AVR-Bootloader

user manual

(software version 1.09)
03.07.2006

AVR-Bootloader

00C¢C

Forschungs- und Transferzentrum Leipzig e.V.
Waéchterstral3e 13

D-04107 Leipzig

Tel.: +49 (0)341-3076 1136

Fax: +49 (0)341-3076 1220

E-Mail: info@easytoweb.net

Internet: http://www.easytoweb.net/

Copyright

In this manual are descriptions for copyrighted products that are not explicitly indicated as such. The
absence of the trademark (™) and copyright (©) symbols does not imply that a product is not
protected. Additionally, registered patents and trademarks are similarly not expressly indicated in this
manual.

The information in this document has been carefully checked and is believed to be entirely reliable.
However, FTZ Leipzig assumes no responsibility for any inaccuracies. FTZ Leipzig neither gives any
guarantee nor accepts any liability whatsoever for consequential damages resulting from the use of
this manual or its associated product. FTZ Leipzig reserves the right to alter the information contained
herein without prior notification and accepts no responsibility for any damages which might result.

Additionally, FTZ Leipzig offers no guarantee nor accepts any liability for damages arising from the
improper usage or improper installation of the hardware or software. FTZ Leipzig further reserves the
right to alter the layout and/or design of the hardware without prior notification and accepts no liability
for doing so.

© Copyright 2002 Forschungs- und Transferzentrum Leipzig e.V. an der HTWK Leipzig (FH).

Rights - including those of translation, reprint, broadcast, photomechanical or similar reproduction and
storage or processing in computer systems, in whole or in part - are reserved. No reproduction may
occur without the express written consent from FTZ Leipzig

Forschungs- und Transferzentrum Leipzig
Udo Jakobza / Thomas Minner
Waéchterstr. 13

D-04107 Leipzig

Germany

phone +49(0)341-3076-1136

fax +49(0)341-3076-1220

e-mail: info@easyToWeb.net
http://www.easyToWeb.net

Index of contents

Index of contents

1
2
3

5

QUICK STAI ... 6
Example projects and general iINfOrMationceeeoiiiiiiiiiiiiie e 8
Project CONFIQUIALIONciiiiiiiiiiiiiiee ettt et e e s it b et e s b e e s sabnee e snnnneeas 10
3.1 Y= 1T = Lo o USRS PPRRR 10
3.2 [o] [Tor B 4 F= (o o LSO PUTT T PUTTPPRRT 11
3.3 Hardware CONfIQUIAtIoNooii it e e e e e e e e e e e 12
3.4 Header file Path..........ooo e 13
3.5 N SR UUPSOPPPR 14
3.6 L4 PP PRP PP 14
3.7 T (= 0 7= ol PRSPPI 15
3.8 (D=1 o1 o [PSP PRSP PP PPPRPPP 16
O T0] 1TT= ERSSR 17
4.1 PC appliCation — QBNIEMIPueiiiiieee ittt e e e e e e e e e e e s abbraeeeaaae s 17
4.2 PC appliCation — CrEALE V2coiieiiii ittt e e e et e e e e e e e s e rarareeaaaee s 19
4.3 PC application — Update COMMANGETccoiiiiiiiiiiieiee et e e e e e rae e e e e e 22
(1 371 gV T [T T RS EESR 28

Index of figures

Index of figures

Figure 1.1 Usage of the project @XampPles.........ccuuviiiiiiie i e e e e ee e e e e e s s e e e e e s e nanes 6
Figure 1.2 Adaptation and usSe 0N OWN hArdWarecccuvieiiiiee i e e e e ren e e e e e e e 7
Figure 2.1 EXAMPIE PrOJECEScccoiuuiiieiiiiiee ettt ettt ettt e sttt e ettt e e st e e e e s bt et e e e abbe e e e s abneeesanbeeeeee 8
FIgUre 2.2 TeSIEA CONIOIBIS ...ttt ettt et e e e st et e e s bbe e e e s abeeeessebeeae e e 8
Figure 2.3 Controllers with boot loader SUPPOITcooii i 9
[0 10 T Y F= 1 o I 1 4 = 1o (0 PP OPPPUPPRPRP 10
1o [TR T2 = (o] [=Tox B g = Lo (o RO RERPR 11
Figure 3.3 Hardware CONfIQUIAtIONcciiiiiiiiiiiiiiie e s e e e e e e st re e e e e e e s s annbeeee e e e e eanns 12
Figure 3.4 Header file Path.........c.ooi i e e e e e e e e e e e s e e e e e e e e e e e 13
1o T TR SR Y S I 4= Vo o LSRR 14
FIGUIE 3.6 CRC MECTOS ...cei i utteeie ittt ettt e e ettt ettt e e sttt e e sttt e s bt e e e s bbb et e e eabb et e e aabbe e e e anbbbeeesabeeeesnnnneeas 14
FIgUre 3.7 INtEITACE MECTOS. ... eeii ittt ettt e et e e sttt e e sttt e e s bbb e e e sabee e e sneneeas 15
FIQUIE 3.8 DEIDUQG MACTOSeteiiiiiee ittt ettt e et et e e e e e e e e bbb bt e e e e e e s e aanbb e e e e e e e e s aaaaneeeaaaeaaanns 16
Figure 4.1 Configurations steps up t0 Programmingccuveerereeeiiiiiiieeeeeee e e s e siirerre e e e e e s e s snsrerereeeeeees 17
Figure 4.2 EXECULION Of gBNIEMIP ..ot e e s e e e e e e s et e e e e e e e e s s eaanbeaeeaaeeas 17
Figure 4.3 Config_@XamPIE.tXt.. . ..o e r e e e e e s e e r e e e e e e e e eeanann 18
Figure 4.4 Size for ATmega controllers in detail ..o 18
Figure 4.5 EXECULION Of CrEALE_V2.....ccoiiiiiiiiiiiii ettt 19
Figure 4.6 Creation of the IAR header fileS ... 20
Figure 4.7 Correspondence table......... ..o 21
FIQUIE 4.8 KEY ECIATAtION.eeiiiieiiieiie ettt e e e e ettt e e e e e e s e rabb bt e e e e e e e e sasneeeeaaeeeeannn 21
Figure 4.9 Update Commander WINAOW............c.uuuiieeeeeiiiiiiiiieeeee e e s s ssitreeeee e e s s s santsreeeeeaessssnnraraesseeessaanes 22
Figure 4.10 SeleCt the COM POM.........uiiiiiiii et s e e e e e e s s st e e e e e e s s s satraaeeeeeeesasnsnreaeeeesesnns 23
Figure 4.11 Select file — launch programming........c.cocoiiiiciiiiiee e e e e e 23
Figure 4.12 Programming Stat€ — COMcoiiiiiiiiiiiie et e e s e e e e e e e st e e e e e e e s snnnraeeeeaeeeannns 24
Figure 4.13 IP-address choice and programimingc..eeeeiuueeeeiieeee et seeee e seneeas 24
Figure 4.14 Programming State — EthEINELocuiiiiiiii e 25
Figure 4.15 Bootloader aCtVALION.coiiii ittt e e e e et e e e e e e e e s sabbbeeeaaeeeaannes 25
Figure 4.16 Programming SUCCESSTUL.........ciiiiiiiiiiiiie et a e e ee e e e anes 26
Figure 4.17 Software is not valid for thiS eVICE...........cooiiiiiiiiii e 26
Figure 4.18 TranSMISSION EITONccuuiiiieeeeeeiieittteeeeeeeeesssttrteeeeeaeessasststaeeeaaesssaatataeeeeaessssanssrresaeessasnnns 27

Introduction

Introduction

This manual to the AVR-Bootloader contains four basic sections. Chapter Quick start offers a short
overview of basic things for the use of the AVR-Bootloader. Chapter Example projects and general
information gives an overview of the range of example applications contained in the install file. Chapter
Project configuration explains the adaptation of the source code to a new project. Chapter PC software

gives a detailed description for handling the PC software used to configure and program a new project.

Quick start

1 Quick start

If you want to use the given examples of a project on easyToWeb with the default values, refer to

following flow chart.

Boot Loader

Load an
example project

C v (bl_etw_aes or

bl_etw_ethernet)
AYR with CodeVision compiler
version 1.24.9

}

“22 Compile the selected project

}

Program the project (boot
loader) into the controller

% Piogiam the chip

Application
Cv Create the *.hex and *.eep
BYR files of the application
Create the encrypted file:
create_v2
-c config_default.txt
create_v2 -f application.hex
-e application.eep
-0 application.enc
(chapter 4.2)
Program the application
Update - -
T e application.enc

(chapter 4.3)

Figure 1.1 Usage of the project examples

Quick start

Use the following flow chart, to adapt the boot loader to a new project.

Boot loader

Load an
example project
(bl_etw_aes or

Cv bl_etw_ethernet)
AVR

with CodeVision compiler
version 1.24.9

}

Create the configuration text
file with the new key:
gentemp gentemp
config_new_pjct.txt

(chapter 4.1)

}

Edit the
configuration text file:

config_new_pjct.txt

(chapter 4.1)

}

Create the
IAR header files project.h
and aeskeys.h :

create_v2 Create_v2

-c config_new_pjct._txt
-h project.h
-k aeskeys.h

(chapter 4.2)

}

Copy the relevant data from
the IAR header files into the
header files of the same name
AYR of the current project.

(chapter 4.2)

}

If necessary modify further
parameters in the file project.h

(chapter 3)

}

}

Compile the adapted project

}

Program the project (boot
loader) into the controller

4 Pogemthechip

Application
Cv Create the *.hex and *.eep
AYVR files of the application
Create the encrypted file:
create_v2
-c config_default.txt
create_v2 -f application.hex
-e application.eep
-0 application.enc
(chapter 4.2)
Program the application
Update - -
T e application.enc

(chapter 4.3)

Figure 1.2 Adaptation and use on own hardware

Example projects and general information

2 Example projects and general information

The install file contains four boot loader example projects. The following overview shows the functions

offered by these projects and suitable applications.

Project name BL_ETWEVA.PRJ BL_ETWCOM.PRJ BL_ETWETH.PRJ BL_ATMEGA2561V.PRJ
Optimized for hardware easyToWeb easyToWeb easyToWeb STK500
AES encryption activated activated activated activated
CRC test activated activated activated activated
Interface serial interface serial interface ethernet interface serial interface
Code size
(compiled with CVAVR 1928 Byte 3710 Byte 7374 Byte 3818 Byte
1.24.9)
: CodeVisionAVR CodeVisionAVR CodeVisionAVR CodeVisionAVR
Ry Ugne\?i rc(l)?]vr{elleonr{ment ~ Evaluation ~ Evaluation ~ Evaluation ~ Evaluation
Version 1.24.6 and higher | Version 1.24.6 and higher | Version 1.24.6 and higher | Version 1.24.9 and higher

Figure 2.1 Example projects

The AVR-Bootloader was tested on different controllers. The figure shows the modules which can be

integrated into the several controller types.

Interface UART Ethernet
Encryption none AES none AES Mi’gé?grn;iggm
ATmega8 1476 Byte --- --- - 2048 Byte
ATmegal6 1850 Byte 2048 Byte
ATmega32 1852 Byte 3612 Byte --- - 4096 Byte
ATmegal28 1928 Byte 3710 Byte 5432 Byte 7374 Byte 8192 Byte
ATmega2561V 2046 Byte 3818 Byte untested untested 8192 Byte

Tested with CodeVisionAVR 1.24.9

Figure 2.2 Tested controllers

Note: You can only create and program the ATmega 2561V bootloader without mistakes by using the
CodeVision version 1.24.9.

Example projects and general information

In principle the AVR-Bootloader can be adapted to applications using following controllers. The source

code is configured for these controllers.

Maximum boot sector size Controllers

ATmega8(L), ATmega88(V), ATmega8515(L), ATmega8535(L)

2 KByte
ATmegal6(L), ATmegal68(V), ATmegal62(V), ATmegal65(V),
ATmegal69(V)

ATmega32(L), ATmega325(V), ATmega3250(V), ATmega329(V),

4 [y ATmega3290(V)

ATmegab64(L), ATmega640(V) ATmega644(V), ATmega645(V),
ATmega6450(V), ATmega649(V), ATmega6490(V)

8 KByte ATmegal28(L), ATmegal280(V) ATmegal281(V)

ATmega2560(V), ATmega2561(V)

Figure 2.3 Controllers with boot loader support

Project configuration

3 Project configuration

In order to use the Bootloader in a new application the compiler macros of the project configuration file
project.h have to be adapted to the project. This chapter describes the necessary steps for the porting.
All macros coloured in red should be parameterized with the PC software create_v2 (= chapter PC

application — create_v2).

3.1 Main macros

These macros are used for the basic configuration of the boot loader. Note that the use of the AES
communication protocol for the data communication requires the CRC16 _ENABLE macro to be
activated. The possibility to debug the program is supported only by the boot loader version working

with the UART interface. This is because of the limited boot sector capacity.

Data communication via the

Function UART interface Data communication via network
Activate the boot loader module BOOTLOADER BOOTLOADER
Activate the communication protocol BL_AES_PROTOCOL BL_AES_PROTOCOL

Activate the CRC functions CRC16_ENABLE CRC16_ENABLE
Activate the application test BL_CRC_CHECK BL_CRC_CHECK

Activate a encrypted data communication AES_ENABLE AES_ENABLE
Activate the interface BL_UART_ENABLE BL_UDP_ENABLE

Activate the debug output DEBUG

Figure 3.1 Main macros

10

Project configuration

3.2 Project macros

With the help of these macros information about the project version number and the attached
equipment are available to the user over the debug terminal or in the PC software Update
Commander. The value of the device signature is equal to the second byte of the AES_SIGNATURE.

Function

Define the project name

Indicate the project version
as character string

Indicate the controller typ
as character string

Indicate the high bytes
of the project version number

Indicate the low bytes
of the project version number

Define the device signature

Data communication via the
UART interface

Data communication via network

DEBUG_PROJECT_NAME

DEBUG_PROJECT_NAME
“AVR-BOOTLODER*

DEBUG_PROJECT_VERSION

DEBUG_PROJECT_VERSION

DEBUG_MCU_TYP_STRING

DEBUG_MCU_TYP_STRING

PROJECT_VERSION_

PROJECT_VERSION

NUMBER_HIGH NUMBER_HIGH
<OXXX> <OXXX>
PROJECT_VERSION_ PROJECT_VERSION_
NUMBER_LOW NUMBER_LOW
<OXXX> <OXXX>

DEVICE_SIGNATURE
<OXXX>

DEVICE_SIGNATURE
<OXXX>

Figure 3.2 Project macros

11

Project configuration

3.3

Hardware configuration

You can configure the hardware by using these macros. The macro BL_TIMER_COUNT_DOWN

defines the time between system start and start of the application. In this time window it is possible for

the PC software to initialize a programming process.

Function

Activate the status LEDs

Status LEDs are high activ

Status LEDs are low activ

Select the status LED port

Select the status LED DDR register

Define the init LEDs

Define the update LEDs

Configure the 16 bit timer prescaler

Define the timeout in ms

Data communication via the
UART interface

Data communication via network

BL_STATUS_LED

BL_STATUS_LED

BL_STATUS_LED_HIGH_ACTIV

BL_STATUS_LED_HIGH_ACTIV

BL_STATUS_LED_LOW_ACTIV

BL_STATUS_LED_LOW_ACTIV

BL_STATUS_LED_PORT
<PORTX>

BL_STATUS_LED_PORT
<PORTX>

BL_STATUS_LED_DDR
<DDRx>

BL_STATUS_LED_DDR
<DDRx>

BL_STATUS_INIT_LED
<0..7>

BL_STATUS_INIT_LED
<0..7>

BL_STATUS_UPDATE_LED
<0...7>

BL_STATUS_UPDATE_LED
<0...7>

BL_TIMER_PRESCALER
<0,1,8,64,256,1024>

BL_TIMER_PRESCALER
<0,1,8,64,256,1024>

BL_TIMER_WAIT_PERIOD_MS
<X>

BL_TIMER_WAIT_PERIOD_MS
<X>

Figure 3.3 Hardware configuration

12

Project configuration

3.4 Header file path

These macros contain the relative paths to the header files which have to be included in the respective

boot loader configuration.

Module

Bootloader

Hardware

CRC

AES

SPM

Interface

Debug

Data communication via the
UART interface

Data communication via network

BOOTLOADER_H_FILEPATH
.\include\bootloder.h

BOOTLOADER_H_FILEPATH
“.\include\bootloder.h*

HARDWARE_H_FILEPATH
*.\include\hardware.h”

HARDWARE_H_FILEPATH
“.\include\hardware.h"

CRC_H_FILEPATH
“.\include\crc.h*

CRC_H_FILEPATH
*.\include\crc.h"

AES_H_FILEPATH
‘.\include\aes.h*

AES_H_FILEPATH
‘.\include\aes.h*

AES_KEYS_H_FILEPATH
“.\include\aeskeys.h*

AES_KEYS_H_FILEPATH
“.\include\aeskeys.h*

SPM_H_FILEPATH
“.\include\spm.h*

SPM_H_FILEPATH
“.\include\spm.h*

LOADER_UART_H_FILEPATH
“.\include\loader_uart.h*

UDP_H_FILEPATH
“.\include\udp_bl.h*

DEVICE_H_FILEPATH
“.\include\device_bl.h*

ETHERNET_H_FILEPATH
‘. \include\ethernet_bl.h*

BUFFER_H_FILEPATH
“.\include\buffer_bl.h*

IP_H_FILEPATH
“.\include\ip_bl.h*

ARP_RARP_H_FILEPATH
“.\include\arp_rarp_bl.h*

CS8900_H_FILEPATH
“.\include\cs8900.h"

BL_DEBUG_H_FILEPATH
“.\include\bl_debug.h*

AES_DEBUG_H_FILEPATH
“.\include\aes_debug.h

DEBUG_H_FILEPATH
“.\include\debug.h*

DEBUG_DRIVER_H_FILEPATH
“.\include\debug_driver.h*

UTIL_H_FILEPATH
“.\include\util.h*

Figure 3.4 Header file path

13

Project configuration

3.5

AES

Using these macros the encryption can be parameterized. The parameters key length, block signature,

data buffer size and

initial vector have to be

configuration text file (> chapter PC software).

3.6

identical to the values which are saved

Function

Define the key length
1-128 Bit, 2-192 Bit, 3-256 Bit

Define the block signature

Define the data block buffer size

Define the initial vector

Data communication via the
UART interface

Data communication via network

AES_KEY_COUNT
<X>

AES_KEY_COUNT
<X>

AES_SIGNATURE
<OXXXXXXXXX>

AES_SIGNATURE
<OXXXXXXXXX>

AES_BUFFER_SIZE
<XXX>

AES_BUFFER_SIZE
<XXX>

AES_INITIALVECTOR_3
<OXXXXXXXXX>

AES_INITIALVECTOR_3
<OXXXXXXXXX>

AES_INITIALVECTOR_2
<OXXXXXXXXX>

AES_INITIALVECTOR_2
<OXXXXXXXXX>

AES_INITIALVECTOR_1
<OXXXXXXXXX>

AES_INITIALVECTOR_1
<OXXXXXXXXX>

AES_INITIALVECTOR_O
<OXXXXXXXXX>

AES_INITIALVECTOR_O
<OXXXXXXXXX>

CRC

Figure 3.5 AES macros

in the

These macros are used for the configuration of the CRC test. The CRC polynomial and the memory

location of the lookup table need to be defined. The CRC check is used to test the received data

blocks and the entire application.

Function

Define the test polynomial

Define memory location
of the look up table

Data communication via the
UART interface

Data communication via network

CRC16_POLYNOM
<OXXXXX>

CRC16_POLYNOM
<OXXXXX>

CRC16_LOOKUP_RAM

CRC16_LOOKUP_RAM

Figure 3.6 CRC macros

14

Project configuration

3.7

These macros allow the configuration of the data communication.

Interface

Function

Set the UART baud rate

Define the using UARTS

(only necessary if several available)

Activate the Ethernet module

Activate the ARP module

Activate the IP module

Activate the UDP module

Activate the DS2430 module

Activate the Ethernet controller

Activate the control of the Ethernet

controller via memory bus

Specify the control
of the memory bus

Define the default IP address

Define the default MAC address

Define the size of the data division

of the UDP TX block

Define the size of the data division

of the UDP RX block

Define the UDP port number

Data communication via the
UART interface

Data communication via network

BL_UART_BAUD_RATE
<X>

BL_UARTO..4

ETHERNET_ENABLE

ARP_ENABLE

IP_ENABLE

UDP_ENABLE

DS2430_ENABLE

DEVICE_CS8900

CS8900_MEMORY

BL_BOARD_ETW

IP_DEFAULT
XXX XXX XXX XXX}

MAC_DEFAULT_1
<OXXX>

MAC_DEFAULT_2
<OXXX>

MAC_DEFAULT_3
<OXXX>

MAC_DEFAULT_4
<OXXX>

MAC_DEFAULT_5
<OXXX>

MAC_DEFAULT_6
<OXXX>

UDP_TX_DATA_SIZE
<XXX>

UDP_RX_DATA_SIZE
<XXX>

UDP_PORT_NUMBER
<XXXXX>

Figure 3.7 Interface macros

15

Project configuration

3.8 Debug

With these macros different debug modules can be activated. The boot loader version with network

interface does not support these debug modules because of capacity reasons.

Data communication via the

UART interface Data communication via network

Function

Activate the debug outputs of the

communication protocol BL_DEBUG
Activate the debug outputs of the
AES encryption AES_DEBUG
Activate the debug outputs of the CRC16 DEBUG

CRC test

DEBUG_UPLINK_UARTO
Define the debug interface or
DEBUG_UPLINK_UART1

DEBUG_UART_BAUD_RATE

Set the baud rate of the debug interface 5

Figure 3.8 Debug macros

16

PC application — gentemp

4 PC software

This chapter gives a detailed description of functionality and use of the PC programs necessary for
controller programming.

The tasks to be achieved relating to encrypted programming. Three different programs ensure. The
program gentemp generates a configuration text file for the encryption. To create the encrypted and
block-structured file use the program create _v2. The file is transmitted to the controller using the
program Update Commander.

gentemp create_v2 Update Commander
Create the data
Create the template for block-structured and
the configuration file Complete the encrypted program file T it th
(*.txt)) configuration file with the) (* enc) from the Hex files > i ransml _e program
project-specific for Flash (* hex) and file bI?acrk é’tysb'_ftgﬁn“’ the
Create key, initial vector parameters EEPROM (* eep) get sy
and signature with help of the

configuration file

Figure 4.1 Configurations steps up to programming

The previous figure shows the sequence using the programs. Following subchapters give a detailed
description of the program tasks.

4.1 PC application — gentemp

With the help of the program gentemp a template for a configuration text file is created. This file is
needed afterwards to create the encrypted file.

In order to create a template enter following command into the DOS prompt:

gentemp config_project_name.txt

Eingabeaufforderung

Microsoft Windows HP [Uerszion 5.1.26H01
(C>» Copyright 178%-2881 HMicroszoft Corp.

C=~>gentemp config_example_txt
igentemp vl .BAES - Copyright <G> 2085 Atmel Corporation

config_example . txt generated.

Figure 4.2 Execution of gentemp

17

PC application — gentemp

When executing this command from the location of the program gentemp, the template represented in

the following figure 4.3 will be created.

2 config_example - Editor,

Datei Bearbeiten Format Ansicht 7

PAGE_SIZE = [FILL IM: Tarpljet AVR page size in bytes]
MEM_SIZE = [FILL IN: appTication Section size in bytes]
CRC_EMAEBLE = [FILL IM: YES/MNO]

KEwL = ABQOSOYDYLCHBLCACADOF 003 7EF4 SBCASEZ

KEY2 = 0AF180ABOY6EFEASEE

KEY3 = FCCZ49EFDESO3A0AFF

INITIAL_WECTOR = 379BFAGAEQDCBCDIDEBOOFESCCDSZ28A2

SIGMATURE = BOCIE77E

Figure 4.3 Config_example.txt

Now this template needs to be configured with the parameters of the appropriate project. The values
for the memory capacity of the application sector and the page size can be taken from the figure 4.4.
The key, the initial vector and the block signature which are contained in the template were generated
by the program. They values are different with each execution of the program. These generated
values can also be changed of course. However, a modification of these values can affect the security
of the encryption negatively. Depending on desired key length the lines KEY3 (key length 192 bits) or
additionally KEY2 (key length 128 bits) can be removed from the file. If no encryption is desired the
lines KEY1-KEY3 and INITIAL_VECTOR must be removed from the template. If you want to achieve
a CRC test before the application starts, the macro CRC_ENABLE must be set.

appﬁ(i:ﬁig; tQgctor Page size

ATmega8 6144 Byte 64 Byte

ATmegal6 14336 Byte 128 Byte
ATmega32 28672 Byte 128 Byte
ATmegal28 122880 Byte 256 Byte

Figure 4.4 Size for ATmega controllers in detail

18

PC application — create_v2

4.2 PC application — create_v2

When developing an application with the development environment of CodeVision the compiler
generates a Hex file with the flash program code and a Hex file with the EEPROM data for
programming. Before programming the developed application with the help of the boot loader a data
record and block-structured file has to be created from these Hex files. This task is managed by the
program create_v2 with the help of the project-specific configuration text file. Depending on
configuration this program also handles encryption as well as computation of the CRC test value of the
data blocks.

Additionally the program integrates information into the target file to set certain boot lock bits if

necessary.
Creating a program code file is done by entering following command into the DOS prompt:

create v2 —c config_project _name.txt -e eeprom.eep —F Flash._hex
—0 destination_file.enc -1 BLBO02

If the application does not contain EEPROM data or if no boot lock bits need to be programmed, leave

out the relating parameters.

Eingabeaufforderung

Microzoft Windows XP [Uersion 5.1.268HH1 Il
(C>» Copyright 1785%-2801 Microsoft Corp.

C:w>create v2 —c config_example.txt —e example_eep —f example_hex —o destination
_example .enc -1 BELE@2

create vl.BAES — Copyright <{C> 2885 Atmel Corporation

Uzing the following arguments:
Config filename: config_example.txt
Flash filename: example.hex
EEFROM filename: example.eep
Output filename: destination_example.enc
Lock bhits: BLBG2

The following configuration will he used:

Encryption = 25 it AES,. cipher hlock chaining mode
7?D?1C581CCADA?SBA3 YEF45BCAIB2
ABAY6BFBASEE
EFDE%6 3ABA7F
ggEEDCBCD3DB?BFBECCD522BHZ

KEY3
INITIAL_UECTOR
SIGHNATURE
PAGE_SIZE
MEM_SIZE
CRC_ENABLE

Head example . hex?
Head example.eept
lrote destination_example.enc?t

Create finizhed successfully.

Figure 4.5 Execution of create_v2

19

PC application — create_v2

After the message "Create finished successfully" appeared in the DOS prompt the data block-
structured and if necessary encrypted program file has been created and can be used for
programming. The created program file is a binary file containing data completely ASCII coded.

Also files containing flash program code and EEPROM data which was generated by compilers of
other development environments can be used for the creation of the program code file. Note that the
used files must contain data in the Intel Hex format. It is not possible for the program create v2 to
process files of other formats. The EEPROM data file generated by the CodeVision compiler does not

have the ending *.hex, though its content is structured in the Intel Hex format, too.

Beside this the program create_v2 can create the header files aeskey.h and project.h of the controller
firmware for the IAR compiler. On execution essential macros are created. The parameters of the
macros can simply be copied into the projects header files of the same name.

The following operational sequence is used:

1. Create the header files:

create v2 —c config_project name.txt -h project.h —k aeskeys.h

Eingabeaufforderung

C:~>create_v2 —c¢ config_example.txt —h project.h -k aeskeys.h
create vl.BAES — Copyright (C> 2085 Atmel Corporation

Uzing the following arguments:
Config filename: config_example_txt
Header filename: project.h
Key filename: aeskeys . h

The following configuration will he used:

Encryption = 256-bhit AES. cipher block chaining mode
KEY1 ABAA?AYD?1C581C7CADA7SAA3?BF45BCA3E2
KEY2 AAF18DABA?6BFBASBE
KEY3 FCC249EFDE?63ABAY?F

INITIAL_UECTOR 379BFAGAEADCBCD3IDBYAFESCCD5228A2

SIGNATURE

PAGE_SIZE

MEM_SI1ZE

CRC_ENABLE

Wrote aeskeys.ht?
lrote project.ht?

Create finizhed successfully.

Figure 4.6 Creation of the IAR header files

20

PC application — create_v2

2. Copy the certain parameters of the generated project.h into the file project.h of the current project:

generated IAR project.h project.h
CRC_CHECK BL_CRC_CHECK
SIGNATURE AES_SIGNATURE
BUFFER_SIZE AES_BUFFER_SIZE
INITIALVECTOR_3 AES_INITIALVECTOR_3
INITIALVECTOR_2 AES_INITIALVECTOR_2
INITIALVECTOR_1 AES_INITIALVECTOR_1
INITIALVECTOR_O AES_INITIALVECTOR_O
KEY_COUNT AES_KEY_COUNT

Figure 4.7 Correspondence table

3. Copy the generated array from the file aeskey.h into the file of the same name of the current project.

IAR notation CodeVision notation

__ farflash unsigned char kTable[32] = flash unsigned char kTable[32] =

Oxab, 0x01, 0x41, Oxeb, Ox1c, 0xb0, 0x71, Oxe5, Oxab, 0x01, 0x41, Oxeb, Ox1c, 0xb0, 0x71, Oxe5,
0xd0, Oxea, 0x00, Oxbd, Oxf4, 0xb7, 0x28, 0xd9, 0xdO0, Oxea, 0x00, Oxbd, 0xf4, 0xb7, 0x28, 0xd9,
0x0a, 0xe3, 0x36, 0x58, 0x96, 0x1f, 0x29, 0xc7, 0x0a, 0xe3, 0x36, 0x58, 0x96, Ox1f, 0x29, Oxc7,
Oxfc, 0x84, 0x27, Ox7e, 0xe9, 0xc7, 0x82, Ox3f, Oxfc, 0x84, 0x27, 0x7e, 0xe9, 0xc7, 0x82, Ox3f,
s b

Figure 4.8 Key declaration

Important: Note, that copying the key from the configuration text file into the array of the projects
aeskeys.h causes errors because the notation of the keys in the files is different. (figure 4.3)

21

PC application — Update Commander

4.3

PC application — Update Commander

The program Update Commander has the purpose to transmit the program code file block-by-block to
the target system. The program allows to transfer the data via RS-232, USB (USB to UART Bridge)

and via Ethernet to the target system.

1 Update Commander

CoMPort |Use1 | USE 11 | Metwork | version |

1. Select zerial port for update

Serial port; |CDM 3

Search new port

Baud: 115200

2. Select update file

C:Atest_atmegaZBB1y.enc

3. Program update file

Browsze |

Program

Figure 4.9 Update Commander window

» Classification of the modules of the Update Commanders:

e COM port:
USB interface, configured
e USBL
chip
o USBII
Silabs chip
e Network:

UDP/IP

Module for programming of devices with a RS232 interface or a

as COM port

Module for programming of devices with a USB interface based on a FTDI

Module for programming of devices with a USB interface based on

Module for programming of devices via Ethernet, transfer of the data with

Subsequently, the description of the use of the modules COM port and network is given.

22

PC application — Update Commander

Programming via RS232:

At first select the PC COM port used for data communication and the baud rate. If the desired port

does not appear in the selection list, press the button search new port. If this should not succeed

examine the desired port not to be used already.

- Update Commander, Elil@

1. Select senial port for update

comPart |use1 | Use It | Metwork | version |

Select the
COM port

Search new port

13200

38400
57600
115200

3. Pragram update file

Sernal port: |I:E|M 3 j
Baud: | - zelect baud - -
- gelect baud - ~
110 F
2. Select update file 300
1200
2400
4800
SE00

/

Search for a new

COM port

_Brovse |

_Frasn |

Select the baud
rate

Figure 4.10 Se

lect the COM port

The second step is to select the file to be programmed. After this selection the programming process

can be executed by pressing the program button.

- Update Commander,

FEX

comPart |use1 | Use It | Metwork | version |
1. Select senial port for update
Serial port: COM 3 A
P | J Search new port
Baud: 115200 =l
2. Select update file
C:Mest_atmega2bBlyv enc \ Browse |
3. Pragram update file Select tr;?
program file
Proaram
Start the / 4
programming
process

Figure 4.11 Select file

—launch programming

23

PC application — Update Commander

During the programming process the progress of the programming is displayed. In the lower right

corner of the program window the boot loader version number and the designation of the attached

device is shown.

- Update Commander

comPort |use1 | LSBT | etwork | version |

1. Select serial port for update

Senial port; |EDM 1 j Search new port
Baud: | 38400 | Searchnewpor |

2. Select update file

C:hbest_atmegaZbBlY enc g
Programming
3. Program update file / progress
HERRENEERRNNED

Information about the boot

loader version and the device —___—» Bootloader version 1.08

designation ATmega2bBTy found

Programming via Ethernet:

Figure 4.12 Programming state — COM

When programming via network first enter the IP address of the device to be programmed into the

designated field. Afterwards select the file to be programmed and press the program button.

- Update Commander,

comport | use1 |Usenr Metwerk | version |

1. Select device for update Enter device

/ IP adress
IP address: | 141 . 57 . 27 . 1E5

2. Select update file

C:Mbest_debug_mit_aes. enc \

) Select the
3. Pragram update file program file

Program
Start the / g
programming
process

Figure 4.13 IP address choice and programming

24

PC application — Update Commander

During this procedure also here the programming progress, the boot loader version number and the

designation of the attached device are shown.

- Update Commander

1. Select device for update

comport | useT | UsBI Metwork | version |

2. Select update file

IP address: | 141 . 57 .

C:Mest_debug_mit_aes enc

Programming
progress

3. Pragram update file /
IRRRERRNEREEEENR

Information about the boot -
loader version and the device /VBDDtI':'adE' v .08

Browse

E azyT o'w'eb found

designation

Figure 4.14 Programming state — Ethernet

» Status and error messages with programming

Any specified status and error messages apply both to programming via RS232 and to programming

via Ethernet.

At following situations status and/or error messages are displayed:

Unsuccessful activation of the boot loader:

If the controller contains a valid application being currently executed and a programming process by

the activation of the program button is started at the same time, then the status message represented

in figure 4.15 will appear. Since the Bootloader is not active the controller cannot answer to the

REQUEST _SIGN. For this reason the status message tells the user to activate the boot sector again

by releasing a reset in order to continue programming. Alternatively the programming process also can

be canceled by pressing the cancel button.

Start Lipdate

Please switch of the power supply of the device
and wait & seconds, Then switch on the powver supply,
The device will restart and activate a bookloader!

(x]

Cancel

Figure 4.15 Bootloader activation

25

PC application — Update Commander

Programming success:

If programming was successfully terminated the user will receive following status message.

Applicationllpdate E|

1 'E Programming successful
-

Figure 4.16 Programming successful

For the user however there is only absolute reliability for successful programming if the application
starts. Errors when writing the flash are not detected within programming.
The CRC test of the flash content is passed only directly before the start of application. At this time the

connection between software and boot loader is already inactive.

Programming of non valid applications:

If unintentionally anyone tries to program a device with an application not designated for it the error

message represented in the figure 4.17 is displayed after transmission of the data is completed.

ApplicationUpdate EI

| E Error: this is nok a valid device!
L

Figure 4.17 Software is not valid for this device
A non valid application is characterized either by a wrong block signature or by an unknown encryption
(wrong key). Also an incorrect transmission can cause this error message. However, this case is

improbable since it was already detected by the preceding CRC test.

Transmission errors:

The program Update Commander encounters a transfer error if the according data block analysis

character is not received within a determined period of time or if a CRC error was detected.

26

PC application — Update Commander

In principle a retransmission of the concerned data block is done after detecting a transfer error.
However, after detecting four sequential transfer errors the programming process is canceled. The

user will receive following error message (figure 4.18).

ApplicationUpdate

! E Error: Mo or wrong response from karget device!
.

Figure 4.18 Transmission error

27

Change log

5 Change log

Version 1.09

. 30.06.2006

. macros BL_FLASHSIZE 32BIT and BL_FLASHSIZE 16BIT renamed and moved to
bootloader.h

. macros BL_INTERRUPT_VECTOR_CHANGE and BL_INTERRUPT_VECTOR_SELECT also
moved to bootloader.h

. macros BL_ WATCHDOG_TIMER_CHANGE and BL_WATCHDOG_TIMER_SET defined in
bootloader.h

. new status LED macros:
project.h: BL_STATUS _LED

BL_STATUS_LED_HIGH_ACTIV
BL_STATUS_LED_LOW_ACTIV
BL_STATUS_LED_PORT PORTX
BL_STATUS_LED DDR DDRX
BL_STATUS_INIT_LED 0.7
BL_STATUS_UPDATE_LED 0.7

. BL_LED PORT _ON, BL_INIT_LED ON, BL UPDATE_LED ON, BL _LED PORT OFF
moved to bootloader.h

. new timer macros in project.h;: BL_TIMER_PRESCALER and BL_TIMER_WAIT_PERIOD_MS

. loader_uart.c, loader_uart.h, loader ..() functions and LOADER_.. macros renamed in

bl_uart.c, bl_uart.h and so on

. code size decreased

. source code configured for the following controllers
ATMEGAS(L) ATMEGA32(L) ATMEGAG6450(V)
ATMEGAB88(V) ATMEGA325(V) ATMEGAB49(V)
ATMEGA8515(L) ATMEGA3250(V) ATMEGAG6490(V)
ATMEGAB8535(L) ATMEGA329(V) ATMEGA128(L)
ATMEGAL16(L) ATMEGA3290(V) ATMEGA1280(V)
ATMEGAL162(V) ATMEGAB4(L) ATMEGA1281(V)
ATMEGAL168(V) ATMEGAB40(V) ATMEGA2560(V)
ATMEGAL165(V) ATMEGA644(V) ATMEGA2561(V)
ATMEGA169(V) ATMEGAG645(V)

28

Change log

Version 1.08

. 14.06.2006

. test project for ATmega2561V included

. baudrate selection in Update Commander added
. debug modul bugs fixed

Version 1.07b

. 23.05.2006
. uart deactivation bug fixed
. aes signature comparison bug fixed

Version 1.07a

. 20.03.2006

. added missing files (bl_etwcom.prj, bl_etwcom.c, bl_etwcom.txt)
Version 1.07

. 15.03.2006

. added example project for evaluation version of the CodeVision

development environment (_bl_etw_cvavr_eva)

. added chapter example projects and generals in the user manual
Version 1.06
. 24.02.2006

First Version

29

