 denc e@

File View Preferences Help

\ A
% X ok 4
View installed Configure Update Uninstall |Search & Install Control file Remove Favorite

releases releases releases releases releases install Downloads Releases

Provide Feedback

- I ITTTETT bcacooms

Privacy Policy

]

® Release Name

) Family
L I —— =
MUSIN111 (1) MMSIM 11.10.617 RHEL Sdnxi (2|
Choose Products
Check the products that you | *
-1 sion
O Pmusin To complete installing this release, you must specify the following
media: 0.617~Inx86 | |
MMSIM 11.10.214 RHEL 5(Inx86) Base Release Disk 1 0.617~Inx86
0.617~Inx86 |_|

Required Disk Space: 2528ME @ k

Choose Install Options

Directories

Select Install directory (Av Mount Point:[15IM11.1/MMSIM11.10.2 14_Inx86.Base/COROM 1|

Progress meter
Total Estimated time Elapsed:
Installing: 1971130 K of 258;

nh:mm:ss

Configuring:
\]

Cancel Install

Figure A.19: Installing MMSIM from Installscape Step 5

106

@

linneallC mamalD Flasein \law
Cadence oaRedist22.41-p025Inx86_Config

InstallScape(R) Classic View

o x

cadence

ielcone to the Dpenficcess 2.2 Configuration Utility. A
¢

nove Favorite
nloads Releases

Inpartant: Before continuing, first close all applications that use Operficcess
libraries, Then nake sure that there are no oaDMTurboSeruer processes ruAning
(il] these processes uith the kill command on UNIXALinusx).

Fress Enter to continue (g to quit):

This utility lets you specify a different Operficcess installation to use.

The current installation is [fusr/local/Cadence/HHSIHLL, /08 22,41,025]
Do you uart £0 use & different Openfccess installation (unea) ? [ul nll

Provide Feedback

r Downtim
Privacy Policy

7_Inx86

you don't want to install.

(D

Size (MB) Version
2528
ect... 1127 32501~11.10.617~Inx86
im... (1929 33400~11.10.617~Inx86
IX... [2435 33580~11.10.617~Inx86 |_|

Choose Install Options

Directories

Select Install directory (Available Space: 362 MB)

Progress meter
Total Estimated time Elapsed: 00:04:09 hh:mm:ss

Installing: 2589337 K of 2588745 K (63 components of 63 components)

Configuring: Configuring 1 of 1 components

[l use defaults

Total Estimated time Remaining (approx):

00:00:37 hh:mm:ss

Cancel Install

Figure A.20: Installing MMSIM from Installscape Step 6

@

Lactall€aanafDy Claccie Vo
Cadence_oaRedist22.41-p025Inx86_Config

InstallScape(R) Classic View

x

o

cadence

-0 X%
leloone to the Openficcess 2,2 Configuration Utility, t
i€
Inportant: Before continuing, First close all applications that use Openficcess nove Favorite

Libraries, Then make sure that there are no callfTurboServer processes running

(kill these processes with the kill comnand on UNIX/Linux) . s Rellersen

Press Enter to continue (q to quit):

This utility lets you specify a different Openficcess installation to use,

The current installation is [/usr/local /Cadence/MISIHLL 1/0a v22.41,025]
Do you want to use a different Openficcess installation (y/n/a) 7 [u] n

This window will close in 20 secon

Provide Feedback

Downtime
Privacy Policy

ds
Run setenv 1SCAPE_SLEEP <n> to change to <MD seconds
Press Enter to close this window

[v]

7_Inx86
201918 17 16 15 14 13 12 11 10 |l

you don't want to install.

[Tr

Size (ME) Version
2528
lect...| 1127 32501~11.10.617~Inx86
im...| 1929 33400~11.10.617~Inx26
1. [2435 33580~11.10.617~Inx26

Choose Install Options
Directories

Select Install directory (Available Space: 362 MB)

Progress meter
Total Estimated time Elapsed: 00:04:09 hh:mm:ss Total Estimated time Remaining (approx).
Installing: 2589337 K of 2588745 K (63 components of 63 components)

Configuring: Configuring 1 of 1 components

[Use defaults

00:00:37 h:mm:ss

Cancel Install

Figure A.21: Installing MMSIM from Installscape Step 7

107

-0x

@ Installscape(R) Classic View
Ao v = G
Installscape(R) Classic View cadence
©f Eile View Preferences Help
A = - 2
) Iy | o W
View installed Configure Update Uninstall [Search & Install Control file LOCal difectoryl pemoye Favorite
releases releases releases releases releases install Mediainstall |poywnioads Releases
Local directory/Media install
Provide Feedback
Y ‘| ‘ |AH Product Sectors |" Server Downtime
Privacy Policy
Filter releases by: D | Version | D Status | Install Status [Configure Status
® Release Name MMSIM_11.10.617_Inx86 |11 10617 A Success Success
) Family
ALL (1)
MMSIMLLL (1)
k
e

Figure A.22: Installing MMSIM from Installscape Step 8

9. Now that you have installed both Virtuoso and MMSIM the most crit-

ical step is to configure the environment variables correctly. In order to

do so you will need to change your OS’s shell to bash. To figure out the

current shell of your OS open up a terminal and type in echo $SHELL.

To change the shell to bash if it is not set by default type in chsh -s

/bin/bash. If you actually were successful in changing the shell type in
echo $SHELL, and you should get /bin/bash as an output.

10. Open up your current bash file by typing gedit .bashrc € in the terminal

window. Now replace the text with that of Section 2.3. Save the

updated file and close it.

11. In the terminal window type in source .bashrc to update your bash

settings.

108

A.2.3 Installing a PDK

1. Download the PDK from your foundry vendor and extract the files in
a new directory called PDK under the path: /home/EEAPPS.

2. Create a working directory in your home folder as this will be the
directory where you will launch Virtuoso from and will store all your
files. For the purposes of this tutorial call your work directory ckt180

under your ‘Documents’ folder.

3. Copy the cds.lib file from the PDK you installed above and open it up

in a text editor.

4. Make sure your ‘cds.lib” has the following items before you launch vir-
tuoso. We have to do this to include the in-built libraries that come
with the Virtuoso software.

(a) SOFTINCLUDE /home/EEAPPS/IC615/share/cdssetup/cds.lib

(b)

(¢c) SOFTINCLUDE /home/EEAPPS/TSMCO018/cds.lib

)

(d) DEFINE ahdlLib $CDSHOME /tools/dfII/samples/artist/ahdlLib

SOFTINCLUDE /home/EEAPPS/IUS08.20.015/tools/inca/files/cds.lib

5. At this point Virtuoso is ready for launch so browse to your work

directory and type virtuoso &. See Figure A.23.

A.2.4 Remote Connections Setup

In order to remotely login to the Server from your machine follow the in-

structions provided below:
1. Windows OS Users:

(a) Install the SSH client MobaXterm| http://mobaxterm.mobatek.
net/download-home-edition.html] depending on your prefer-

ence.

(b) Install Xming X Server [http://sourceforge.net/projects/
xming/ | for Windows to allow X-forwarding during the SSH ses-

sion. Also, install Xming-fonts from [http://sourceforge.

109

()

net/projects/xming/files/Xming-fonts/]
Note: Without installing Xming you will not be able to open Vir-

tuoso or for that matter any application with a GUI.

Launch your SSH client, type ssh -X username@natcsi.ece.illinois.edu,
hit ‘Enter’. You will prompted to type in a password so type it in

and again hit ‘Enter’. Now you can follow the steps outlined in

Figure A.23.

2. Mac OSX Users:

(a)

Install XQuartz 2.7.5 for Mac OSX if you are using OSX Moun-
tain Lion or later. If you have an older OS then you will already
have X11 pre-installed in your system. Check your ‘System Pref-
erences’ to check whether X11 is turned on.

Note: Without installing XQuartz or enabling X11 (depending
upon your OSX version) you will not be able to open Virtuoso or

for that matter any application with a GUI.

Launch your SSH client and type ssh -X username@natcsi.ece.illinois.edu,
hit ‘Enter’. You will prompted to type in a password so type it in

and again hit ‘Enter’. Now you can follow the steps outlined in

Figure A.23.

3. Linux OS Users:

(a)

Launch Terminal and type ssh -X username@natcsi.ece.illinois.edu,
hit ‘Enter’. You will prompted to type in a password so type it in

and again hit ‘Enter’. Now you can follow the steps outlined in

Figure A.23.

cadence

nse (1111 was checked out suscessfully. Total checkeut time was 0. 05s

Figure A.23: Launch Instructions for Virtuoso

110

A.2.5 Configuring Bash Environment

.bashrc
Source global definitions
if [—f /etc/bashrc |; then
. /etc/bashre
fi
User specific aliases and function
alias mat=‘cd /home/rishi/matlab; matlab &’
alias cscope=‘/home/EEAPPS/Cscope/ai_bin /cscope’
Hspice
SYNOPSYS HOME=/home /EEAPPS
HSP_ HOME=$SYNOPSYS HOME/HSPICE
SCL_HOME=$SYNOPSYS HOME/SCL
HSP_BIN=$HSP_ HOME/ hspice /bin
SCL_BIN=$SCL_HOME/linux /bin
export LM_LICENSE_FILE=/home/EEAPPS/HSPICE/linmac . dat
export PATH=${HSP HOME}/hspice/bin :$PATH
export PATH=/home/EEAPPS/Cscope/ai_bin /:$PATH
A At st 1O A A
export MMSIM ROOT=/home /EEAPPS /MMSIM
export OAHOME=/home/EEAPPS/IC615/0a
export CDSHOME=/home/EEAPPS/IC615
export CDSDIR=/home/EEAPPS/IC615
export CDSROOT=/home/EEAPPS/IC615
export CDS_INST_DIR=//home/EEAPPS/IC615
export DD _DONT_DO_OS_LOCKS=SET
export CDS_LIC FILE=5280@Qcadence.webstore.illinois .edu
export CDS_Netlisting_Mode="**Analog”
export .PATH=${CDS_INST_DIR}/tools /bin :$PATH
export PATH=${CDS_INST DIR}/tools/dfIl/bin:$PATH
export .PATH=${CDS_INST_DIR}/tools/plot/bin :$PATH
export PATH=${CDS_INST_DIR}/tools/dracula/bin :$PATH
export JPATH=${CDSROOT}/tools /bin :$PATH
export PATH=${CDSROOT}/tools/dfIl/bin:$PATH
export PATH=${CDSROOT}/tools /dracula/bin :$PATH

111

export PATH=${CDSROOT}/tools/plot/bin :$PATH

export PATH=${CDSROOT}/tools/iccraft /bin:$PATH
export .PATH=/home /EEAPPS/InstallScape/iscape/bin :$PATH
export JPATH=$ {MMSIMROOT}/ tools /dfII/bin :$PATH

export JPATH=${MMSIMROOT}/ tools /spectre /bin : $SPATH
export PATH=$ {MMSIMROOT} / tools /ultrasim /bin :$PATH
export PATH=$ {MMSIM.ROOT} / tools /bin : $PATH

export .CDS_AUTO_64BIT=ALL

export .CDS_ LOAD _ENV=CSF

export .EDITOR=/usr /bin/gedit

THHHFHARHARAARAF-1US SHRARRARRAARAAR AR

export .CADENCE_CURRIUS=$SYNOPSYS HOME/IUS08.20.015
export PATH=${CADENCE.CURR.IUS}/tools .1nx86 /bin : $SPATH
export [PATH=$ {CADENCE CURRIUS}/ tools /bin : SPATH

export .PATH=$ { CADENCE_CURR.IUS}/bin : $PATH
HHHHFHHFHHRHARRAARENATLAB FHHERHHARA

export .PATH=/home /MATLAB/R2013b/bin : $SPATH

A.2.6 Creating a Library in Cadence Virtuoso

1. The first task after launching Virtuoso is to organize all your designs
into appropriate libraries. To view all the libraries in the current work
directory click on Tools — LibraryManager as outlined in Figure
A .24, and the Library Manager window will pop up as shown in Figure
A.25.

Note: If you want to manually add a library that you copied from
an external source into your Cadence work directory you would need
to edit the cds.lib file found in your work directory folder by opening

it in a text-editor.

112

% Virtuoso® 6.1.5-64b - Log: /home/rishi/CDS.log.1

Options Help cadence
Library Manager...
Library Path Editor... i |

checked out successfully. Total checkout time was 0.05s. =]

NC-Verilog
YHDL Taolhax —
Mixed Signal Environment 3 i o
ADE L v I R
ADE XL i
Characterization and Madeling »

AMS »

Technology File Manager
Display Resource Manager..
Abstract Generator.

Set Call Type
COF v
SKILL IDE

SKILL Development...
Conversion Toal Box..
Uniguify

Figure A.24: Launch Instructions for Library Manager

800 /| Library Manager: WorkArea: {home/rishi/ThesisSample
Eile Edit ¥iew [Design Manager Help cadence

_ Show Catengories _ Show Files
Library cell View

ahdILik

ambit
analoglif
hasic
cdsDefTechLib
cols_assenions
cos_inhconn
cos_spicelib S
connectLib

=0

neinternal

ncmodels

ncuti's

sdilib

std

SUNOBEVE il

Messages

Lag file is "fhomedrishiThesisSampledibhianager.og".
Created new library "TestLib" at fhomedishiThesisSampleTestLib

Delete

Figure A.25: Library Manager Window

2. To create a new library click on File - New — Library and name
the library as TestLib as highlighted in Figure A.26. After creating
the new library you need to specify the Technology File to be used
in your respective PDK. In our case we will ‘Attach an existing tech-
nology library’, specifically the ‘tsmc18rf” which corresponds to 180nm
CMOS process. Figure A.27 shows the steps involved in attaching the

appropriate technology file to a new library.

113

Edit_View Design Manager_Help

open crivo
open @ead-ony). crieR | CEesey View
Open With,

X[Library Manager: WorkArea: /home/rishi/ThesisSample

cadence

i
Cell View.

Load Defaults
Save Defauls.

Open Shell Window... Cti+F

Exit

Clrlex

eas_SpIcelh
connectLis
ieee
ncinternal
nermodels
ncutls

sy

st
sunonsus

Messages

Log file is */home/tishi/ThesisSample/lisManager log”. ™

— -
(a) Create New Library
8 00 [X| New Library
Library
Mame TestLib
Directory 3 omedtishi/ThesisSamples n & =0k
@

[cas.lin

[cas.lib~

[libtanager log

[libtanager log.cdsick

File type: |Ditectories

Design Manager
® lse MOMNE
Use Mo Dia
m Apply Cancel Help

(b) New Library Name

Figure A.26: Steps to Create New Library

[-HeNel Attach Lib to Technol Libi
©® O O [x] Technology File for New Library b Attach Ubrany to Technology tibrary

Mew Library TestLib
Technology File for library "TestLib"

Technalogy Library [analognib

You can: « Compile an A5CI technology file anic

cdsDefTechLib

« Reference existing technology libraries

& aftach to an existing technology library

Do not need process information

Cancel Help//' Cancel | _Apply | _Help |

(a) (b)
Figure A.27: Attaching Tech File
Refer to Chapters 6 and 7 for full behavioral/circuit-level simulation

guide.

114

A.3 Common Troubleshooting Tips

Some of the most commonly recurring errors are discussed below along with

the possible solution to resolve them:

1. Often when working on a common server machine with multiple users
logging onto the same account, the cadence filesystems gets “locked”
preventing any edit operations on any of the files associated with the
given user. The error will resemble the following statement in the
terminal window if such an event occurs: *WARNING* file /home-
/rishi/CDS.log File is already locked by some other process. In order
to fix this problem navigate to your home directory. Note that the
home directory is not the directory from which virtuoso is launched,
instead it is its the parent directory. Delete any of the files of the form
‘CDS.log’, ‘CDS.log.1’ and ‘CDS.log.cdslck’. After deleting these files
refresh Virtuoso by navigating to the Cadence Virtuoso ‘Log’ window

and clicking on File — Re fresh.

2. When sharing libraries among users within a server make sure you
add the library name in the ‘cds.lib’ file contained in your cadence
launch directory. Additionally, make sure while copying the files, the
destination user has write/edit privileges as lack of the write permission

will limit edit capabilities within virtuoso.

3. During simulation of complex circuits the Cadence simulation folder
gets full and often causes the entire machine to hang. In order to
prevent this from happening periodically, delete the contents of the

‘simulation’ folder found within your Cadence launch directory.

4. Always save the one functional simulation setting by navigating to the
Session — SaveState window within the ADE window. Make sure
you select ‘Cellview’ as this would also save the simulation plots from

the last simulation, thereby saving some simulation time for future use.

115

1]

2]

REFERENCES

S. Palermo, CMOS Nanoelectronics Analog and RF VLSI Circuits,
Chapter 9. New York City, N.Y.: McGraw-Hill, 2011.

E. Alon, “High-speed electrical interface circuit design: Lecture
1,” 2011. [Online]. Available: http://bwrcs.eecs.berkeley.edu/Classes/

icdesign/ee290c_s11/lectures/Lecture01_Intro_2up.pdf

V. Stojanovi¢, “Channel-limited high-speed links: Modeling, analysis
and design,” Ph.D. dissertation, Stanford University, Palo Alto, 2004.
[Online]. Available: http://chipgen.stanford.edu/papers/vs_thesis.pdf

K. Kundert and O. Zinke, Designer’s Guide to Verilog-AMS, Chapter
3. Boston, M.A.: Kluwer-Academic Publishers, 2004.

D. Friedman, “International solid-state circuits conference trends 2013,”
2013. [Online]. Available: http://isscc.org/doc/2013/2013_Trends.pdf

J. C. Chen, “Mutli-gigabit serdes: The corner-
stone of high speed serial interconnects,” 2011. [On-
line]. Available: http://www.design-reuse.com/articles/10541/

multi-gigabit-serdes-the-cornerstone-of-high-speed-serial-interconnects.
html

M. Assaad, “Design and modelling of clock and data recovery
integrated circuit in 130 nm cmos technology for 10 gh/s serial data
communications,” Ph.D. dissertation, Univ. of Glasgow, Glasgow, 2009.
[Online]. Available: theses.gla.ac.uk/707/1/2009assaadphd.pdf

P. Hanumolu et al., “Analysis of charge-pump phase-locked loops,”
IEEFE Transactions on Clircuits and Systems-1, vol. 51, no. 9, pp. 1665—
1674, 2004.

U.Ku-Moon. P.K. Hanumolu, “Effect of power supply noise on ring osc
phase mnoise,” 2004. [Online|. Available: http://web.engr.oregonstate.
edu/~moon /research/files/newcas04_supply.pdf

116

[10]

[15]

M. Mansuri, “Low-power low-jitter on-chip clock generation,”
Ph.D. dissertation, Univ. of California, Los-Angeles, 2003.
[Online]. Available: http://www.ece.tamu.edu/~spalermo/ecen689/
pll_thesis_mansuri_ucla_2003.pdf

U.Ku-Moon. P.K. Hanumolu, G.Y. Wei and K. Mayaram, “Digitally-
enhanced phase-locking circuits,” in Proc. IEEE Custom Integrated Cir-
cuits Conference’07), San Jose, USA, Sep. 2007, pp. 361-368.

V. Kratyuk et al., “A design procedure for all-digital phase-locked loops
based on a charge-pump phase-locked-loop analogy,” IEEE Transactions
on Clircuits and Systems-II, vol. 54, no. 3, pp. 247-251, 2007.

J. Fan et al., “Signal integrity design for high-speed digital cir-
cuits:progress and directions,” IEFE Transactions on Electromagnetic
Compatibility, vol. 52, no. 2, pp. 392-400, 2010.

R. Helinski, “Installing cadence ic 6.1, 2010. [Online].
Available: http://www.ece.unm.edu/~jimp/vlsill/cadence_install /
installing_cadence.pdf

B. Razavi, Monolithic Phase-Locked Loops and Clock Recovery Circuits,
Chapter 1. Piscataway, N.J.: IEEE Press, 1996.

117

