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Introduction

Ten years ago, the EDA industry faced a crippling divergence in timing between RTL synthesis and placement
caused by rapidly rising wire capacitances relative to gate capacitances. Without some reasonable level of
placement knowledge to give credible estimates of wire length it was becoming impossible to measure design
timing with any accuracy during RTL synthesis. At this time, placement tools were not directly aware of
timing and focused instead on metrics indirectly related to timing such as total wire length. As chip designs
scaled to “deep sub-micron” geometries (180nm and 130nm), the change in timing around placement became
so significant and unpredictable that even manual iterations between synthesis and placement no longer
converged. The solution was to re-invent placement, making it both directly aware of timing and also weaving
in many of the logic optimization techniques exploited during RTL synthesis, for example gate sizing and net
buffering. This process was not easy, and ultimately saw a major turnover in the backend design tool
landscape as a new generation of “physical optimization” tools were developed, released and proliferated
throughout the chip design community.

Today timing is diverging once again, but for a different set of reasons (on-chip variation, low power, and
design complexity) and at a different point in the design flow (CTS). While this divergence has so far received
little media attention, this paper shows that the divergence is severe - so much so that we believe it is having
a critical impact on the economic viability of migration to the 32nm process node. Clock concurrent
optimization is a revolutionary new approach to timing optimization which comprehensively addresses this
divergence by merging physical optimization into CTS and simultaneously optimizing both clock delays and
logic delays using a single unified cost metric.

This paper begins with a brief overview of some basic concepts in clock based design, and a brief overview of
the traditional role of CTS within digital design flows. It then explains why and by how much design timing is
diverging around CTS. The concept of clock concurrent optimization is then introduced and its key defining
features outlined. The paper concludes with a summary of the key benefits of clock concurrent optimization
and an explanation of why it comprehensively addresses the divergence in design timing around CTS.

A Brief Overview of Clock-Based Design

Setup and Hold Constraints

Clocking was one of the great innovations which enabled the semiconductor industry to progress to where it
is today. Clocking elegantly quantizes time, enabling transistors to be abstracted to sequential state machines
and from state machines into a simple and intuitive programming paradigm for chip design, the register
transfer language (RTL).

The fundamental assumption made by sequential state machines, and hence by any RTL specification, is the
assumption of sequential execution, i.e. that all parts of a state machine stay “in-step” with respect to each

© 2009-2010 Azuro, Inc. 1



<9 azuro

other. This assumption translates to a set of constraints on delay which must be met by any clock-based
design if it is to function correctly. These constraints split into two classes:

o Constraints which ensure that every flip-flop always makes a forward step from state n to state n+1
whenever the clock ticks. These constraints are typically referred to as setup constraints.

o  Constraints which ensure that no flip-flop ever makes more than one forward step from state n to state
n+2 on a single clock tick. These constraints are typically referred to as hold constraints.

i<-T->i

Setup Constraint: L+ Gnax<T+C
Hold Constraint: L + Gpin>C
Figure 1: Setup and hold constraints in clock based design.

One setup and one hold constraint are required for every pair of flip-flops in a design which have at least one
functional logic path between them. Figure 1 summarizes the setup and hold constraints for a pair of flip-
flops, A and B, triggered by a clock with period T. The clock delay to A is denoted by L for “launching” clock
and the clock delay to B is denoted by C for “capturing” clock. Gmin, Gmax denote the minimum and maximum
logic path delays between the two flip-flops. For simplicity, and because it makes no difference to the
arguments we make in this paper, we have assumed the setup time, hold time, and clock-to-Q delay for the
flip-flops are all zero.

The setup constraint is read as follows: the worst-case time taken for a clock tick to reach A, and propagate a
new value to the input of B, must be less than the time taken for the next clock tick to reach B. If this isn’t true
then it is possible that B be clocked when its input does not yet hold the correct next-state value.

The hold constraint is read as follows: the best-case time taken for a clock tick to reach A, and propagate a
new value to the input of B, must be greater than the time taken for that same clock tick to reach B. If this isn’t
true then it is possible that a next state value on the input to A may propagate all the way through to the
output of B in one clock tick, in essence causing B to skip erroneously from state n to state n+2 in one clock
cycle.

Ideal and Propagated Clocks Timing

In the context of modern digital chip design flows, the setup and hold constraints outlined above are referred
to as a propagated clocks model of timing since the constraints start from the root of the clock and include
the time taken for the clock edge to propagate through the clock tree to each flip-flop. The propagated clocks
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model of timing is the definitive criteria for correct chip function, and is the one used by timing sign-off tools
in design flows.

An ideal clocks model of timing simplifies the propagated clocks model of timing by assuming that the launch
and capture clock paths have the same delay, i.e. that L=C. In this case the setup and hold constraints simplify
significantly:

Propagated Clocks Ideal Clocks
Setup: L+ Gmax<T+C (assume L =C) Gmax < T
Hold: L+ Guin>C (assume L =C) Gmin > 0

Since Gmin>0 is to a first approximation always true, assuming that L=C simplifies the entire problem of
ensuring that a clock based design will function correctly to Gmax < T. In this universe there is no need to
worry about clock delays or about minimum logic delays. All that matters is making sure that the maximum
logic path delay in the design, typically referred to as the “critical path”, is faster than the clock period. In
essence, clocks have been canceled out of the timing optimization problem.

The concept of ideal clocking is so dramatic and powerful as to have enabled an entire ecosystem of
“frontend” engineers and design tools living in a world of ideal clocks, and the origins of ideal clocking are so
deep rooted in the history books of the semiconductor industry that clock based design is itself often referred
to as “synchronous design” even though there is nothing fundamentally synchronous about clock based
design itself!

Clock Skew and Clock Tree Synthesis

If chip design begins in a world where clocks are ideal but ends in a world where clocks are propagated it
follows that at some point in the design flow a transition must be made between these two worlds. This
transition happens at the clock tree synthesis (CTS) step in the flow where clocks are physically built and
inserted into a design: see Figure 2.

Since ideal clocks assumes L=C for all setup and hold constraints it follows that the traditional purpose of CTS
is to build clocks such that L=C. If this can be achieved then propagated clocks timing will match ideal clocks
timing and the design flow will be “convergent”.

If a clock tree has n sinks and a set of paths P[1] to P[n] from its source to each sink then the “skew” of that
clock is defined as the difference between the shortest and longest of these paths: see Figure 3.

Mainstream CTS tools are architected primarily to build highly efficient “balanced” buffer trees to a very large
number of sinks with a small skew. Twenty years ago, the motivation and benefits of building balanced clocks
was clear: clock skew was an upper bound on the worst difference between L and C for any pair of flip-flops,
i.e. an upper bound on |L-C| for any possible setup or hold constraint which could apply to a design. If a small
skew could be achieved relative to the clock period then a high degree of similarity between ideal and
propagated clocks timing was guaranteed. But it is important to remember that clock skew and the worst
difference between L and C are not the same thing and that for a modern SoC design at nanometer process
nodes it is entirely possible (in fact very common) for |L-C| to be significantly greater than the clock skew.
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Figure 2: Traditional balanced clocks design flow
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Figure 3: Skew of a Clock Tree
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The distinction between clock skew and |L-C| is a critical foundation stone for this paper. Clock skew is a
concept defined in terms of worst differences in delay between source-to-sink paths in buffer trees. L and C
are delay variables in the setup and hold constraints of a propagated clocks model of timing and are not really
different in this context from the other delay variables, Gmin and Gmax. The somewhat slippery nature of this
distinction and the ease with which a discussion can begin in the context of timing and then migrate
mistakenly into a context of skew is one of the primary reasons why we believe the divergence in design
timing around CTS has for so long gone relatively unnoticed by the chip design and EDA communities.

The purpose of this paper is not to argue that tight skews cannot be achieved for modern nanometer designs.
Nor is it to argue that the skew minimization techniques used by mainstream CTS tools no longer work for
modern nanometer designs. The purpose of this paper is to argue that the ability of tight clock skews to bind
ideal clock timing to propagated clocks timing is broken - we estimate it broke in a commercial sense around
the 65nm node. No tweak or refinement to the definition of skew can fix this. The only solution is to give up
entirely on the concept of skew and focus CTS instead on the fundamental propagated clocks timing
constraints that will matter post-CTS in the flow. But in this context there is no longer any material distinction
between clock paths (L and C) and logic paths (Gmin and Gmax). Constructively exploiting this observation is the
inspiration behind the clock concurrent approach optimization.

The Clock Timing Gap

There is no question that clock based design, ideal clocks timing, the use of RTL to specify a chip, and the
concepts of frontend vs. backend design are all vital foundation stones for the continued success of the
semiconductor industry - their collective ability to enable design automation and streamline engineering
productivity would almost certainly be impossible to achieve by any other means.

However, the traditional role of CTS to build buffer trees with tight skew only makes sense if achieving these
tight skews reasonably binds ideal clocks timing to propagated clocks timing. If this is not the case then
timing decisions made using ideal clocks have only limited value. Accommodating a change in timing
landscape after CTS requires either accepting degradation in chip speed or accepting delay in time to market
due to increased iterations back to RTL synthesis and physical optimization. If it can be argued that the
divergence between ideal clocks and propagated clocks is both significant and fundamental, i.e. one where
there could never be any formula or metric which could bind them, then the only solution becomes to rethink
CTS as a timing optimization step in the flow which directly targets propagated clocks timing as its objective.

In this section we attempt to define and measure the magnitude of the gap between ideal and propagated
clocks timing. For a particular timing constraint i with launch clock delay L[i], capture clock delay C[i],
minimum and maximum logic path delays G[i]min and G[i]max the difference between ideal and propagated
clocks timing for that constraint can easily be seen to be the magnitude of C[i]-L[i]. For example if i were a
setup constraint then we have:

Propagated clocks timing: L[i] + G[i]max < T + C[i]
= G[i]max < T - (L[i]-C[i])

Ideal clocks timing: G[i]max<T
Difference = LJ[i]-C[i]

A similar reasoning gives the opposite, L[i]-C[i], for hold constraints. We define the clock timing gap for a
particular set of timing constraints (either setup or hold or a mixture of both) as:

Clock Timing Gap = ¢ (w)
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Our choice of standard deviation, c, on L[i] - C[i] rather than average or worst |L[i] - C[i]| is important: we do
not want to measure a large clock timing gap if the delta between ideal and propagated clocks timing is
systematic or applies only to a very small number of timing constraints. If this were the case then the gap
would not be a fundamental gap and could easily be worked around by applying a global safety margin (aka
global uncertainty) to the ideal clocks timing model or by manually applying a few individual sink pin offsets
to CTS. What we want to measure are true unsystematic divergences between ideal and propagated clocks
timing which apply to a significant proportion of the timing constraints. These divergences will never be
resolvable with a small amount of manual effort or with any generalizations to the concept of skew.

We divide L[i]-C[i] by the clock period T to normalize our metric so that it is expressed as a percentage of the
clock period. This enables us to meaningfully compare the average clock timing gap across a large number of
designs across a range of clock frequencies and process nodes.

Figure 4 below summarizes the average clock timing gap for the top 10% worst violated setup constraints
across a portfolio of over 60 real world commercial chip designs from 180nm to 40/45nm and from 200k to
1.26M placeable instances. It shows that while at 180nm the clock timing gap is small at around 7% of the
clock period, at 40/45nm the gap has widened to around 50% of the clock period. A gap of this magnitude is
sufficient to completely transform the timing landscape of a design beyond recognition between before and
after CTS. Since our measure is one of standard deviation and not average or worst difference this gap truly is
a fundamental divergence which can only be addressed by a fundamental rethink of the role of CTS in the
design flow. Building clocks to meet a tight skew target no longer achieves its purpose nor will any other
indirect metric ever bind ideal clocks timing to propagated clocks timing since the divergence is unsystematic
and large for a significant number of worst violating timing endpoints. The only solution is to directly target
the propagated clocks timing constraints and treat the launch and capture clock paths (L and C) as
optimization variables with the same significance and similar degrees of freedom to logic path variables (Gmin
and Gmax). This is what clock concurrent optimization is all about.

60%
50% |
40%
30%

20%

Average Clock Timing Gap for
10% worst violated setup constraints

10%

0%
180nm 130nm 65nm 40/45nm

Process Node

Figure 4: Clock Timing Gap across a portfolio of over 60 commercial designs
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Explaining the Clock Timing Gap

There are three key underlying industry trends which are causing ideal and propagated clocks timing to
diverge, and it is the relatively simultaneous onset of all three trends that has caused the clock timing gap to
open up so dramatically at the 65nm node and below. These three trends are on-chip variation, clock gating,
and clock complexity.

On Chip Variation

On chip variation (OCV) is a manufacturing driven phenomenon. Two wires or two transistors which are
designed to be identical almost certainly won’t be once printed in silicon due to the lithographic challenges of
printing features smaller than the wavelength of light used to draw them. As a result the performance of two
supposedly identical transistors can differ by an unpredictable amount. This problem is a significant and
growing one, and at 45nm these random manufacturing variations can impact logic path delays by up to 20%.

0OCV is particularly relevant for clock paths since the length of clock paths (i.e. the insertion delay of clock
trees) is rising exponentially with respect to clock periods. This is in part because the number of flip-flops in a
design continues to rise exponentially but also because resistances are rising so fast with successive process
shrinks that buffering across long distances, as is typically necessary in the clock, requires more and more
buffering per unit length. At 45nm it is not uncommon to see 3-5 times the clock period worth of delay in
launch and capture clock paths. Even if the impact of OCV is only 10% of path delay this still amounts to a
potential change in timing pictures of 30-50% of the clock period between ideal and propagated clock
models. The only reason why OCV has not already ground chip design completely to a halt is the fact that it
can be ignored on the common portion of the launch and capture clock paths using a technique known as
common path pessimism removal (CPPR) or clock reconvergence pessimism removal (CRPR): see Figure 5.

clock

Setup: PR+1.1(RA+ABm.x) < PR+0.9(RB) Setup: PQ+1.1(QB+BCmax) < PQ+0.9(QC)
Hold: PR+0.9(RA+ABm.x) > PR+1.1(RB) Hold: PQ+0.9(QB+BCnmax) > PQ+1.1(QC)
Figure 5: Propagated clocks timing with +10% OCV derates and CPPR

CPPR is highly constraint dependent, impacting one pair of flip-flops completely differently from another
since it depends crucially on where in the clock tree the launch and capture clock paths converge for a
particular pair of flip-flops.
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A traditional measure of clock skew ignores OCV, so even if clock skew is zero, once OCV derates and CPPR
are applied to a design the magnitude of L - C can be large for a significant number of logic paths. Also, since
CPPR makes the impact of OCV on launch and capture clock paths constraint dependent, there is no

meaningful way to predict or model this impact prior to CTS. In this sense OCV modeling, most specifically the
use of CPPR, is a direct and fundamental contributor to the clock timing gap.

Clock Gating

Power has for many modern chip design teams become as significant an economic driver as chip speed and
area, and the clock network is often the biggest single source of dynamic power dissipation in a design. It has
become standard practice for almost all modern designs to manage clock power aggressively through the
extensive use of clock gating to shut down the clock to portions of a design which do need to be clocked in a
particular clock cycle. Clock gating can be at a very high level, for example shutting down the entire
applications processor on a mobile phone when it is not needed, or at a very fine grained level, for example

shutting down the top 8-bits of a 16-bit counter when they are not counting. Modern systems on a chip can
contain tens of thousands of clock gating elements.

From a timing perspective, a clock gate is just like a flip-flop, bringing with it its own setup and hold
constraint. But, unlike a flip-flop, clock gates exist inside a clock tree and not at its sinks: see Figure 6. In an
ideal clocks timing model a clock gate typically looks exactly the same as a flip-flop since the clock arrives
instantaneously everywhere (i.e. L=C=0), but in a propagated clocks timing model there can be a massive

difference between the launch and capture clock path delays for a clock gate, especially for architectural clock
gates high up in the clock tree.
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Setup Constraint: L+ Guax<T+C
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Hold Constraint: L + G, > C

Figure 6: clock gate enable timing using a propagated clocks model of timing

Every clock gate added to a design adds to the clock timing gap on that design, and the more aggressive the
design team is in managing power, the more this gap is felt. This is because the most common workaround for
the pain caused by clock gating timing diverging post-CTS is to force all clock gates to the bottom of the clock
tree (by “cloning” them) so that the capture clock path delay is as close as possible to the launching clock

delay thereby restoring convergence between ideal and propagated clocks timing on clock gates. This is
however, the worst possible strategy for saving power.
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Without insisting that all clock gates lie at the very bottom of the clock tree there is no meaningful way to
predict the relationship between L and C for clock gates, and therefore clock gating is also a direct and
fundamental contributor to the clock timing gap.

Clock Complexity

Modern system-on-a-chip (SoC) designs are big - tens of millions of gates. They also exploit extensive IP
reuse, where pseudo-generic modules such as ARM cores, USB interfaces, PCI interfaces, memory controllers,
DSPs, baseband modems, and graphics processors are instantiated on a single die, configured to run in
particular modes, and stitched together to deliver some form of integrated system capability.

The clock network in these SoCs is not simple. In fact it has become phenomenally complex - often well over a
hundred interlinked clock signals that can be branched and merged thousands of times. Part of the
complexity is simply a result of stitching together the many IP blocks, but much of the complexity is also
inherent to each of these IP blocks: the same low-power imperatives which drive clock gating are also driving
the deployment of a wide variety of clocks and clocking schemes at a variety of frequencies and voltages to
further control and manage clock activity. Power consumption during built-in system test and time on the
tester during production further impact clock complexity as scan chains continue to be sliced and diced and
ever more intricate clocking schemes are used to capture and shift quickly and power efficiently.

The end result is a dense spaghetti network of clock muxes, clock xors, and clock generators, entwined with
clock gating elements from the highest levels in the clock tree where they shut down entire sub-chips, to the
lowest levels in the clock tree, where they may shut down only a handful of flip-flops, see Figure 7.
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M 1,000 FFs
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Figure 7: Clock network on a modern nanometer SoC

In this world of vast clock complexity, the definition of clock skew is itself non-obvious: rather than a tree or
set of trees we have a network with hundreds of sources and hundreds of thousands of sinks. In such a world
itis easy, and indeed even common, to find oneself constructing scenarios where making L=C for all flip-flops
is mathematically impossible. And even in the cases where it is theoretically possible to achieve this objective
the sheer size of the clock delays that would be required to achieve this would be so large, e.g. 10+ times the
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clock period, as to make timing impossible to meet even with the tiniest of OCV margins in place. The
resulting dynamic power consumption and IR-drop would also almost certainly render the entire design
useless.

The only way to implement designs of this complexity using a traditional design flow is to spend months of
manual effort carefully crafting a complex set of overlapping balancing constraints, typically referred to as
“skew groups”, which require that CTS balance certain sets of clock paths with other sets of clock paths. It can
take hundreds of such skew groups to be carefully crafted before any reasonable propagated clocks timing
can be achieved and such timing is never in practice achieved by ensuring that L=C for all pairs of flip-flops.

In essence, the impact of clock complexity on the clock timing gap has already broken the traditional role of
CTS in design flows, and design teams are already manually working around it at great cost by carefully
crafting highly complex sets of balancing constraints which are designed to achieve acceptable propagated
clocks timing and not L=C for all flip-flops.

Detailed Breakdown of the Clock Timing Gap

Figure 7 below shows the same clock timing gap graph as was shown in Figure 3 but further breaks out the
relative contributions of OCV, clock gating and inter-clock timing to this gap. The figure makes it clear that
each of the three trends contributes materially to the clock timing gap, and also highlights that clock
complexity has the most significant impact on this gap. The graph also highlights our observation that clock
skew, as traditionally defined only between registers on a single clock tree, is not broken. The clock timing
gap restricted only to setup and hold constraints between pairs of flip-flops in the same clock tree is at most
10% of the clock period, even at 40/45nm. But there are other factors ignored by the concept of clock skew
which are progressively eroding its ability to bind ideal to propagated clocks timing in the design flow.
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Figure 7: Breakdown of trends contributing to the Clock Timing Gap

The message is simple: the role of CTS in the design flow must change. It can no longer be about minimizing
clock skews; it must somehow be about directly transitioning a design from ideal to propagated clocks timing
and using every possible trick there is to counteract the surprises that occur as the true propagated clocks
timing picture emerges, including clock gates, inter-clock paths and OCV margins.
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Clock Concurrent Optimization

Before running CTS in the design flow there are no real launch and capture clock paths and timing
optimization focuses exclusively on the slowest logic path, Gmayx, using an ideal clocks model of timing.
Provided clocks can be implemented such that the launch and capture clock paths are almost the same for all
setup and hold constraints, L=C, this focus on Gnax makes sense. But, as this paper has shown, OCV, clock
gating, and clock complexity have made balancing L and C, or indeed of determining any systematic
relationship between L and C, an impossible goal.

The only meaningful goal for clock construction must therefore be to directly target the propagated clocks
timing constraints, selecting L and C specifically for the purpose of delivering the best possible propagated
clocks timing picture post-CTS. But the “best possible” L and C depend on the values of Gmaxand Gmin S0 we
have a chicken-and-egg problem: which comes first? Do we pick Gmax and Gmin then set L and C, or vice-versa?

Clock concurrent optimization, or CC-Opt for short, is the term we use to describe a new class of timing
optimization tools that merge physical optimization with CTS and that directly control all four variables in the
propagated clocks timing constraint equations (L, C, Gmin, and Gmax) at the same time.

Clock concurrent optimization (CC-Opt) merges physical optimization with CTS and directly
controls all four variables in the propagated clocks timing constraint equations
(L, C, Gmin, and Gmax) at the same time.

Figure 8 visualizes the conceptual distinction between a traditional approach to timing optimization and a
clock concurrent approach to timing optimization. We use the term “clock concurrent design” or “clock
concurrent flow” to refer to any design methodology or design flow employing the use of clock concurrent
optimization.

clock i<-T->: clock i-T->!

-
<--

Gmax < T - Skew L+ Gpax < T+ C
variable fixed fixed variable variable fixed variable
[ Traditional Physical Optimization] [ Clock Concurrent Optimization ]

Figure 8: Illustration of the difference between Physical Optimization and CC-Opt
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Logic Chains

Since CC-Opt treats both clock delays and logic delays as flexible parameters, the maximum possible speed
that a chip can be clocked at is no longer limited by the slowest logic path in a design. CC-Opt allows the
capture clock path to be longer than the launch clock path, in which case the logic path may have more than
the clock period to compute its result. But this extra time is not a free lunch: if C is bigger than L then time has
been borrowed either from either the preceding or subsequent pipeline stages: see Figure 9.

Such time borrowing is iterative across multiple logic stages: if time can be borrowed from logic stage n+1 to
logic stage n, then time can also be borrowed from logic stage n+2 to logic stage n+1 and then again from logic
stage n+1 to logic stage n, and so on both forwards and backwards from logic stage n, see Figure 10. However,
the time borrowing is not unlimited, and must stop either when the chain of logic stages loops back on itself
or when it reaches an IO to the chip, see Figure 11.

clock i<-T->¢

Figure 9: Time borrowing

clock i<-T->:

Figure 10: Multi-stage time borrowing
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Figure 11: Different types of logic chain

In a world where launch and capture clock paths are flexible optimization parameters, it is these chains of
logic functions which most influence the maximum possible clock speed: a chain with n logic stages has at
most n clock periods of total time available irrespective of the clock delays to each register in the chain.
Provided the worst total logic delay through the entire chain, Xi(G[i]max), is less than nT, it will be possible to
come up with a set of clock arrival times for each register on the chain that meets propagated clocks setup
constraints. We refer to this relationship as a setup chain constraint:

Setup chain constraint: }\_; G[i]j.x < nT

Only in the highly unusual situation where the most efficient distribution of delay along the chain is one
where each stage has exactly the same delay will the optimum clock network be a balanced clock network.
The traditional assumption of forcing each stage on the loop to have exactly the same amount of time by
balancing clocks is fundamentally unnecessary - and furthermore, as this paper has shown, it is also
impossible to achieve on modern chips due to clock complexity, on-chip-variation, and clock gating.

Setup Slack and Sequential Slack

The slowest logic function in a design is typically determined by computing the “setup slack” for each gate in a
design and finding the logic path which comprises those gates with the lowest slack value. If we use the term
Paths[g] to mean the set of all logic paths which pass through a logic gate g, and for each path p in Paths[g] we
use the terms L[p], C[p], and G[p] to refer to the launch clock delay, capture clock delay, and logic delay for
path p respectively, then:

Setup Constraint for a path p: L[p] + G[p] < T + C[p]
Setup Slack for gate g: min,,;, paths[g]((T + Clp]) - (L[p] + G[p]))

Setup slack is in essence the worst case margin by which all setup constraints which pass through g have been
met. If the setup slack at a gate is negative then a setup constraint must have been violated, and the
magnitude of the negativity denotes the amount by which that setup constraint has been violated. The
sequence of gates with the smallest setup slacks denotes the logic path which is most limiting chip speed and
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is typically referred to as the worst negative path, worst violated path, or critical path. The slack value of the
gates on the critical path is typically referred to as the Worst Negative Slack (WNS).

It is possible to generalize the concept setup slack to setup chain constraints, giving the concept of sequential
slack [Pan98,Cong00], where the term “sequential” is used to emphasize the notion that these slacks can cross
register boundaries. If we use the term Chains[g] to mean the set of all logic chains passing through a gate g,
and for each chain c we use the term n[c] to refer to the number of logic stages in chain c and G[c,i] to refer to
the worst logic delay at stage i in chain c, then:

Setup Chain Constraint for a chain c: Z?z[cl] G[c, i]max < n[c]T
Sequential slack for gate g: min, i, chainsg] (n[c]T - Z?z[cl] Glc, i]max)

It is also helpful to normalize the sequential slack relative to the length of the chain by dividing by n[c] so that
the margin can be thought of as an average margin per logic stage which is therefore independent of chain
length. It also means that sequential slacks are reported on the same scale as traditional setup slacks - if the
normalized sequential slack is 100ps it means that the average setup slack along that chain will also be 100ps,
irrespective of the clock arrival times at each register on the chain.

Normalized Sequential slack for gate g: min ;; chainsig] (T - Z:’:[Cl] Glc, i]max /n[c])

If the smallest sequential slack in a design is negative, then the amount by which the sequential slack is
negative, referred to as the Worst Negative Sequential Slack (WNSS), denotes how far off the circuit is from
achieving its desired clock speed. We use the term critical chain to describe the logic chain with the WNSS,
although the term critical cycle is also used in the literature [Hurst04] to describe the critical chain. We prefer
chain to cycle since it emphasizes that the sequence of gates with the WNSS need not form a loop and may
equally, and indeed often does, terminate in a design IO.

If sequential slack is negative then traditional setup slacks will never be positive irrelevant of how the clocks
are implemented. If sequential slack is positive then it will be possible to build a clock network which delivers
clocks to each flip-flop such that traditional setup slacks will also be positive - although this network almost
certainly will not be a balanced network. In this sense, using CC-Opt, the maximum speed at which a chip can
be clocked is limited by the critical chain and not the critical path. This denotes a fundamental new degree of
freedom which can be exploited by CC-Opt above and beyond physical optimization to make chips faster or
smaller or lower power.

Using CC-Opt the maximum possible clock speed is limited by the critical chain not the
critical path.

It is however important to note that if sequential slacks are positive this does not imply that setup slacks can
also be made positive: firstly, once clocks are built the sequential slacks themselves will change due to OCV,
clock gating, and inter-clock timing, and it is entirely possible that this change will make the sequential slacks
negative again. Secondly, the clock arrival times necessary to achieve positive setup slacks may not be
achievable with a feasibly sized clock tree in terms of area and power.

Sequential Optimization and Useful Skew
Design optimization methods which exploit sequential slacks are usually termed sequential optimization
methods. These broadly fall into two camps: retiming approaches, which physically move logic across register
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boundaries, and clock scheduling approaches, which intelligently apply delays to the clock tree to improve
setup slacks. Retiming was introduced over twenty years ago [Leiserson84, Leiserson91], but automatic
retiming approaches are flow-invasive because of their impact on formal verification and testability, and have
not gained widespread acceptance. Scheduling approaches have also been around for almost twenty years
[Fishburn90], and are more applicable in today’s flows.

Academic papers on clock scheduling tend to split the problem into schedule calculation [e.g. Kourtev99b,
Ravindran03] and schedule implementation [e.g. Kourtev99, Xi97], although some papers [such as Held03]
tackle both halves of the problem separately in the same paper. Commercial EDA tools exploiting clock
scheduling typically favor more robust and direct algorithms which incrementally add buffers to an already
balanced clock tree to borrow time from positive-slack stages to adjacent negative-slack logic stages without
ever pre-computing a desired schedule. Although the term useful skew was originally applied to the two part
calculate-then-implement approach [Xi97, Xi99], it is generally used today to mean any CTS approach that
results in an unbalanced tree for timing reasons, even if the approach used doesn’t ever explicitly calculate a
desired clock schedule. In any case, the key feature in common is that timing ultimately drives the clock
arrival times at registers and not a set of CTS balancing constraints.

The best way to think about how CTS can be generalized to be driven by timing and not by a set of balancing
constraints is to think of each flip-flop as having four constraints on the arrival time of its clock which are a
simple re-arrangement of the propagated clocks timing constraints on its D-pin and on its Q-pin: see Figure
12. These four constraints constrain the permissible arrival time to be within a window which depends on the
arrival times of flops in the logical fan-in and fan-out.

i<-T->:
Hold lock Setup
P[i-1] + Gli-1]min > P[il b P[] < P[i+1] - Glilmac+ T
P[i-1] ol T.. P[i+1]

<-----_L

~\\G[i'l]max—/ \~‘~~G[i]max’ i
Setup Hold
P[i-1] + G[i-1]ma— T < P[i] P[i] > P[i+1] - G[i]min

max((P[i-1] + G[i-1]max = T), (P[i+1] - G[i]min)) < P[i] < min((P[i+1] - G[i]max + T), (P[i-1] + G[i-1]min))
Figure 12: Timing driven clock arrival time windows

The dependency on the neighboring flops makes it easy to see that these clock arrival time windows are
globally intertwined. If a clock network can be built which delivers the clock to all flip-flops within their
permissible arrival time windows then setup and hold time constraints will be met. This concept of windows
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can also easily be generalized to include OCV derates and CPPR, and also can be extended to apply to other
timing endpoints such as clock gates, clock muxes, and clock generator blocks. It can also be applied to
internal nodes in the clock tree by a simple intersection of the windows of sub-nodes.

Although the concept of windowing sounds very powerful, it has one key limitation which we alluded to in the
previous section: it is isolated from the physical optimization of logic paths. Separating the steps of
optimizing the logic and building the clock tree causes two key problems on real world commercial designs.

The first is the clock timing gap, which as we have shown requires that the desired schedule be based on a
true propagated clocks model of timing in order to properly account for OCV, inter-clock paths and clock gate
enable timings. If schedule calculation happens before clocks are built then it cannot be based on a
propagated clocks model of timing!

The second problem is that clocks are not free. They cost area and power, and any increase in insertion delay
causes more setup and hold timing degradation due to OCV on clock paths. While positive sequential slacks
imply that a clock network can theoretically be built to make traditional setup slacks positive, this does not
mean that such a network would in practice have acceptable area and power, and nor does it mean that setup
slacks could be met if OCV derates are being applied to clock paths as well as logic paths. In fact, when OCV
derates are considered, it is entirely possible to get into a vicious spiral of increasing insertion delays causing
increasingly tight windows, which cause further increases in insertion delay in order to meet the windows,
culminating in the situation where it is impossible to make setup slacks positive.

CC-Opt differentiates itself from traditional approaches to useful skew by bringing both clock scheduling and
physical optimization together under a unified architecture and basing all decisions on a true propagated
clocks model of timing, including inter-clock paths, OCV and clock gate timing. CC-Opt treats both clocks and
logic as equally important classes of citizen and understands that in practice either can be the limiting factor
on achievable chip speed. CC-Opt must somehow enter the propagated clocks world as soon as possible and
then globally optimize both the clock and logic delays according to some coherent optimization objective
which can be bounded by either logic considerations or clock considerations.

The close marriage of physical optimization and clock construction, together with knowledge of the side-
effects of various decisions in each domain, is the most difficult component of the CC-Opt problem to solve
well. But it is also the key enabler for mainstream commercial adoption of CC-Opt. The relaxation of the
requirement to balance clocks unleashes significant freedom, but this freedom is commercially useless if it is
not exploited wisely and in the context of a full propagated clocks model of timing. Key signs of the failure to
exploit this freedom properly are clock trees that are too large, insertion delays that are too long, and
significant hold timing problems which result in an unreasonable increase in design area once hold fix buffers
have been inserted.

CC-Opt’s decisions are always based on a true propagated clocks measure of timing
including clock gates, inter-clock paths, OCV derates, and CPPR.

CC-Opt will never close timing at the expense of creating an unreasonably large clock
network or an unreasonable number of hold time violations.

Clock Concurrent Design Flow
CC-Opt is a replacement for the traditional CTS and post-CTS optimization design flow steps, see Figure 13.
What is done before clock concurrent optimization and what is done after remain the same. There is no
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change in timing sign-off or in formal verification or in gate level simulation. No special data structures or file
formats are needed, and complex CTS configuration scripts become redundant as there is no longer any need
to specify any balancing constraints. There is a potential impact on the magnitude of scan chain hold
violations but this can easily be managed by enhancing scan chain stitching algorithms to directly consider
hold slacks and not just scan chain wire length. For example, Azuro’s Rubix™ CC-Opt tool already includes

such a scan chain re-stitching capability.

Traditional Design Flow

Clock Concurrent Design Flow

RTL RTL
I |
‘ Synthesis | Synthesis
I | Ideal Clocks
Ideal Clocks ‘ Floorplan | Floorplan ‘ Timing
Timing I I
‘ Initial Placement | Initial Placement ‘
| |
‘ Physical Optimization ‘ Physical Optimization |
‘ Clock Tree Synthesis
I Clock Concurrent
Optimization
‘ Post-CTS Optimization
‘ I I Propagated
Routing | Routing ‘
Propagated I I C.loc'ks
Clocks Timing
S ‘ Post-Route Optimization | Post-Route Optimization ‘
Timing I I
‘ Signoff Verification | Signoff Verification ‘
v v
Final Layout Final Layout
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Figure 13: Clock Concurrent Design Flow
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Key Benefits of Clock Concurrent Optimization
This section overviews the key benefits that CC-Opt can bring to the digital chip design community.

1. Increased chip speed or reduced chip area and power

Using CC-Opt the maximum possible clock speed is limited by the critical chain and not the critical path in a
design. This is a fundamental new degree of freedom to help close timing above and beyond traditional design
flows. If the desired chip speed is already achievable without CC-Opt then this same additional degree of
freedom can be exploited to reduce chip area or power. At 65nm and below the achievable increases in clock
speed can be as much as 20%.

2. Reduced IR-drop

Since CC-Opt does not balance clocks the peak current drawn by the clock network is significantly reduced. In
fact it is entirely feasible to extend CC-Opt to directly consider peak current (or some reasonable estimate of
peak current) as an optimization parameter and specifically skew clocks and adjust logic path delays to
ensure that peak current is controlled to be within a pre-specified limit. At advanced process nodes IR-drop
can have a critical impact on timing sign-off and chip packaging cost. CC-Opt unshackles chip designers from
the traditional conflict of interest between tight skew being good for timing but terrible for IR-drop.

3. Increased productivity and accelerated time to market

There are two distinct ways in which CC-Opt increases designer productivity and accelerates time to market.
The first is due to a lack of any requirement to configure clock tree balancing constraints or manually set
insertion delay offsets for timing critical sink pins. For complex SoC designs composing a complete set of
balancing constraints can take more than a month, and much of this effort often needs repeating every time a
new netlist is provided by the frontend design team.

The second way in which CC-Opt increases designer productivity and accelerates time to market is due to a
significant reduction in the number of iterations between the frontend and backend design teams. Many of
these iterations are for the sole purpose of asking the frontend design team to manually move logic across
register boundaries by changing the RTL. This manual moving of logic is in essence a form of sequential
optimization being performed manually and very inefficiently. Since the entire flow must be re-run to
incorporate the RTL changes, there is no guarantee that the satisfactory aspects of the post-placement timing
picture will persist. Therefore the requested changes may not have the intended benefit. Most of the need to
do this manual logic moving is completely eliminated using CC-Opt since it can simply skew the clocks
instead. The time saving from these reduced iterations can be many months.

4. Accelerated migration to 45nm and below

The ability of CC-Opt to perform timing optimization is not degraded by the growing clock timing gap. This is
because all decisions it makes are directly based on a propagated clocks model of timing. If architected
correctly, the motto for CC-Opt is “if I can time it then [ can optimize it”. Clock gates, complex clock muxing
configurations, OCV derates, CPPR, multi-corner, and multi-mode should all fall out in the wash so long as the
timing analysis engine is able to consider them. Without the use of a clock concurrent flow the clock timing
gap increasingly cripples timing closure pre to post-CTS, and timing optimization steps downstream from CTS
just don’t have the horsepower to recover from the damage. Using CC-Opt, migration to advanced process
nodes can happen faster and with significantly less pain.
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Conclusions

Clocking lies at the heart of commercial chip design flows and is almost as central to the digital chip design
community as the transistor itself. But the traditional assumption that if clocks are balanced then propagated
clocks timing will mirror ideal clocks timing is fundamentally broken. Clock gating, clock complexity and on-
chip variation are the key industry trends causing this divergence, which we refer to as the clock timing gap.
At 40/45nm the clock timing gap can be as much as 50% of the clock period resulting in an almost complete
rewrite of the timing landscape between ideal and propagated clocks timing.

Clock concurrent optimization gives up on the idea of clock balancing as both restrictive and unhelpful at
advanced process nodes. It merges CTS with physical optimization building both clocks and optimizing logic
delays at the same time based directly on a propagated clocks model of timing. This unleashes a fundamental
new degree of freedom to borrow time across register boundaries resulting in chip speed becoming limited
by critical chains not critical paths.

Under the hood, the key challenge which CC-Opt must tackle is the potential for clock networks to become
unreasonably large, and addressing this challenge requires the clock construction algorithms to become very
tightly bound with the logic optimization algorithms. The intimate relationship between clock construction
and logic optimization is what differentiates CC-Opt from the traditional techniques of sequential
optimization and useful skew.

CC-Opt delivers four key types of benefit to the digital chip design community: increased chip speed or
reduced chip area and power; reduced IR-drop; increased productivity and accelerated time-to-market; and
accelerated migration to 45nm and below.
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