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Conventional Beamforming Algorithms

Introduction

In this lecture, we consider the conventional adaptive
beamforming algorithms.
These algorithms are based on the notion of minimizing
the output power of the array subject to a distortionless
constraint.
We will compare the performance of the adaptive
beamforming algorithms to the simple delay-and-sum
design.
We will also discuss how beamforming performance can
be improved through the addition of a postfilter.

Coverage: Wölfel and McDonough, Sections 13.2 and 13.3,
Appendix
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Beam Pattern of Delay-and-Sum Beamformer

Recall that in u-space, the beam pattern can be specified
as

Bu(u) =
1
N

sin
(

πNd
λ u

)
sin

(
πd
λ u

) , for −1 ≤ u ≤ 1.

Nulls occur when the numerator of Bu(u) is zero and the
denominator is non-zero.
Note that

sin
(

πNd
λ

u
)

= 0,

when
πNd

λ
u = mπ, for m = 1, 2, . . ..
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Null-to-Null Beamwidth

The nulls occur when both

u = m
λ

Nd
for m = 1, 2, . . .,

u 6= m
λ

d
for m = 1, 2, . . ..

Hence, the first null occurs at u = λ/Nd and the null-to-null
beamwidth BWNN is

∆u2 = 2
λ

Nd
.
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Complex Gradients

Define the complex vector

z = x + jy.

Also define the complex gradient operators

∇z =
[

∂
∂z1

∂
∂z2

· · · ∂
∂zN

]T
,

∇zH =
[

∂
∂z∗1

∂
∂z∗2

· · · ∂
∂z∗N

]
.
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Stationary Points of Functions of a Complex Vector

Let
f (z) = f (x, y) = g(z, zH),

where g(z, z∗) is a real-valued function of z and z∗, which
is analytic with respect to z and z∗ independently.
Then either

∇z g(z, zH) = 0

where zH is treated as a constant, or

∇zH g(z, zH) = 0

where z is treated as a constant, is a necessary and
sufficient condition for a stationary point of f (z).
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Method of Undetermined Lagrange Multipliers

Consider the constrained optimization problem:

minimize wHSw,

subject to wHc = g.

To apply the method of undetermined Lagrange multipliers,
define

J(w, wH) = wHSw + 2Re
[
λ

(
wHc− g

)]
= wHSw + λ

(
wHc− g

)
+ λ∗

(
cHw− g

)
.

Now take the derivative with respect to wH and equate to zero, to
obtain

Sw + λc = 0,

or
w = −λS−1c.
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Undetermined Lagrange Multipliers (cont’d.)

Applying the constraint we find,

wHc = −λcHS−1c = g,

or
λ =

−g
cHS−1c

.

Then, the final solution is

wH =
g cHS−1

cHS−1c
.
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Matrix Inversion Lemma

Consider the matrices A, B, C, and D where A is N × N, B
is N ×M, C is M ×M and D is M × N.
The matrix inversion lemma states

(A + BCD)−1 = A−1 − A−1B
(

DA−1B + C−1
)−1

DA−1.

An important special case is where B is an N × 1 column
vector x, C is a scalar c, and D = xH :(

A + cxxH
)−1

= A−1 − A−1xxHA−1

c−1 + xHA−1x
.

Woodbury’s identity is obtained by setting c = 1, such that(
A + xxH

)−1
= A−1 − A−1xxHA−1

1 + xHA−1x
.
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Matrix Inversion Lemma (cont’d.)
Several other useful relations follow from the matrix inversion
lemma:(

A−1 + BHC−1B
)−1

= A− ABH
(

BABH + C
)−1

BA,(
A−1 + BHC−1B

)−1
BHC−1 = ABH

(
BABH + C

)−1
,

C−1 −
(

BABH + C
)−1

= C−1B
(

A−1 + BHC−1B
)−1

BHC−1.
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Perpendicular Projection

Consider an N-dimensional vector x.
Consider also an N ×M matrix C whose linearly
independent columns define an M-dimensional subspace
of the complete N-dimensional space.
We wish to find the perpendicular projection of x onto the
C subspace.
The projection can be expressed as Cy where the
M-dimensional y minimizes

‖x− Cy‖2 = (x− Cy)H(x− Cy)

= xHx− yHCHx− xHCy + yHCHCy



Conventional Beamforming Algorithms

Perpendicular Projection Operator

Taking the gradient with respect to yH and equating to
zero, we find

−CHx + CHCy = 0

or
ŷ = (CHC)−1CHx

The inverse must exist, because the columns of C are
linearly independent.
Hence, the desired projection is

xC = Cŷ = C(CHC)−1CHx

The perpendicular projection operator is then

PC = C(CHC)−1CH
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Array Gain

We will in all cases take word error rate (WER) as the most
important measure of system performance.
It is useful, however, to have other performance measures
intended a single component.
Signal-to-noise ratio (SNR), a very common metric for
signal quality, is the ratio of signal power to noise power.
Array gain is a measure of how much improvement in SNR
is achieved by a sensor array.
Array gain is the ratio of SNR at the output of the array to
that at input of any given sensor.
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Snapshot Model

Let X(ω) ∈ CN denote a subband domain snapshot, a
vector of N complex subband samples, one per
microphone, obtained from

X(ω) = F(ω) + N(ω), (1)

where F(ω) and N(ω) denote the subband-domain
snapshot of the desired signal and noise or interference.
We will assume that F(ω) and N(ω) are uncorrelated and
that the signal vector F(ω) can be expressed as

F(ω) = F (ω) vk(k), (2)

where vk(k) is the array manifold vector.
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Second Order Statistics

We now introduce the notation necessary for specifying the
second order statistics of random variables and vectors.
In general, for some complex scalar random variable Y (ω),
we will define

ΣY (ω) , E{|Y (ω)|2}.

Similarly, for a complex random vector X(ω), let us define
the spatial spectral matrix as

ΣX(ω) , E{X(ω)XH(ω)}.
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Signal and Noise Components

Assume that the component of the desired signal reaching each
microphone is F (ω) and the component of the noise or
interference reaching each sensor is N(ω).

This implies that the SNR at the input of the array is

SNRin(ω) ,
ΣF (ω)

ΣN(ω)
. (3)

In the frequency domain, the output of the beamformer is

Y (ω) =

∫ ∞

−∞
y(t) e−jωt dt = HT (ω) X(ω). (4)

Defining wH(ω) = HT (ω) enables (4) to be rewritten as

Y (ω) = wH(ω) X(ω) = YF (ω) + YN(ω), (5)

where YF (ω) = wH(ω) F(ω) and YN(ω) = wH(ω) N(ω) are the
signal and noise components in the beamformer output.
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Beamformer Output

When the delay-and-sum beamformer (DSB) is steered to
wavenumber k = kT , the sensor weights become

wH =
1
N

vk
H(kT ). (6)

The variance of the output of the beamformer can be calculated
according to

ΣY (ω) = E{|Y (ω)|2} = ΣYF (ω) + ΣYN (ω), (7)

where
ΣYF (ω) = wH(ω)ΣF(ω) w(ω), (8)

is the signal component of the beamformer output, and

ΣYN (ω) = wH(ω)ΣN(ω) w(ω), (9)

is the noise component.

Equation (9) follows directly from the assumption that F(ω)
and N(ω) are uncorrelated.
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Signal Component in Beamformer Output

Expressing the snapshot of the desired signal once more
as in (2), we find that the spatial spectral matrix F(ω) of the
desired signal can be written as

ΣF(ω) = ΣF (ω) vk(ks) vH
k(ks), (10)

where ΣF (ω) = {|F (ω)|2}.
Substituting (10) into (8), we can calculate the output
signal spectrum as

ΣYF (ω) = wH(ω) vk(ks) ΣF (ω) vH
k(ks) w(ω) = ΣF (ω),

where the final equality follows from the definition (6)
of the DSB.
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Array Gain of Delay-and-Sum Beamformer

Substituting (6) into (9) the noise at the DSB output is

ΣYN (ω) =
1

N2 vH(ks)ρN(ω)v(ks)ΣN(ω), (11)

where the normalized spatial spectral matrix ρN(ω) is

ΣN(ω) , ΣN(ω) ρN(ω). (12)

Hence, the SNR at the output of the beamformer is given by

SNRout(ω) ,
ΣYF (ω)

ΣYN (ω)
=

ΣF (ω)

wH(ω)ΣN(ω)w(ω)
. (13)

Then based on (3) and (13), the array gain of the DSB is

Adsb(ω, ks) =
ΣYF (ω)

ΣYN (ω)

/
ΣF (ω)

ΣN(ω)
=

N2

vH(ks) ρN(ω) v(ks)
. (14)
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Distortionless Constraint

Many adaptive beamforming algorithms impose a distortionless
constraint.

For a plane wave arriving along the main response axis ks

Y (ω) = F (ω), (15)

where Y (ω) is the beamformer output, and F (ω) is the source
signal.

It follows that

Y (ω) = F (ω) wH(ω) v(ks) = F (ω).

Hence, the distortionless constraint can be expressed as

wH(ω) v(ks) = 1. (16)

Clearly setting wH(ω) = 1
N vH(ks), as is the case for the DSB,

will satisfy (16).

Thus, the DSB satisfies the distortionless constraint.
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Snapshot Model

The noise snapshot model has spatial spectral matrix

ΣN(ω) = E{N(ω)NH(ω)} = Σc(ω) + σ2
w I,

where Σc and σ2
wI are the spatially correlated and uncorrelated

portions, respectively, of the noise covariance matrix.

Spatially correlated interference is due to the propagation of
some interfering signal through space.

Uncorrelated noise is due to the self-noise of the sensors.

The beamformer output will be specified as

Y (ω) = wH(ω) X(ω) = YF (ω) + YN(ω).

When noise is present, we can write

Y (ω) = F (ω) + YN(ω),

where YN(ω) = wH(ω)N(ω) is the remaining noise
component.
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Optimization Criterion

In addition to satisfying the distortionless constraint, we
wish also to minimize this output variance, and thereby
minimize the influence of the noise.
To solve the constrained optimization problem, we can
apply the method of Lagrange multipliers.
To wit, we first define the “symmetric” objective function

F , wH(ω)ΣN(ω) w(ω)+λ[wH(ω)v(ks)−1]+λ∗[v(ks)
Hw−1],

(17)
where λ is a complex Lagrange multiplier, to incorporate
the constraint into the objective function.
Taking the complex gradient with respect to wH , equating
this gradient to zero, and solving yields

wH
mvdr(ω) = −λ vH(ks)Σ−1

N (ω).
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Minimum Variance Distortionless Response Beamformer

Applying now the distortionless constraint (16), we find

λ = −
[
vH(ks)Σ−1

N (ω) v(ks)
]−1

.

Thus, the optimal sensor weights are given by

wH
o (ω) = Λ(ω) vH(ks)Σ−1

N (ω) = wH
mvdr(ω), (18)

where
Λ(ω) ,

[
vH(ks)Σ−1

N (ω) v(ks)
]−1

. (19)
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MVDR Schematic

X(ω) Y(ω)vH(ω:ks)Λ(ω) Σ-1
N(ω)

The figure is a schematic of the MVDR beamformer.
The quantity Λ(ω) is equivalent to the spectral power of the
noise component present in Y (ω), as can be seen from

ΣYN (ω) = wH
mvdr(ω)ΣN(ω) wmvdr(ω) (20)

= vH(ks)Σ−1
N (ω)ΣN(ω)Σ−1

N (ω) v(ks) · Λ2(ω)

= Λ(ω). (21)
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Advantages of Subband Processing

The foregoing implies that the sensor weights for each
subband are designed independently.
In particular, the transformation into the subband domain
has the effect of a divide and conquer optimization
scheme.
A single optimization problem over MN free parameters,
where M is the number of subbands and N is the number
of sensors, is converted into M optimization problems,
each with N free parameters.
Each of the M optimization problems is solved
independently, which is a direct result of the statistical
independence of the subband samples.
A synthesis filter transforms the beamformed subband
samples back into the time domain.
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Array Gain of MVDR Beamformer

As wH
mvdr(ω) satisfies the distortionless constraint, we can write

ΣYF (ω) = ΣF (ω),

where ΣF (ω) is the power spectrum of the desired signal F (ω) at
the input of each sensor.

Hence, based on (21), the output SNR can be written as
ΣF (ω)/ΣYN (ω) = ΣF (ω)/Λ(ω).

If we assume the noise spectrum at the input of each sensor is
the same, then the input SNR is ΣF (ω)/ΣN(ω).

The array gain can then be expressed as

Amvdr(ω, ks) =
ΣF (ω)

Λ(ω)

/
ΣF (ω)

ΣN(ω)
=

ΣN(ω)

Λ(ω)
(22)

= ΣN(ω) vH(ks)Σ−1
N (ω) v(ks).
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Spatially Correlated and Uncorrelated Noise

Hence, the array gain can be expressed as

Amvdr(ω, ks) = vH(ks) ρ−1
N (ω) v(ks). (23)

If the noises at all sensors are spatially uncorrelated, then
ρN(ω) is the identity matrix and the MVDR beamformer
reduces to the DSB.
In this case, the array again is

Amvdr(ω, ks) = Adsb(ω, ks) = N. (24)

In all other cases,

Amvdr(ω, ks) > Adsb(ω, ks).
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MVDR Beamformer with Plane Wave Interference

Consider a desired signal with array manifold vector v(ks) and a
single plane-wave interfering signal with manifold vector v(k1).

In addition, there is uncorrelated sensor noise with power σ2
w.

In this case, the spatial spectral matrix ΣN(ω) is

ΣN(ω) = σ2
w I + M1(ω) v(k1) vH(k1), (25)

where M1(ω) is the spectrum of the interfering signal.

Applying the matrix inversion lemma to (25) provides

Σ−1
N =

1
σ2

w

[
I− M1

σ2
w + N M1

v1vH
1

]
, (26)

where ω and k have been suppressed, and v1 , v(k1).

The noise spectrum at each element of the array is then

ΣN = σ2
w + M1. (27)
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MVDR with Plane Wave Interference (cont’d.)

Substituting (26) into (18), we find

wH
mvdr =

Λ

σ2
w

vH
s

[
I− M1

σ2
w + N M1

v1vH
1

]
. (28)

The spatial correlation coefficient is by definition

ρs1 ,
vH

s v1

N
,= Bdsb(k1 : ks),

where Bdsb(k1 : ks) is the DSB pattern aimed at ks and
evaluated at k1.

With this definition (28) can be rewritten as

wH
mvdr =

Λ

σ2
w

[
vH

s − ρs1
NM1

σ2
w + NM1

vH
1

]
. (29)
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MVDR with Plane Wave Interference (cont’d.)

The normalizing coefficient (19) then reduces to

Λ =

{
1
σ2

w
N

[
1− NM1

σ2
w + NM1

|ρs1|2
]}−1

. (30)

The upper and lower branches of this MVDR beamformer are
conventional beamformers pointing at the desired signal and the
interference.

The necessity of the bottom branch is apparent from:

The path labeled N̂1(ω) is the minimum mean-square
estimate of the interference plus noise.
This noise estimate is scaled by ρs1 and subtracted from
the output of the DSB in the upper path, in order to remove
that portion of the noise and interference captured by
the upper path.
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Schematic: MVDR Beamformer with
Plane Wave Interference

+X(ω)
+

-
N1(ω)

Λ Y(ω)
vHS
N

vH1
N

NM1

σ +NM1w
2 ρs1

ˆ

General Case

High Interference-to-Noise Ratio

X(ω) Y(ω)vH(kS)σw2
ΛPI

Figure: Optimum MVDR beamformer in the presence of a single
interferer.
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MVDR with Plane Wave Interference (cont’d.)

Observe that in the case where NM1 � σ2
w, we may

rewrite (29) as

wH
mvdr =

Λ

σ2
w

vH
s P⊥I ,

where P⊥I = I− v1vH
1 is the projection matrix onto the

space orthogonal to the interference.
This case is shown schematically in Figure 1, which
indicates that the beamformer is placing a perfect null on
the interference.
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Limiting Case: Plane Wave Interference

Substituting (27) and (30) into (22), the array gain of the MVDR
beamformer in the presence of plane wave interference is

Amvdr = N(1 + σ2
I )

[
1 + Nσ2

I (1− |ρs1|2)
1 + Nσ2

I

]
,

where the interference-to-noise ratio (INR)

σ2
I ,

M1

σ2
w

is the ratio of spatially correlated to uncorrelated noise.

Beam patterns corresponding to several values of σ2
I and uI, the

direction cosine of the interference, are shown in Figure 2.

Observe that the suppression of the interference is not perfect
when either σ2

I is verly low, or uI is very small such that the
interference moves within the main lobe region of the
delay-and-sum beam pattern.
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MVDR Beam Patterns
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Figure: MVDR beam patterns for plane wave interference.
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Performance Curves

Substituting (25) and (27) into (14), the array gain of the DSB is

Adsb(ω, ks) =
N2(σ2

w + M1)

vH
s (σ2

wI + M1v1vH
1 )vs

=
N(1 + σ2

I )

1 + σ2
I N|ρs1|2

.

From Figure 3 several facts are evident:
1 When 1− |ρs1|2 approaches zero, the array gains of both

the DSB and MVDR beamformers drop to zero.
2 For moderate to high values of σ2

I and 1− |ρs1|2 > 0.2, the
MVDR beamformer has a higher array gain than the DSB.

3 The array gain of the MVDR beamformer increases with σ2
I .

4 For very low values of σ2
I , the array gain provided by both

beamformers approaches 10 dB regardless of 1− |ρs1|2.
This is to be expected given that the MVDR becomes a
DSB for ρN(ω) = I.

5 That the array gain for both beamformers should be
10 dB is evident from (24).
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Array Gains of MVDR and DSB
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Figure: Array gains for conventional and MVDR beamformers as a
function of (1− |ρs1|2) for a 10-element array. The curves are labeled
with the corresponding value of σ2

I .
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Postfilters

As we will see in this section, the performance of the
MVDR beamformer can be enhanced by applying a
frequency dependent weighting to the output of the
beamformer.
This has the effect of introducing a final filtering operation,
or a postfilter, on the beamformer output.
Let us again consider the same single plane-wave model
as in (2) and (1), and once more assume F (ω) and N(ω)
are uncorrelated.
The spatial spectral matrix of X(ω) can be expressed as

ΣX(ω) = ΣF (ω) v(ks) vH(ks) + ΣN(ω).

Let D(ω) denote the snapshot of the desired signal,
which is equivalent to the source snapshot F (ω).
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Mean-Square Error

We now define the matrix processor

D̂(ω) = wH(ω) X(ω).

The mean-square error (MSE) is defined as

ζ(w(ω)) , E
{∣∣D(ω)−wH(ω) X(ω)

∣∣2
}

= E
{

(D(ω)−wH(ω) X(ω))(D∗(ω)− XH(ω) w(ω))
}

.

In order to minimize the MSE, we take the complex gradient of ζ
with respect to w(ω) and equate the result to zero, to find

E
{

D(ω) XH(ω)
}
−wH(ω) E

{
X(ω)XH(ω)

}
= 0,

so that
ΣD XH (ω) = wH

mmse(ω)ΣX(ω).
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MMSE Solution

Hence, the MMSE solution is

wH
mmse(ω) = ΣD XH (ω)Σ−1

X (ω). (31)

From the signal model, and the assumption that noise and
signal are uncorrelated we find

ΣD XH (ω) = E{D(ω)D∗(ω)vH(ks)+D(ω) N(ω)} = ΣF (ω) vH(ks).

This implies that (31) can be specialized according to

wH
mmse(ω) = ΣF (ω) vH(ks)Σ−1

X (ω).

The spatial spectral matrix of the subband snapshot X can
be expressed as

ΣX(ω) = ΣF (ω) v(ks) vH(ks) + ΣN(ω).
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Applying the Matrix Inversion Lemma

By applying the matrix inversion with

A = ΣN(ω), B = v(ks), C = ΣF (ω), D = vH(ks),

whereupon we find,

Σ−1
X = Σ−1

N −ΣF Σ−1
N v

(
1 + ΣF vH Σ−1

N v
)−1

vHΣ−1
N . (32)

Defining Λ(ω) as in (19) and substituting into (32), we learn

wH
mmse(ω) =

ΣF (ω)

ΣF (ω) + Λ(ω)
· Λ(ω) vH(ks)Σ−1

N (ω). (33)
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Relation between MVDR and MMSE Processors

Frome (18) and (33), the MMSE beamformer is clearly a
MVDR beamformer followed by a frequency-dependent
scalar multiplicative factor.
The multiplicative factor is equivalent to a Wiener postfilter.
Recall now that ΣF (ω) is the power spectral density of the
signal at the input of the beamformer, which, due to the
distortionless constraint (16), is also the power spectral
density of the signal at the output of the MVDR
beamformer.
The MMSE beamformer is shown in the figure.

X(ω)
Y(ω) ΣF (ω)

ΣF (ω)+Λ(ω)vH(ω:ks)Λ(ω) F(ω)Σ-1
N(ω)

MVDR Beamformer Wiener Filter
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Designing Practical MMSE Processors

While (33) is optimal in the mean square sense, it is not
sufficient to design a MMSE beamformer.
This follows from the fact that the spectra of both the
desired signal D(ω) and disturbance Λ(ω) at the output of
the beamformer must be known.
In practice they can only be estimated, and forming this
estimate is the art in Wiener postfilter design.
One of the earliest and best-known proposals for
estimating these quantities was by Zelinski (1988).
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Summary

In this lecture, we considered the conventional adaptive
beamforming algorithms.
These algorithms are based on the notion of minimizing
the output power of the array subject to a distortionless
constraint.
We have compared the performance of the conventional
adaptive algorithms to the simple delay-and-sum design.
We also discussed how beamforming performance could
be improved through the addition of a postfilter at the
output of the beamformer.


