AN10674

NXP LPC2000 CAN driver with FullCAN mode
Rev. 01 — 10 January 2008 Application note

Document information

Info Content
Keywords Application Note, CAN Bus, Full CAN, LPC2000, ARM7, SJA1000
Abstract This application note describes the Full CAN driver routines for the CAN

controller of NXP LPC2000. Also provides the demo project developed
under KEIL uVision3, using evaluation board MCB2300. This demo used
UARTO for communication with PC, and print CAN transfer information
with Tera term terminal.

‘ k founded by Philips

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

Revision history

Rev Date Description

01 20080110 Initial version.

Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 10 January 2008 2 0of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

1. Introduction

The Controller Area Network (CAN) is a serial, asynchronous, multi-master
communication protocol for connecting electronic control modules, sensors and actuators
in automotive and industrial applications.

In the NXP LPC2000 microcontroller family, there are several microcontrollers with a
CAN Controller. The newest members in the family, like the LPC2300/LPC2400/LP2900,
have an improved CAN controller. This improved version is also available for the
microcontrollers with revision /01.

The major improvement is the FULLCAN mode, which automatically stores received
messages with selected CAN message identifiers into a message buffer.

This application note explains some of the main features of the CAN Controller including
the FullCAN operation mode.

At the end of the document, a demo program is given for the LPC2300/LPC2400
microcontroller.

2. Main features

The main features for the CAN controller of the LPC2000:
Data rates up to 1 Mbit/s on each bus
32-bit register and RAM access
Compatible with CAN specifications 2.0B, 1ISO 11898-1

Global Acceptance Filter recognizes 11-bit and 29-bit RX identifiers for all CAN
buses

Acceptance Filter can provide FullCAN-style automatic reception for selected
Standard identifiers

2.1 Main features of the FullCAN operation mode
The NXP LPC2000 microcontrollers with CAN interface feature a FullCAN operation
mode that directly stores received messages with selected CAN message identifiers into
a message buffer.

The user provides a list of CAN message identifiers that should be received by the CAN
interface. The CAN peripheral automatically scans every incoming CAN message and
when an identifier match is detected, the message is copied into the associated receive
buffer.

Regular FullCAN implementations typically have a limit of 16 or 32 such receive buffers,
often called ‘message objects’. In the LPC2000 microcontrollers, hundreds (max 146) of
filters can be used. The exact number depends on multiple parameters, such as the
number of CAN interfaces sharing the reception filter.

3. Acceptance Filter

The Acceptance Filter (AF) implements a fast hardware search algorithm supporting a
large number of identifiers. The AF recognizes 11-bit and 29-bit identifiers. A Filter Table
configures the acceptance Filter. This table is stored in a specific address in memory; its
maximum size is 2048 bytes and it is shared between the CAN controllers.

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 30f 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

The Filter Table allows configuring 6 optional sections. The sections are configured in the
following order:

1. FullCAN ID’s

Explicit 11-bit identifiers
Groups of 11-bit identifiers
Explicit 29-bit identifiers
Groups of 29-bit identifiers
FullCAN Message Object Data

2 e

When FullCAN mode is used, the FullCAN ID section defines the message ID’s for
automatic reception. The FullCAN Message Object Data is the area where the messages
are automatically stored.

Each FullCAN Message ID entry has an interrupt enable bit, but only the first 64 FullCAN
message ID’s can generate an interrupt. The microcontroller generates this interrupt after
storing all the message bytes in the corresponding FULLCAN Message ID Object. The
receive ISR needs to read registers (FCANICO and FCANIC1) to identify the message ID
that generated the interrupt.

In order to generate an interrupt for the explicit and group message ID sections, the Rl
(Receive Interrupt) flag in the CANXICR register needs to be set. The ISR needs to copy
the received data bytes from the CAN controller registers to the RAM area.

The following table shows how many bytes are used to define an entry in each section.
The FullCAN Message ID definition uses only 2 bytes, since the automatic reception only
works for 11-bit identifiers. Please note for each FULLCAN message ID entry, 12
additional bytes need to be reserved to store the received bytes.

Table 1. Bytes used to define an entry

Section Bytes
FullCAN ID 2)
11-bit Explicit ID’s (2)
11-bit Group ID’s 4)
29-bit Explicit ID’s 4)
29-bit Group ID’s (8)

FullCAN Message Object Data (12)

Table 2 shows five examples of different AF configurations. Example A shows that the
maximum number of 11-bit identifiers defined is 1024, when no other identifiers are used.
Example B shows the maximum number of FULLCAN message ID entries is 146 (14 x
146 = 2044).

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 4 of 30

NXP Semiconductors

AN10674

NXP LPC2000 CAN driver with FullCAN mode

Table 2. Acceptance filter calculation examples

of identifiers in

FullCAN ID’s

11-bit Explicit ID's
11-bit Group ID's
29-bit Explicit ID's
29-bit Group ID's
Used Look_up

Table RAM size
(bytes)

Example
A B Cc D
0 146 0 100
1024 0 0 284
0 0 512 20
0 0 0 0
0 0 0 0
2048 2044 2048 2048

50
600

10

2000

3.1 Acceptance Filter message reception process

The basic message reception process is the following:

1. The CAN Controller is listening all messages in the CAN bus.

2. When a message is received, the CAN controller starts executing a HW fast search
algorithm to try to match the received message with an entry in the Acceptance
Filter. If the message is not in defined, the message is discarded. Note that at this
point the core has not been interrupted; therefore it is executing the application code.

3. When there is a match, the CAN controller interrupts the microcontroller by setting bit
RBx (Received message available) in register CANRxSR. The CAN ISR should
copy the CAN message from the CAN Controller registers to RAM memory, and then
release the CAN Controller receive registers by setting the flag RBB (Release
Receive Buffer) in the Command Register (CAN1CMR).

AN10674_1

© NXP B.V. 2008. All rights reserved.

Application Note

Rev. 01 — 10 January 2008

5 of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

CPU Vv @ | CAN Controller 1 @
| e 0]
c CAN
RAM Message
] /\—I\
H:_ \I—I/ Acceptance Filter with
Identifier Look up Table
Explicit IDs
1 .
g Identifier
<:> y screening
— Identifier
: match
n
Groups of IDs
n+1
n+2
n¥m

Fig 1. Acceptance Filter Message Reception Process

3.2 FullCAN message reception process

The FullCAN message reception process is the following:
1. The CAN Controller is listening all messages in the CAN bus.

2. When a message is received, the CAN controller starts executing a HW fast search
algorithm to try to match the received message with an entry in the Acceptance
Filter. If the message is not in defined, the message is discarded. If the message ID
received is in the Explicit or Group of ID’s, the reception process jumps to step 4.
When a message ID is matched in the FULLCAN section, the reception process
continues to step 3.

3. The Message Handler copies the received data into the corresponding FULLCAN
Message Object. Each AF entry has an index, and the Message Handler uses it to
calculate the corresponding destination address: EndOfTable + (12 * index).

4. When there is a match, the CAN generates an interrupt:

a. For a FULLCAN message, the corresponding bit in the FCANICO or FCANIC1 is
set. The ISR should read the received message from the FULLCAN message
Object section, using the same formula: EndOfTable + (12 * index) to obtain the
starting address of the received message.

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 6 of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

b. For the explicit or group Ids, the bit RBx (Received message available) in register
CANRXSR is set. The CAN ISR should copy the CAN message from the CAN
Controller registers to RAM memory, and then release the CAN Controller receive
registers by setting the flag RRB (Release Receive Buffer) in the Command
Register (CAN1CMR).

\V} CAN Controller 1

IRQ if
C enabled = ‘ \\\ Message
Message Handler
A—N oves Message
[N—
Identifier Look up @
FullCAN IDs
1
: : 2 , Identifier
4
Explicit IDs match
Groups of IDs |
CPU can read
FullCAN objects at FullCAN Obj. Data
any time /! N2
N2 cceptance Filter

Fig 2. FullCAN message reception process

4. Programming the Acceptance Filter

4.1 CAN controller initialization

In the LPC2300/LPC2400 family each peripheral has an independent clock divider. When
the Acceptance Filter is used, the clock divider used for the CAN Controller and for the
Acceptance Filter should be the same.

The following bits are used to control the peripheral clock divider associated with the
CAN Controller:

PCLKSELO 27:26: PCLK_CAN1 Peripheral clock selection for CAN1.

PCLKSELO 29:28: PCLK_CANZ2 Peripheral clock selection for CAN2.

PCLKSELO 31:30: PCLK_ACF Peripheral clock selection for CAN Filtering.

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 7 of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

The CAN Controller initialization routine should power up the CAN controller in the
PCONP register. For the LPC2300, the bits 13 (CAN1) and 14 (CAN2) enable the CAN
controllers.

4.2 Acceptance Filter modes

The AF can be configured in four different modes by setting the Acceptance Filter Mode
Register (AFMR).

The demo example program shows how to use the AF in Bypass, Enabled or FullCAN
modes.

Table 3. Acceptance filter modes

Acceptance Filter modes Description AFMR Value

Acceptance Filter Disabled All Rx messages on all CAN buses are ignored. 0x01
(Reset Value)

Acceptance Filter Bypass All Rx messages are accepted on enabled CAN 0x03
controllers

Acceptance Filter Enabled Only the message ID’s defined in the Filter Table 0x00
produce an interrupt.

AF enabled and FullCAN The microcontroller is interrupted when a message 0x04
mode enabled ID defined in any of the explicit or group of ID
sections is received. The message is stored
automatically if the message received is defined in
the FullCAN ID section.

4.3 Acceptance Filter and FullCAN mode enabled
There are five pointers associated with the AF:
Standard Frame Individual Start Address Register (SFF_sa)
Standard Frame Group Start Address Register (SFF_GRP_sa)
Extended Frame Start Address Register (EFF_sa)
Extended Frame Group Start Address Register (EFF_GRP_sa)
End of AF Tables Register (ENDofTable)

Each of the pointers is used to define the start of a section. They are relative (offset)
pointers to the starting address of the Filter Table. When a section is not defined, the
register should be set to the current free entry in the Filter Table. It is assumed that for
the FULLCAN message ID section the starting address (offset) is always 0.

The general procedure to configure the Acceptance Filter with FUICAN mode enabled is
the following:

1. Set the CAN Controller Mode Register ((CANxMOD) to Operating Mode (0x00).

2. Store in ascending order the FUullCAN message ID’s. Each entry is a 16-bit value, the
FullCAN entries have 2 control bits: Message disable bit and the interrupt enable bit.
The SCC field specifies the Source CAN Channel.

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 8 of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

Message Message
disable bit disable bit

s 2 Vo

109 876 54 321 00987654 32100988765 43210

SCC |o 11-bit CAN 1D SCC |0 11-bit CAN 1D
Interrupt Interrupt
enable bit enable bit

Fig 3. Entry in FullCAN identifier table

3. Set “Standard Frame Individual Start Address Register” (SFF_sa) to the next free
entry after the last FUlCAN message ID entry. If SFF_sa is set to zero, no FullCAN
message ID’s are defined.

4. Configure in ascending order the explicit 11-bit identifiers. Each entry is 16 bits,
including a Message disable bit.

5. Set “Standard Frame Group Start Address Register” (SFF_GRP_SA) to the next free
Filter Table entry.

6. Configure in ascending order the 11-bit groups. The lower bound is defined first and
then the upper bound. Each group is defined using 32 bits. There is Disable bit for
each bound. If a group is disabled, the Upper and Lower bound disable bits should

be set.
3 20 26 16
15 13 10 0
pis | NoT
CONTROLLER# |0 e |usen IDEMNTIFIER
Fig 4. Entry in individual standard identifier table
3 2 1
1 0 9 8 7 6 5 4 3 2 1.0 9 8 7 6 5 4 3 2 1.0 9 8 7 6 5 4 3 2 10
gl Z ol 2
2|9 - 2|9 oo
SCC |z c Lower Identifier Bound SCC |& = Upper Identifier Bound
m| m m| m
Ol g Ol g

Fig 5. Entry in standard identifier range table

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 9 of 30

AN10674

NXP LPC2000 CAN driver with FullCAN mode

NXP Semiconductors

7. Set “Extended Frame Individual Start Address Register” (EFF_sa) to the next free
Filter Table entry.

8. Store in ascending order the 29-bit identifiers. Each entry is 32 bits.

ki 20 28 0

COMTROLLER # IDENTIFIER

Fig 6. Entry in either extended identifier table

9. Set “Extended Frame Group Start Address Register’ (EFF_GRP_sa) to the next free
Filter Table entry.
10. Store in ascending order the 29-bit groups. The lower bound is defined first and then
the upper bound. Each group entry is 64 bits.

a1 2028 4]

CONTROLLER # 28-bit LOWER IDEMTIFIER BOLUIND

Fig 7. Entry in lower extended identifier range table

3 20 28 o]

CONTROLLER # 29-bit UPPER IDENTIFIER BOLIND

Fig 8. Entry in upper extended identifier range table

11. Set the “End of AF Tables Register” (ENDofTable) to the next free Filter Table entry.

12. Set the CAN Acceptance Filter Mode Register to “AF with FULLCAN mode enabled”,
CAN_AFMR = 0x00000004.

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 10 of 30

NXP Semiconductors

AN10674

AN10674_1

4.3.1 Example

NXP LPC2000 CAN driver with FullCAN mode

The following figure shows the configuration of the filter table when the following filters

are defined:

1. FullCAN ID’s: 0x20,0x1BC,0x255,0x26F

Explicit 11-bit ID: 0x10,0x1AC,0x245,0x25F
11-bit groups: 0x300-0x3FF, 0x400-0x47F
Explicit 29 bit ID: 0x18EF101E, 0x18EF1E10,0x18EFFF10,0x18FFFC2
29-bit groups: 0x7700-0x77FF, 0x85F7-0x8802

A

2

1

10 9 87 6 5432109 8765432109876 543210
FullCAN
SCC |o[1| 11-bit CAN ID(0x020) | SCC |o|1| 11-bit CAN ID(OX1BC) Standard
rame
SCC |o|1| 11-bit CAN ID(0x255) | SCC |o|1| 11-bit CAN ID(0x26F) Format
Identifier .
SCC |o]o| 11-bit CAN ID(0x010) | SCC |o|o| 11-bit CAN ID(OX1AC) CANgif,ﬁgiA:“"s
K . Standard
SCC [o|o| 11-bit CAN ID(0x245) | SCC |o|o| 11-bit CAN ID(0x25F) j Frame
SCC |0 0| Lower ID bound(0x0300) | SCC |o|o| Upper ID bound (0x37F)CAN—S;F—GR"fA=°"“’
roup o
SCC |o|o| Lower ID bound (0x400) | SCC |o|o| Upper ID bound (Ox47F) StFar';‘r‘na;d
scc 29-bit CAN ID (0x18EF101E) CAN_EFF_SA =0x13
Explici
scc 29-bit CAN ID (0x18EF1E10) pen
Frame
scc 29-bit CAN ID (Ox18EFFF10) Format
Identifier
SCC 29-bit CAN ID (0Ox18EFFFC2) Section
J ®
scc Lower 29-bit CAN ID bound (0x7700) CAN_EFF_GRP_SA =0x28
scc Upper 29-bit CAN ID bound (0x77FF) poroup
Frame
scc Lower 29-bit CAN ID bound (0x85F7) Format
Identifier
scc Upper 29-bit CAN ID bound (0x8802) Section
e o
FUllCAN Message ID Object Data CAN_EOT =0x33

Fig 9. Configuration of the filter table — example1

Figure 10 shows the Memory layout for the previous example:

© NXP B.V. 2008. All rights reserved.

Application Note

Rev. 01 — 10 January 2008

11 of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

Address: |I:I:-:E 033000

OxE0035000: |BC 29 20 25 6F 24 55 2alac 21 10 20 S5F 22 45 22
OxE0035010:
OxE0035020:
OxE0035030:
OxE0035040:
OxE0035050:
OxE0035060:
OxE0035070:
OxE0035080:
OxE0035090:
OxEQ03S0A0:

Fig 10. Memory Layout of the filter table — example1

4.3.2 Another example

Below is another example of the Acceptance Filter configuration. In this example, there

are four CAN controllers (the LPC23xx/LPC24xx have only two CAN channels, but NXP
also has four CAN channels microcontrollers, e.g. LPC2294) and each one defines the

following entries:

1. CAN Controller 1

Standard 11-bit identifiers: 0x50, 0x51, 0x101, 0x110, 0x120, 0x130, 0x132, 0x134,
0x200, 0x203, 0x208, 0x300, 0x601, 0x602; Group of extended 29-bit identifiers:
0x8000-0x8020

2. CAN Controller 2

Standard 11-bit identifiers: 0x30, 0x32, 0x47, 0x59, 0x222, 0x237, 0x340, 0x352;
Group of extended 29-bit identifiers: 0x4000-0x4020.

3. CAN Controller 3

Standard 11-bit identifiers: 0x208, 0x210, 0x413, 0x660; Group of extended 29-bit
identifiers: 0x8000-0x8020

4. CAN Controller 4

Standard 11-bit identifiers: 0x208, 0x250, 0x410, 0x415; Group of extended 29-bit
identifiers: 0x8000-0x8020

In the latest CAN Controller (LPC2300/LPC2400/LPC2900, revisions /01’), the SCC
value equals CAN_controller — 1, e.g. SCC=0 matches CAN1.

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 12 of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

0,0x050 ! 0,0x051
0x4 0,0x101 I 0,0x110
0x8 0,0x120 1_0,0x130
0,0x132 1 0,0x134
0,0x200 70,0203
Hp : ’ 0,0x208 1 0,0x300
Explicit 11-bit ID’s G nne
1,0x030 | 1,0x032
1,0x047 ' 1,0x059
1,0x222 1 1,0x237
1,0x340 i 1,0x352
2,0x208 1 2,0x210
2,0x413 ! 2,0x660
3,0x208 1 3,0x250
0x38 3,0x410 1 3.0x415
SFF_GRP_sa=0x3C; EFF_sa=0x3C; EFF_GRP_sa=0x3C |—> 0,0x8000
0,0x8020
1,0x4000
. 1,0x4020
] 3
Group of 29 bit ID’s 2048000
2,0x8020
3,0x4000
3,0x4020 c
| ENDofTable=0x5C i—P
not used
0X7FC

Fig 11. Configuration of the filter table — example2

4.4 Filter Table programming guidelines

1. The entries should be stored in increasing order for the Source CAN Channel (SCC)
first, and then for the CAN identifier (including disabled identifiers)

2. If there is an odd-number of identifiers, an extra ID should be added with the disable
bit set. This is because the next section should start in a word boundary

3. To disable a group entry in the AF, both entries need to be disabled.

5. Reading FullCAN Message Objects

A message object is reserved for each of the FUllCAN message ID entries. Each of the
entries is assigned an index. The CAN controller uses this index to automatically store
the FullCAN message in memory. When the application code wants to read the FullCAN
Message Object, it uses the formula: EndOfTable + (12 * index) to calculate the Message
ID Object starting address. Each of the message objects use 3 32-bits words:

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 13 of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

Message

lost bit
VPB 31 24 23 16 15 10 9 8 7 0
Base*||||||||||||||||||||||||||||||||

mm
-2
= =2m o
o =mo
A
X
O
r
(9]
(72}
(2]
o
o
N
[
o
&

RX Data 4 RX Data 3 RX Data 2 RX Data 1

RX Data 8 RX Data 7 RX Data 6 RX Data 5

Fig 12. FullCAN message object layout

The Message Lost bit (MsgLst) indicates whether more than one FullCAN message has
been received since last time this message object was read. The Source CAN Channel
(SCC) identifies the CAN channel that received the message.

The CAN controller and the user application can access the FullCAN Message Objects.
In order to avoid corrupting the data in the message object or reading incorrect data

bytes, there is a semaphore mechanism implemented in each of the FullCAN Message
Objects.

Table 4. FullCAN semaphore operation

SEM1 SEMO Activity

0 1 Acceptance Filter is updating the content

1 1 Acceptance Filter has finished updating the content

0 0 CPU is in process of reading from the Acceptance Filter

The user application code should implement the following procedure to access the
Message Obiject:

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 14 of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

s "y
START
p ¢ Iy
read 1st word T

this meszsage has not been
received since last chack

clear SEM, write badk &t word

¥

read A and 3d words

.

read 1=t word

Srdwords are from the same

miast recently r=ad &t 2nd, and
[UEEEEN]

Fig 13. Semaphore procedure for reading an auto-stored message

6. CAN error management

The CAN Controllers count and handle the transmit and receive errors as specified in
CAN Spec 2.0B. The Transmit and Receive Error Counters are incremented for each

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 15 of 30

NXP Semiconductors AN1 0674

AN10674_1

6.1

NXP LPC2000 CAN driver with FullCAN mode

detected error and are decremented when operation is error-free. Figures 16 and 17
show how the incrementing/decrementing is done depending on each type of error.

l Reset and Configuration

Bits

- -,

REC: Receive Error Counter
TEC: Transmit Error Counter

Fig 14. CAN Node Error Status

If the Transmit Error counter contains 255 and another error occurs, the CAN Controller
is forced into a state called Bus-Off. In this state, the following register bits and register
values are set:

- BS (Bus Off Set) in CANXSR

- BEI (Bus Error Interrupt) and EI (Error Warning Interrupt) in CANXICR
- RM (Reset Mode) in CANXMOD

-Transmit Error Counter is set to 127

- Receive Error Counter is cleared

The application code is responsible for clearing the RM bit to exit from the reset mode.
The CAN controller won’t be able to communicate until 128 occurrences of the Bus Free
condition (11 consecutive recessive bits) have occurred.

Error Interrupts

Three interrupt sources have been implemented to signal error conditions. In the CAN
protocol, the user application doesn’t have to worry about manually retransmitting the
message, the CAN controller does this automatically. The following three interrupts could
be used as statistical information or to find a faulty node in the CAN network.

Each interrupt can be enabled separately in the Interrupt Enable Register (CANXIER)

Bus Error Interrupt: (bit BEIE): This interrupt is generated upon any error condition on the
CAN bus.

Error Warning Interrupt: (bit EIE):The Error Warning Interrupt is generated if the error
warning limit is passed. Furthermore it is generated if the CAN controller enters the bus-

© NXP B.V. 2008. All rights reserved.

Application Note

Rev. 01 — 10 January 2008 16 of 30

NXP Semiconductors AN1 0674

6.2

AN10674_1

NXP LPC2000 CAN driver with FullCAN mode

off state and upon re-entry into error active state. The error-warning limit of the Can
Controller is programmable in reset mode. The default value upon reset is 96.

Error Passive Interrupt: (EPI) If the error status changes from error active to error passive
or vice versa an error passive interrupt is set.

Error Code Capture

The LPC2000 CAN Controller performs the full error confinement specified in the
CAN2.0B specifications. Like in every CAN controller, the whole process of handling
errors is executed fully automatically. However, to provide the user with additional details
about a certain error condition the CAN Controller contains the Error Code Capture
function.

Whenever a CAN bus error occurs, the corresponding bus error interrupt is set. At the
same time, the current bit position is captured into the Interrupt and Capture Register.
The captured data is kept until the host controller has read it. Afterwards, the capture
mechanism is activated again. The register content distinguishes four different types of
errors: form, stuff, bit and other errors. The register additionally indicates whether the
error occurred during reception or transmission of a message. Five bits in this register
indicate the erroneous bit position in the CAN frame.

ACK
| Field I

CAN bus J P
Error in ACK Delimiter

——————) fl $ detected

— read interrupt register

Bus Error
Interrupt
MSB
] 1 N
Error Code x| [0] FormError \ 1vo0 of Error
Capture X 1| during [e
Register x| 0| Transmission N
| — 1 — Y
X 1 |
[_’ —
X 1 .
1 o] in Acknowledge _ Position of an Error
X] | 9] Delimiter ¢ in the CAN bit stream
X 1
1] I _J

Figure 26: Example for the Error Code Capture Function

Fig 15. Example for the Error Code Capture Function

The next two figures show all possible errors during transmission and reception of CAN
messages. The left part contains the position and the type of an error, captured by the
Error Code Capture Register. The right part of each table is a translation into an upper

© NXP B.V. 2008. All rights reserved.

Application Note

Rev. 01 — 10 January 2008 17 of 30

NXP Semiconductors

AN10674

AN10674_1

NXP LPC2000 CAN driver with FullCAN mode

level error description and can be derived directly from the register contents. With the
help of these tables, further information concerning error counter change and the
erroneous state at the transmit and receive pins of the device can be derived. While
using this table, e.g., in the error analysis software it is possible to analyze every single
error situation in detail. The information about type and position of CAN errors can be
used for error statistics and system maintenance or for corrective actions during system

optimization.

Error Code Capture

Position of an Error | Type of RX Error|Description
in the CAN bit stream| Error Count
Identifier Siuff +1 |more than 5 consecutive bits with -
SRR, IDE and RTR bit same level received
Reserved Bits
Data Length Code
Data Field
CRC Sequence
CRC Defimiter Form +1 Rx = dominant lit has to be recessive
Studff +1 mare than S consecutive bits with
same level received
Acknowledoe Slot Bit +1 |Tx=dominant but Bx = recessive (can't write dominant bit
Acknowledoe Form +1 Rx = dominant or critical bus timing or
Delimiter’ bus length
CRC emor detected” CRC seguence not correct
End of Frame Form +1 Rx = dominant in first § bits --

Other +0 |Rx = dominant in last bit reaction: overicad flag will be
sent, data duplication iz
poasible if fransmitter starts
re-transmission

Intermizsion Cther +0 |Rx=dominant reaction: overicad flag will be
sent by recaiver

Active Emror Flag Bit +8 [T« =dominant but Bx = recessive [can’t write dominant kit
Tolerate Cther +8 [Rx=dominant in first bit upon emor flag
Dominant Bitz Rx = dominant for mors than 7 bits wupon error or overload flag
Error Delimiter Form +1 Rx = dominant within first 7 bits --

Cther +0 [Rx=dominant in last kit of delimiter [overload flag will be sent
Cnverload Flag Bit +8 [T« =dominant but Bx = recessive [can't write dominant bit

Fig 16. Possible errors during reception

© NXP B.V. 2008. All rights reserved.

Application Note

Rev. 01 — 10 January 2008

18 of 30

NXP Semiconductors

AN10674

NXP LPC2000 CAN driver with FullCAN mode

Error Code Capture
Pasition of an Error [Type of T¥ Error Description
in the CAM bit stream| Error Count
Start Of Frame Bit +8 |Tx=dominant but Rx = recessive |can't write dominant bit
Identifier Bit +8 Tx = dominant but Rz = recessive |can't write dominant bit

Siuff +0 |Tx =recessive but Rx = dominant |- -

ZRR Bit Bit +8 |Tx=dominant but Rx = recessive |can't write dominant bit

Stuff +0 --

Tx = recessive but Rx = dominant
IDE and RTR Bit Bit +8 T= = dominant but Rz = recessive |can't write daminant bit

Siuff +8 |Tx=recessive bui Rx = dominant |- -

Reserved Bits, Bit +8 [Tx =dominant but Bx = recessive |can't write dominant it
Diata Length Code,

DCiata Field,

CRC Sequence.

CRC Delimiter Form +4 R = dominant kit has to be recessive
Acknowledgs Cther +8 Rx = recessive (error active) no acknowledge

Slot

Cther +0 Rx = recessive (error passive) no acknowledge, node is

probably alons on the bus
Acknowledgs Formi +8 R = daminant critical bus fiming ar
Cilimiter bus lengih
End of Frame Form +8 R = dominant within first € bits - -

Other +8 R = daminant in last bit frame has already been
received by some nodes, re-
tramsmission may result in
data duplcation in receivers

Intermizsion Other +0 R = daminant awveroad flag from “old” CAMN
controllers
Active Error Flag Bit +8 |Tx=dominant but Bx = recessive |can't write dominant bit
Cwerload Flag
Tolerate Form +8 Rz = dominant for more than 7 kit |- -
Dlorminant Sits times after active ermror flag ar
owerload flag
Error Delimiter Formi +8 Rz = daminant within first 7 bits --

Other +0 R = dominant in last bit of delimiter |overdoad flag from “old” CAM

controller
Fassive Error Flag Other +8 Rx = domimant (error passive) no acknowledge receivad,
nade is not 3lone on the bus

Fig 17. Possible errors during transmission

6.3 Receive overrun condition

Each CAN controller has a double receive buffer. Only one receive buffer is accessible
by the user application. When a message is completely received, an interrupt is

AN10674_1 © NXP B.V. 2008. All rights reserved.

19 of 30

Application Note Rev. 01 — 10 January 2008

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

generated. While the user application is accessing the buffer, the CAN controller is still
able to receive another message. The overrun condition occurs when a third message is
received, but the application code has not released the receive buffers.

Figure 18 illustrates this condition:

CAN CAN Message 1 CAN Message 2 CAN Message 3
Accepted ! Accepted ! ID Accepted !

Receive Buffer Status = | full

Receive |

Data Overrun Status /

Fig 18. Data overrun condition

To avoid the overrun condition, the user should configure the AF in such way that most of
non-important messages are filtered out. Also the user could configure the CAN
controller interrupt as a FIQ (Fast interrupt Request), so the interrupt will have the
highest priority in the system.

7. General CAN controller driver description

AN10674_1

7.1 Software development support

The CAN controller driver was tested with the following software development
environments:

IDE — KEIL uVision3 (MDK3.03 or MDK3.11)
Emulator — ULINK (used for MDK3.03) or ULINK2 (used for MDK3.11)
Keil Realview 3.5x compiler

The CAN driver example was based in the AN10438: Application Note “NXP LPC2000
CAN driver”. The microcontroller used in this example was the LPC2378.

7.2 CAN controller driver functionality overview

The CAN controller driver routines described in this Application Note are designed to
provide the application programmer with a higher-level interface for communication with
each CAN controller module, thus relieving the programmer from having to understand
the detailed operation of the CAN controller module. The application programmer can
design the application interface to the CAN controller driver routines with the knowledge
that the driver routines will take all necessary actions for transmitting and receiving CAN
messages on the CAN bus.

The CAN controller driver routines perform the following functions:

© NXP B.V. 2008. All rights reserved.

Application Note

Rev. 01 — 10 January 2008 20 of 30

NXP Semiconductors AN1 0674

AN10674_1

NXP LPC2000 CAN driver with FullCAN mode

Initialization of the CAN controller

Configuration of the CAN controller for various baud rates

Prepare transmission of data pool and CAN message

Receiving and storing CAN messages in the appropriate receive data pool
Providing pre-defined values for a set of bit-rates for various clock frequencies
Mode switching of the CAN controller

Easy read/write access to CAN controller registers

Printing information about CAN BUS transmitted/received data by the UART.

The Global Acceptance Filter (GAF) configuration lists the initialization of five Look-up
table sections.

For the CAN controller driver the file LPC2000 CAN_Driver.c contains the five-identifier
sections that can be configured.

Note: Commenting the according definition statements out can disable those sections.
This should be done if some sections are not used.

Furthermore, the LPC2000_CAN_Diriver.c contains lists of example CAN identifiers with
their associated Source CAN Channel (SCC) separated for each section. The following
tables, Table 6 to Table 10, are extracted from the LPC2000_CAN_Diriver.c file and show
all pre-defined CAN identifiers and their SCC for all sections. The user can change the
list in each section to suit each application’s needs.

Table 5. ID look-up table definitions of the LPC2000_CAN_Driver.c

Section Definition Section of the ID Lookup Table
Memory

#define LPC2000_CANDRIVER_STD_FullCAN FullCAN Frame Format ID Section

#define LPC2000_CANDRIVER_STD_INDIVIDUAL Explicit Standard Frame Format ID
Section

#define LPC2000_CANDRIVER_STD_GROUP Group of Standard Frame Format ID
Section

#define LPC2000_CANDRIVER_EXT_INDIVIDUAL Explicit Extended Frame Format ID
Section

#define LPC2000_CANDRIVER_EXT_GROUP Group of Extended Frame Format ID

Section

Table 6. Example of FullCAN frame format identifier section

const Ipc2000CANdriver_ACFilter_t gklpc2000CANdriver_StdFullCAN_Section[] =
{
/* Channel(1-4) , 11-bit Identifier (<7FF Double than ram size) */
{LPC2000_CANDRIVER_SCC_2, 0x0020%},
{LPC2000_CANDRIVER_SCC_2, 0x01BC},
{LPC2000_CANDRIVER_SCC_2, 0x0255},

© NXP B.V. 2008. All rights reserved.

Application Note

Rev. 01 — 10 January 2008 21 of 30

NXP Semiconductors AN1 0674

AN10674_1

NXP LPC2000 CAN driver with FullCAN mode

{LPC2000_CANDRIVER_SCC_2, 0x026F}
h

Table 7. Example of explicit standard frame format identifier section

const Ipc2000CANdriver_ACFilter_t gklpc2000CANdriver_StdIndividualSection[] =
{
/* Channel(1-4) , 11-bit Identifier */

{LPC2000_CANDRIVER_SCC_2, 0x0010},
{LPC2000_CANDRIVER_SCC_2, 0x01AC},
{LPC2000_CANDRIVER_SCC_2, 0x0245},
{LPC2000_CANDRIVER_SCC_2, 0x025F}

h

Table 8. Example group of standard frame format identifier section
const Ipc2000CANdriver_ACFilter_t gklpc2000CANdriver_StdGroupSection[] =

{
/* Channel 11-bit Identifier */

{LPC2000_CANDRIVER_SCC_2, 0x03003}, // lower bound, Group 1
{LPC2000_CANDRIVER_SCC_2, 0x037F?}, // upper bound, Group 1
{LPC2000_CANDRIVER_SCC_2, 0x0400}, // lower bound, Group 2
{LPC2000_CANDRIVER_SCC_2, 0x047F} // upper bound, Group 1

h

Table 9. Example of explicit extended frame format identifier section

const Ipc2000CANdriver_ACFilterx_t gklpc2000CANdriver_ExtIndividualSection[] =
{

/* Channel 29-bit Identifier (=< O0x1FFFFFFF) */

{LPC2000_CANDRIVER_SCC_2, 0x18EF101E},

{LPC2000_CANDRIVER_SCC_2, 0x18EF1E10},

{LPC2000_CANDRIVER_SCC_2, 0x18EFFF10},

{LPC2000_CANDRIVER_SCC_2, Ox18EFFFC2}

3

Table 10. Example group of extended frame format identifier section

const Ipc2000CANdriver_ACFilterx_t gklpc2000CANdriver_ExtGroupSection[] =
{
/* Channel 29-bit Identifier (=< Ox1FFFFFFF) */

{LPC2000_CANDRIVER_SCC_2, 0x00007700}, // lower bound, Group 1
{LPC2000_CANDRIVER_SCC_2, 0x000077FF?}, // upper bound, Group 1
{LPC2000_CANDRIVER_SCC_2, 0x000085F7}, // lower bound, Group 2
{LPC2000_CANDRIVER_SCC_2, 0x00008802} // upper bound, Group 2

h

© NXP B.V. 2008. All rights reserved.

Application Note

Rev. 01 — 10 January 2008 22 of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

7.3 CAN message buffers data structure

For transmission and reception of a CAN message, Message Buffers for transmitting and
receiving messages are used. Both buffers are defined as a structure and hold the
following data fields (see Table 11). Both structures are defined in the header file
LPC2000_CAN.h.

Table 11. Transmit and receive Message Buffer defined in LPC2000_CAN.h
Transmit buffer: [pc2000CANdriver_TXODbj_t Receive buffer: Ipc2000CANdriver_RXODbj_t

typedef struct typedef struct

{ {

Uint32 TFI; unsigned char FULLCALmsg;
Uint32 ID; UInt32 RFS;

UInt32 DataField[2]; UInt32 ID;

UInt32 DataField[2];
} Ipc2000CANdriver_TXObj_t;
} Ipc2000CANdriver_RXObj_t;

Table 12 shows how the 32-bit wide array Data Field and the CAN Message Buffer data
is organized.

Table 12. Array Data Field

MSB LSB
DataField[0] Data Byte 4 Data Byte 3 Data Byte 2 Data Byte 1
DataField[1] Data Byte 8 Data Byte 7 Data Byte 6 Data Byte 5

8. Demo description

8.1 Demo hardware
Using KEIL MCB2300 Evaluation Board.
You can find detailed information on the MCB2300 board at:

http://www.nxp.com/redirect/keil.com

8.2 Demo setup

8.2.1 Introduction
LPC2378 microcontroller has 2 CAN channels.
In the demo, the two CAN channels were interconnected, in such way that:

CAN1 transmits data to the CAN BUS, the UARTO displays the messages
transmitted and the Global Acceptance Filter Look-up Table to PC screen.

CANZ2 receives data from the CAN BUS, the UARTO displays the messages
received.

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 23 of 30

http://www.nxp.com/redirect/keil.com

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

8.2.2 Hardware setup

TeraTerm pro:
Displays CAN received and
transmitted messages.

U-LINK

LAPTOP

UART @
9600 bps
8-bit
1-bit Stop
No parity
No Flow
Control
No Echo

usB

MCB2300

~z»o0 ||

NZP>O0 I_l

-

Fig 19. Demo hardware setup

8.2.3 Demo operation step

1. Connect the two Pin-2 between CAN1 port and CAN2 port; Connect the two Pin-7
between CAN1 port and CAN2 port; Or you can find one UART cable with both
female header and pin-to-pin connected

1 é/ 3 4 5 1 \é 3 4 5
[o] o [o] [o] o [o] [o] [o]
6 7 8 9 6 7 8 9
o & [o] o [o] / o (o]

CAN2 CAN1

Fig 20. CAN1 and CAN2 port pins and connection description

Make sure MCB2300 RST (J9) jumper is off and ISP (J10) jumper is OFF
Connect UARTO of MCB2300 to PC UART port

Connect MCB2300 JTAG port to PC USB port with ULINK

Open and download the demo project[LPC2000_CAN.Uv2]

Open Tera Term Pro in your PC

2 e

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 24 of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

7. Power On. Press Reset key on MCB2300, it will enable ULINK in uVision3
8. Enter debug mode in uVision3
9. Run the demo

8.3 Demo displayed information

When you open the demo project and start debug in uVision3, on Tera Term Terminal, it
will displays following demo start information:

= Tera Term Web 3.1 - COM1 VT
File Edit Setup ‘Web Control ‘Window Help
B
$555$5% NXP LPC2300 CAN BUS DRIVER DEMO — FULLCAN $5$535% g
*xxDeno Files: LPC2000_CAN_SYS.C
33 3 LPC2000_CAH Driver.c
*xxDeno Tools: Keil MCB2300 Democ Board (CAN1-Trans, CANZ-Rew)
**x*Deno Function: Press 1 - szinple communication (GLOBAL ACC FILTEE Bypass)
bk Press 2 — communication with GLOBAL ACC FILTEER
*xx Press 3 - communication with FULLCAN GLOBAL ACC FILTER |
1]
v
Fig 21. Welcome page for the Demo
When you press 3, CAN message send page will come, not only displays sent
messages, but also displays Global Acceptance Filter Look-up table pre-defined in
LPC2000_CAN_Driver.c
AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 25 of 30

NXP Semiconductors AN1 0674

AN10674_1

NXP LPC2000 CAN driver with FullCAN mode

B Tera Term Web 3.1 - COM1 ¥T

File Edit Setup ‘Web Control WWindow Help
A~
3
will be transmitted by CAN1 to CAH BUS
Standard :0=1BC:
Standard 1lbits ID:0=255:
Standard 1llbits ID:0=26F;

: : 3 ; ; ; 3 3 tandar U= ;
*##Framet: Data — 51,.52,53,54,655.586,57.58 with Standard 11bits ID:0x1AC;
%#¥Frame?: Data — 61.62.63,.64,.65,.66,67,.68 with Standard 1lbits ID:0x245;
*x%Framed: Data — 71.72.73.74.75.76.77.78 with Standard 1lbits ID:0=25F:
*#xxFram=9: Data — 81.82,83.84.85.86.87 .88 with Standard 1lbits ID:0=310:
##xFram=l0: Data — 91,.92.93,94 . 95,96,97.98 with Extended 29bits ID:0=18EF101E ;
**#xFram=sll: Data — 11,22.33.44 55.66.77.88 with Eztended 29bits ID:0=18EF1E10;
*%% Acceptance Filter Tables:

*#x% Jdx Table SCC# Dis< En ID

EX] FULLCAN 2 1] 0020H

ek 1 FULLCAN 2 0 01BCH

xxx 2 FULLCAN 2 0 0255H

Ek i] FULLCAN 2 0 026FH

EX] Standard 2 1] Oo010H

*xx G Standard 2 0 01ACH

k% G Standard 2 0 0245H

*kx 7 Standard 2 0 025FH

*k% 3 Std. Group 2 0 0300H-037FH

xxx 9 Std. Group 2 0 0400H-047FH

*xx 10 Extended 2 0 18EF101EH

xxx 11 Extended 2 0 18EF1E10H

*x% 12 Extended 2 0 18EFFF10H

*xx 13 Extended 2 0 18EFFFCZH

*xx 14 Ext Group 2 0 Q0007700H-000077FFH

*x% 15 Ext . Group 2 0 000085FYH-00008802H

**¥%Start transmit now? Press v or ¥ - start

3 3 3 Fres= n or H - Hot start -

~
Fig 22. CAN message sent page
When you conform transmission, Demo code will start transmit.
If received successfully, then demo code will display the received data as following:

Tera Term Web 3.1 - COM1 VT =3

File Edit Setup ‘Web Control ‘Window Help

wbion ol 1 =] = L

:Data—01.02,.03,. 04,05, ; ¥ ; ;00000020 FULLCAN
:Data—-11. .14 .15.16,17.18. ID:000001BC FULLCAW
Data—21.22.23. 24,25, : . . IL:00000255 FUOLLCAW
:Data—31 ID:0000026F FULLCAN
:Data—41.42,43, 44,45 46 47,48, ID:00000010 BP-BEit:
:Data—51.52,53,54 55,56, 57,58, ID:000001AC BP-Bit:
:Data—6l1.62.63.64.65.66.67.68, ID:00000245 EP-Bit:
Data—-71.72.73.74.75.76.77.78, ID:0000025F EP-Bit:
Data—81.82.83,84,85,86,87,88, ID:00000310 EP-Bit:
Data—91,.92,93,94,95,96,97,98, ID:18EF101E EP-Bit:
:Data—-11.22,33,44 55, 66,777,858, ID:18EF1E10 BP-BEit:
in Bypass Mode: ID-Index: AF matched entry index

ID-Inde=x: 0004
ID-Inde=: 0005
ID-Index: 0006
ID-Index: 0007
ID-Index: 0002
ID-Index: 0010
ID-Inde=x:0011

oo oo o o)

*##xThe Acceptance Filter i= configured. vou can try transmitting a message using
an external CAN analvzer

Fig 23. CAN message received page

© NXP B.V. 2008. All rights reserved.

Application Note

Rev. 01 — 10 January 2008 26 of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

9. Reference

[1] AN10438: Application Note “NXP LPC2000 CAN driver”
[2] LPC2378 Data Sheet — Version 3
[8] UM10211: LPC2364/65/66/67/68/77/78/87/88 User Manual — Version 1

AN10674_1 © NXP B.V. 2008. All rights reserved.

Application Note Rev. 01 — 10 January 2008 27 of 30

NXP Semiconductors

AN10674

NXP LPC2000 CAN driver with FullCAN mode

10. Appendix A Software flowchart for demo

START

SYS INI
CAN INI, define GAF table in RAM

8S=0
Define: SS = System_Status

Flash LED

S Value be c‘ontrolle
in MAIN, UART RCV IRQ &

Is error status reported
from function return value

Is CAN2Rcv
Interrupt occur?

Print error info from CAN2Rcv
IRQ (when do have errors)

L]

CAN2 IRQ
‘SS=O‘ ‘ ss=1 ‘ ‘ 8s=2 ‘ ‘ 8s=3 ‘ ‘ SsS=4 ‘ ‘ 8S=5 ‘
Print CAN Print CAN Print CAN
n prepared || ir prepared | | v prepared -
to be sent to be sent to be sent Transmit CAN
Y or y be pressed? message from
(CAN2 IRQ) CAN1 to CAN BUS
Print GAF Look-up | | Print GAF Look-up
Table Table
Set ACC ON Ss ' Y
et =5 - =
[SetAcCBypass | [setacoon] | SetAcc o \ e }_. [ss-0 | [ss-0 |
| ss=4 | [ss=4 | [ss=4 |
N or n be pressed?
(CAN2 IRQ)
»! >l -
Y
CANZ2 received N
CAN message ok? =
Print received CAN message
N

Fig 24. Welcome page for the Demo

AN10674_1

Application Note

Rev. 01 — 10 January 2008

© NXP B.V. 2008. All rights reserved.

28 of 30

NXP Semiconductors

AN10674

11. Legal information

NXP LPC2000 CAN driver with FullCAN mode

11.1 Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

11.2 Disclaimers

General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations
or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of
such information.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

AN10674_1

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is for the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

11.3 Trademarks

Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

© NXP B.V. 2008. All rights reserved.

Application note

Rev. 01 — 10 January 2008

29 of 30

NXP Semiconductors AN1 0674

NXP LPC2000 CAN driver with FullCAN mode

12. Contents

1. Introduction ... 3
2. Main featurescccooiriiirceie s 3
2.1 Main features of the FullCAN operation mode ...3
3. Acceptance Filtercccccvciiniinnniiein s 3
3.1 Acceptance Filter message reception process...5
3.2 FullCAN message reception process................. 6
4, Programming the Acceptance Filter.................. 7
41 CAN controller initializationcccccceeeeinnne 7
4.2 Acceptance Filter modes...........ccccooveiiiiiiinnnen. 8
4.3 Acceptance Filter and FullCAN mode enabled...8
4.3.1 [z 11 0] o] [T 11
4.3.2 Another examplecocovvvvviiiiiiiiiiieieieiiieieeeees 12
4.4 Filter Table programming guidelines................. 13
5. Reading FullCAN Message Objects................. 13
6. CAN error management...........ccccceeiceimnneeinnnnns 15
6.1 Error Interruptsuevvveeiiiiiieieieieeeeeeeeeeeeeeeeeees 16
6.2 Error Code Capture..........covvvevveveeeieiieiiieieeeeenes 17
6.3 Receive overrun condition..............ccccceeeviinines 19
7. General CAN controller driver description......20
71 Software development support...........cccccvunnnee 20
7.2 CAN controller driver functionality overview20
7.3 CAN message buffers data structure 23
8. Demo description.........cccocviviiiiiiiniininnnisnnnnnn, 23
8.1 Demo hardware...........occuviieiiiiiiiiiiieeeeees 23
8.2 Demo SetuP...ccoiiiiiiieie e 23
8.2.1 INtroductioncoooiieiei 23
8.2.2 Hardware Setup........cccccevviiieiiiiii e 24
8.2.3 Demo operation step.......ccccuvvvvvvvvivinininininininnns 24
8.3 Demo displayed information............................. 25
9. Reference..........cooooomiiiiiiiccee s 27
10. Appendix A Software flowchart for demo28
1. Legal informationcccocceriiiininiieennniennnns 29
11.1 Definitions ... 29
11.2 Disclaimers. ... 29
11.3 Trademarks ..o 29
12. Contents.......oroiriieee e 30
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.
founded by © NXP B.V. 2008. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, email to: salesaddresses@nxp.com

pH I LI ps Date of release: 10 January 2008

Document identifier: AN10674_1

	Introduction
	Main features
	Main features of the FullCAN operation mode

	Acceptance Filter
	Acceptance Filter message reception process
	FullCAN message reception process

	Programming the Acceptance Filter
	CAN controller initialization
	Acceptance Filter modes
	Acceptance Filter and FullCAN mode enabled
	Filter Table programming guidelines

	Reading FullCAN Message Objects
	CAN error management
	Error Interrupts
	Error Code Capture
	Receive overrun condition

	General CAN controller driver description
	Software development support
	CAN controller driver functionality overview
	CAN message buffers data structure

	Demo description
	Demo hardware
	Demo setup
	Demo displayed information

	Reference
	Appendix A Software flowchart for demo
	Contents

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

