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Abstract

The offset Gregorian dual reflector antenna is eminently well suited to a radio telescope

antenna application as it offers a narrow beam width pattern (i.e high gain) and good

efficiency. The focus of this work is on the analysis of characteristics of such a Gregorian

antenna.

The design of the class of reflector antennas is normally based on the use of ray-optics,

with this simplified approach being able to predict antenna performance based on approx-

imate formulas for example the beam width against aperture size. However for compound

antennas such as the Gregorian reflector there are several interdependent parameters that

can be varied and this reduces the applicability of the simple ray-optic approach. It was

decided that, if a fast enough analysis of a configuration can be found, the technique of

design through interactive analysis would be viable.

To implement a fast analysis of the main beam performance of such a Gregorian antenna,

a solution algorithm has been implemented using a plane wave spectrum approach combined

with a custom aperture integration formulation. As this is able to predict the beam per-

formance within about a second on a PC, it is suitable for iterative design. To implement

the iterative design in a practical manner a user interface has been generated that allows

the user to interactively modify the geometry, see the physical layout, and then find the

antenna pattern. A complete working system has been realised with results comparing well

to a reference solution. The limitations of the technique, such as its inaccuracy in predicting

the side lobe structure, are also discussed.
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Opsomming

Die afset Gregoriaanse dubbelweerkaatser antenna is uiters gepas vir radioteleskoop toepass-

ings aangesien dit ’n nou bundelwydte (hoë aanwins) en ’n goeie benuttingsgraad bied. Die

fokus van hierdie werk is op die analise van die eienskappe van so ’n Gregoriaanse antenna.

Die ontwerp van die klas van weerkaatsantennas is normaalweg gebaseer op straal-optika,

waar hierdie vereenvoudigde tegniek, deur benaderde formules, gebruik kan word om an-

tennawerkverrigting af te skat soos bv. die bundelwydte teen stralingsvlakgrootte. Vir

saamgestelde antennas soos die Gregoriaanse weerkaatser is daar egter verskeie onafhank-

like parameters wat verstel kan word en die toepaslikheid van die eenvoudige straal-optiese

benadering verminder. Dit was besluit dat, indien die analise van die konfigurasie vinnig

genoeg uitgevoer kon word, die tegniek van ontwerp deur interaktiewe analise werkbaar kan

wees.

Om ’n vinnige analise van die hoofbundelwerkverrigting van so ’n Gregoriaanse antenna te

bewerkstellig, is ’n oplossingsalgoritme gemplementeer wat gebruik maak van ’n platvlakgolf-

spektrum benadering in kombinasie met ’n doelgemaakte stralingsvlakintegrasieformulering.

Aangesien hierdie strategie die hoofbundel binne ongeveer ’n sekonde op ’n persoonlike reke-

naar kan voorspel, is dit gepas vir iteratiewe ontwerp. Om die iteratiewe ontwerp op ’n

praktiese wyse te implementeer is ’n gebruikerskoppelvlak geskep wat die gebruiker toelaat

om, op ’n interaktiewe wyse, die geometrie aan te pas, die fisiese uitleg te sien en dan die

stralingspatroon te bereken. ’n Volledige werkende stelsel is gerealiseer met resultate wat

goed ooreenstem met ’n verwysingsoplossing. Die tekortkominge van die tegniek, soos die

onakkuraatheid in die voorspelling van die sylobstruktuur, word ook bespreek.
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Chapter 1

Introduction

1.1 Background to the Project

I
t is hoped that the innovation of designing a powerful radio telescope, which will operate

over a wide microwave frequency range, scan and map the sky with 50-100 times more

sensitivity than any present-day radio telescope, has been entrusted to the South Africa

Square Kilometre Array(SKA SA) project [2]. This large telescope is intended to solve vari-

ous problems experienced by astronomers, cosmologists and other scientists and to determine

the nature of dark matter or dark energy [3].

The MeerKAT project, which is a precursor of the SKA, is adopting a new antenna

geometry to increase the efficiency of the reflectors. This new design, the offset Gregorian

dual reflector antenna, illustrated in Figure 1.1, is a solution to feed blockage limitations of

the preceding telescope. The MeerKAT will install an array of 64 of these antennas in South

African site, each of them having a primary reflector with a diameter of 13.5m and a smaller

concave secondary reflector. This antenna geometry with its clear optical path and low side

lobe level results, will propably be the geometry adopted for the SKA [4]. Most commercial

software package tools cannot analyse such large antennas efficiently due to the excessive

computational time and memory storage constraints. Finding a fast approximate solution is

thus the focus of the work.

1
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Chapter 1. Introduction

Figure 1.1: Prototype of a dual offset Gregorian dual reflector antenna for MeerKAT [3]

1.2 Objectives and Outline of this Thesis

The offset dual reflector antennas are very popular because they offer good pattern perfor-

mance with low side lobes and high efficiency. As these are best suited to high gain antennas,

they are electrically large and their design can be based on ray-optics where all secondary

effects such as diffraction are ignored. The main objective of this thesis is to devise a scheme

that will allow for iterative design of an offset Gregorian reflector antenna. For that, a fast

quasi-analytical technique will be presented that will be shown to predict main beam per-

formance well. This technique allows the user to evaluate the design quickly enough on a

PC and develops an understanding of effect of the geometrical parameters on the antenna

performance.

A number of a sub-objectives are set to reach this objective:

1. Chapter 2 gives a brief introduction of reflector antennas

2. Some of the high frequency techniques that can be used with such a large antenna to

speed up the solution are discussed in Chapter 3

3. Section 4.1 introduces the description and design parameters of an offset Gregorian

dual reflector antenna;

4. Section 4.2 discusses the creation of a reference solution for a specific geometry using

the FEKO commercial software, so as to have a solution to which approximate solution

can be compared.

5. Chapter 5 describes an implementation of a suitable fast method of finding a Gregorian

radiation pattern and its full solution.

All numerical computation and results are obtained using DELL computer, equipped

with a dual core processor working at 3 GHz and with 4GB of RAM.

2
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Chapter 2

General Theory of Reflector Antennas

Introduction

A
n antenna is a transducer device that converts a guided electromagnetic wave on

a transmission line into a plane wave radiating in free space[5]. Various types of

antennas are used in radar or satellite communication. The most widely used for narrow

beam antenna are reflector antennas.

These antennas are composed basically of a primary feed and one or several reflectors

where the reflectors shape or deflect the radiation from the primary feed source which may

typically be a horn, dipole or microstrip antenna. Horns are commonly used for radio

telescopes because they provide a suitable symmetrical pattern, high efficiency, low VSWR

(with waveguide feeds) and relatively wide bandwidth. Diverse geometrical configurations of

reflector antennas can be seen in practice but the conventional reflector designs are planar,

corner or curved reflector, as depicted in Figure 2.1. The radiation pattern of the antenna

system is affected by several parameters such as the radiation pattern of the feed, the shape

and the size of the reflectors which can give rise to spillover, diffraction and the aperture

blockage effect.

This chapter highlights the paraboloid reflector geometry. Types of reflector antennas

are described in section2.1 and the parameters of the antenna are investigated in section2.2

and 2.3 respectively.

3
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Chapter 2. General Theory of Reflector Antennas

(a) (b) (c)

Figure 2.1: Geometry of (a) aperture distributioncorner reflector, (b) plane reflector and (c)
parabolic curved reflector after [6]

2.1 Types of reflector antennas

Reflector antennas are pencil beam antennas that may have one or more reflectors with the

larger reflector often shaped with a paraboloid. The paraboloid transforms a spherical wave

radiated by the feed located at the antenna focal point into a plane wave. Because of this

geometrical property, paraboloidal reflector antennas find application where a high gain is

desired, typically 30-40 dB, along with low cross polarization [7].

The number of reflectors used depends upon the application and also on the extent to

which it is necessary to optimise the efficiency of the antennas. Both dual and single reflectors

find application in radar and satellite communication. The next section will discuss the

characteristics and application of single and dual reflector antennas.

2.1.1 Single reflector

A single reflector antenna consists of a primary feed and a reflector facing it. The single

reflector antenna can be symmetrically fed from the reflector focal point or offset fed, as

illustrated on 2.2. Reflector surfaces are based on the conic sections: paraboloid, hyperboloid

or ellipsoid. Paraboloid reflectors are the simplest for narrow beamwidth, while ellipsoidal

and hyperboloidal sub-reflectors are usually applied to relocate focal points in quasi-optical

systems.
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(a) (b)

Figure 2.2: (a) Front and, (b) offset fed paraboloid reflector antenna

Besides possible mechanical issues, the disadvantage of using a single reflector is the feed

blockage effects. This blockage reduces the aperture efficiency and thus antenna gain as well

as influencing the side lobe level negatively. In addition, scattering from the feed support

structure and struts also degrade pattern performance as do possible multiple reflections

between the feed and the reflector.

2.1.2 Dual reflector

Dual reflector antennas are popular in low noise earth terminal applications. They include a

second reflector, placed between the feed and the prime reflector of a single reflector antenna.

This second reflector so called sub-reflector, usually smaller than the main reflector overcomes

many of the disadvantages of the single reflector.

The basic dual paraboloid reflector antennas are derived from an optical telescope in-

vented in the 17th century by James Gregory and Laurent Cassegrain. The Gregorian an-

tenna has an ellipsoidal sub-reflector, which decreases the effective focal length of the system.

Cassegrain antennas use an hyperboloidal sub-reflector to increase the effective focal length.

The geometry of both antenna types is shown in Figure 2.3. The variation in the effective fo-

cal length directly affects the antenna gain and the side lobe level. Increasing this parameter

for example, will higher the side lobe level and the spillover [8].
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(a) (b)

Figure 2.3: Geometry of (a) Gregorian and (b) Cassegrain reflector antenna

F1 and F2 are the focus points of the sub-reflector and the main reflector, and f is the

focal length of the main reflector. F1 is a virtual point from which transmitted rays appear

to emanate with a spherical wave front after being reflected from the sub-reflector. This sub-

reflector causes the antenna feed to be directed towards the apex of the main reflector, which

removes the feed from the active aperture. When designing a reflector antenna the directivity,

gain and the aperture efficiency are the most important parameters to be considered.

2.2 Directivity and Gain:

The reflector is usually a metallic surface formed into a paraboloid of revolution and trun-

cated by a circular rim that forms the diameter of the antenna. Figure 2.4 depicts the basic

geometry of a paraboloid reflector antenna.

6
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Figure 2.4: Geometry of parabolic reflector: a) coordinate system, b) cross section of the
aperture plane [8].

A reflector antenna system has several significant parameters, and associated terms such

as:

1. focus(or focal point): is the point relative to the parabolic reflector at which any

incoming signals are concentrated after the reflector. The source of the radiation of

the parabola is placed at this point to illuminate the parabolic reflector.

2. Vertex: it is innermost point at the centre of the parabolic reflector,

3. The ratio f /D : defines the axis symmetric paraboloidal reflector. As the f /D ratio

is often specified along with the diameter D, the focal length f can be obtained very

easily by multiplying its f /D ratio by the specified diameter.

4. Aperture: it is the surface, near or on the antenna, on which it is convenient to make

assumption regarding the field values for the purpose of computing a field at external

points [9].

2.2.1 Principles of a paraboloid reflector

The surface of a paraboloidal reflector is made by rotating a parabola about its axis. From

Figure 2.4, the distance from the focal point F into the surface point of the paraboloid is:

FP = r (2.2.1)

The projection of this point P into the aperture plane is Q, and the distance through the

focal point is FQ = rcosθ. In a parabola the distance from the source, the focal point, to
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the point Q via the reflector is the same for all points Q.

FP + FQ = 2f (2.2.2)

By replacing the FP and PQ by their values, then (2.2.2) becomes:

r + rcosθ = 2f (2.2.3)

or

r =
2f

1 + cosθ
= fsec2

(
θ

2

)
with θ ≤ θ0 (2.2.4)

Equation (2.2.4) defines the paraboloid equation in spherical coordinates (r,θ,φ), and only

a function of the angle θ because of the rotational symmetry. It can also expressed in

rectangular coordinates:

r′2 = 4f(f− z)with r′ ≤ Q (2.2.5)

Another important parameter on the paraboloid is the reflector angle called the subtended

angle of the reflector θ0.

tan(θ0) =

(
D
2

)
z

(2.2.6)

where z is the distance on the z axis from the focal point into the edge of the paraboloid

reflector and D is the diameter of the dish. This angle can also be expressed in another form

f/ D. It describes the curvature of the paraboloid and typically ranges from 0.3 to 1 [8].

f =
D

4
cot

(
θ0

2

)
(2.2.7)

2.2.2 Directivity:

Directivity is the ratio of the radiation intensity in the (θ, φ) direction to the average

radiation intensity over all directions. The average radiation intensity is equal to the total

power radiated divided by 4π [10].

The focal length f determines how the power from the feed is spread over the aperture

plane. If Gf (θ, φ) is the feed pattern, which is assumed to be circularly symmetric to simplify

the analysis, it has no component on the φ angle. The directivity of the reflector antenna

can be written as:

D =
U(θ, φ)

U(θ, φ)av
=

4πU(θ = π)

Pt
(2.2.8)

where Pt is the total radiated power in [W] and U is the radiation intensity in [W/unit solid
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angle]. It can also be expressed in terms of the feed pattern as [6]:

D =
16π2

λ2
f2

∣∣∣∣∣∣
θ0∫

0

√
Gf (θ)tan(

θ

2
)dθ

∣∣∣∣∣∣
2

(2.2.9)

where λ is the wavelength.

2.2.3 Gain of the reflector antenna:

It is difficult to find the total power radiated by the antenna in practice; however, a parameter

of interest is the ability of the antenna to transform the available power at its input terminal

to the radiated power. This quantity is defined as the gain of the antenna. It is the ratio

of the radiation intensity in a given direction from the antenna to the total input power

accepted by the antenna per unit solid angle.

G(θ, φ) =
4πU(θ = π)

Pin
(2.2.10)

where U(θ = π) expresses the radiation intensity only on θ angle, because of the symmetrical

axis, and Pin is the input power radiated by the antenna.

The relationship between the power gain and the directivity of an antenna can be given

by comparing (2.2.8) and (2.2.10):

G(θ, φ) =
Pt
Pin

D(θ, φ) = ηradD(θ, φ) (2.2.11)

ηrad is the radiated efficiency of the antenna, the ratio of the total radiation power to the

input power radiated by the antenna. This factor is generally greater than 0 and less than

1 (0 ≤ ηrad ≤ 1). The radiation efficiency of the reflector antennas refers to ohmic losses

because the parabolic reflector is typically metallic, with a high conductivity. Another

efficiency factor, which relates the directivity of the system to that an uniform aperture at

same size is the aperture efficiency. Details of this factor will be discussed in the subsequent

section.

2.3 Aperture efficiency ηap:

The aperture efficiency can be decomposed into sub-efficiencies composed of the illumination

efficiency ηt , the spillover efficiency ηs, the phase efficiency ηφ, the polarization efficiency

ηpol and the surface error efficiency ηr [11]. Thus, the total aperture efficiency is the product
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of these factors which can be written as:

ηap = ηtηsηφηpolηr (2.3.1)

ηap varies with the position and the pattern of the feed. A class of the radiation pattern

is defined by Silver in literature as [12]:

Gf (θ) =

{
G

(n)
0 cosn(θ) 0 ≤ θ ≤ π

2

0 π
2
≤ θ ≤ π

(2.3.2)

where n is a positive integer (n ≥ 1), G
(n)
0 is a constant for a given n and is determined

from the relation [6]: ∫∫
S

Gf (θ)dΩ =

∫∫
S

Gf (θ)dθdφ = 4π (2.3.3)

From this the constant G
(n)
0 can be computed:

π/2∫
0

G
(n)
0 cosn(θ)sinθdθ = 2 (2.3.4)

where

G
(n)
0 = 2(n+ 1) (2.3.5)

and hence, the feed pattern in (2.3.2) becomes:

Gf (θ) =

{
2(n+ 1)cosn(θ) 0 ≤ θ ≤ π

2

0 π
2
≤ θ ≤ π

(2.3.6)

The aperture efficiency is expressed in terms of the radiation feed pattern of the antenna

as [6]:

ηap = cot

(
θ

2

)2

∣∣∣∣∣∣
θ0∫

0

√
Gf (θtan

(
θ

2

)
dθ

∣∣∣∣∣∣
2

(2.3.7)

θ0 is the half-angle of the reflector for a single reflector. An example calculation of

aperture efficiency for a paraboloid reflector design is shown in Figure 2.5. The result shows

that for each θ0, which is a function of f /D ratio, there is a value for n that maximizes the

aperture efficiency. The diameter D is of primary concern for the design. Clearly it should

be made as large as possible so that the physical aperture is maximized, but as it is one of

the primary cost drivers where compromise must be made.
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Figure 2.5: Aperture efficiency for different feed patterns as function of θ0

2.3.1 Illumination efficiency ηt:

The illumination efficiency or ”taper efficiency” is a measure of the non uniformity of the

field across the aperture caused by the tapered radiation pattern.

For a reflector antenna, the geometric area must be greater than the effective area because

the illumination is less towards the edges. In terms of the feed pattern, it can be computed

by the ratio of the maximum radiation intensity integrated over all the aperture and the

power intercepted by the aperture.

ηt =
Umax
Pint

= 2cot

(
θ0

2

)2

∣∣∣∣θ0∫
0

√
Gf (θ)tan( θ

2
)dθ

∣∣∣∣2
θ0∫
0

Gf (θf )sinθdθ

(2.3.8)

This efficiency can be increased with the f /D ratio. Figure 2.6 depicts the variation of the

taper efficiency with the subtended angle θ0 of the reflector.

Figure 2.6: Taper or illumination efficiency for different feed patterns as function of θ0
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2.3.2 The spillover efficiency ηs:

Spillover efficiency is defined as the proportion of energy from the feed source that is inter-

cepted by the reflector (see Figure 2.3.2). Considering that the feed is sitting on a symmet-

rical axis, then the spillover is:

ηs =
Pint
Prad

=

θ0∫
0

Gf (θ)sinθdθ

π∫
0

Gf (θ)sinθdθ

(2.3.9)

In practice this efficiency can be improved by moving the feed closer to the reflector, or

by increasing its diameter D.

Figure 2.7: Spillover efficiency for different feed patterns

These two sub-efficiencies, spillover and taper, are cross-complementary. The spillover

efficiency will increase with the edge taper, which is the ratio of the field at the edge to

the field at the centre of the reflector, while the illumination efficiency decreases. The

compromise between the two efficiencies can be used to find an optimum solution, as shown

in Figure 2.8,

where they are given as a function of the subtended angle θ0 for different values of n for

the radiation feed pattern. In practice this trade-off generates a maximum value of ηtηs with

an edge taper of about -11 dB [8].

12

Stellenbosch University http://scholar.sun.ac.za



Chapter 2. General Theory of Reflector Antennas

Figure 2.8: Trade-off between spillover and taper efficiencies

2.3.3 The polarization efficiency ηpol:

Polarization of an antenna is defined as the position and the direction of the electric field

with reference typically to the ground or surface of the earth. Depending on the orientation

of the electric and the magnetic fields, the polarization can be classified as linear, circular or

elliptical. Linear and circular polarization are special cases of elliptical polarization, when

the ellipse becomes a straight line or circle, respectively. For linear polarization, if the field

is oriented parallel to the ground, the polarization is called horizontal and the polarization is

known as vertical when the electric field is perpendicular to the ground. For the circular case,

the clockwise rotation of the electric field vector is designated as right-handed polarization

(RH) and left-handed polarization (LH) is the counter-clockwise, for an observer looking in

the direction of propagation [13],[14].

The polarization efficiency is the ratio of the power in the desired polarization Pco to the

total power intercepted by the reflector. It is affected by the polarization losses and can

be computed through the co and cross-polarization radiation patterns. Three definitions

of cross-polarization are explained by Ludwig in the literature [15]. However, analysis of

reflector antennas and feeds commonly use his third definition.

ηpol =
Pco
Prad

=

θ0∫
0

|Cp (θ)|2 sinθdθ

θ0∫
0

[
|Cp(θ)|2 + |Xp (θ)|2

]
sinθdθ

(2.3.10)

where Cp(θ) is the co-polarization, and Xp(θ) is cross-polarization.

2.3.4 The phase efficiency ηφ:

The phase efficiency represents the uniformity at the phase of the field across the aperture

plane. It depends on the relative position of the feed to the focal point of the reflector. Phase
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efficiency affects the gain and side lobes, and it can be computed in terms of the co-polarized

fields as [11]:

ηφ =

∣∣∣∣θ0∫
0

Cp(θ)tan( θ
2
)dθ

∣∣∣∣2[
θ0∫
0

|Cp(θ)| tan( θ
2
)dθ

]2 (2.3.11)

2.3.5 The surface error efficiency ηr:

ηr is independent of the feeds illumination. It is associated with far-field cancellations arising

from phase errors in the aperture field caused by errors in the reflector’s surface. If δp is

the root mean square error(rms) on the surface of the reflector, the surface-error efficiency

is given by [16][8]:

ηr = e

−4πδp
λ

2

(2.3.12)

2.4 Summary

The design of a reflector antenna should start with typical elementary steps such as:

� Choose the size of the reflector based on the absolute gain or beamwidth requirements

against the cost and physical limitations such as weight.

� Select a symmetric or offset configuration by considering the complexity against the

performance advantage of the offset design.

� The efficiency should then be optimized by selecting a suitable feed to illuminate the

dish and by the choice of edge taper where one varies the reflector parameters, such as

the focal length to best suit the available feed.

� In the case of a dual reflector, the aperture distribution can be further be controlled

by shaping the paraboloid and the sub-reflector. Shaped reflectors allow the aperture

efficiency to be enhanced over a parabolic reflector by using a ray-optical approach to

spread or concentrate the aperture energy needed.
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Chapter 3

High-frequency Methods for Reflector

Antennas

Introduction

D
ual reflector antennas are structurally and practically difficult to deal with because

of the number of geometrical parameters. However, they still have large areas of

application when high gain is desired. Several methods are available for the analysis of their

characteristics, which will depend upon the desired results, i.e, the methods applied depend

upon the size or the working frequency of the antenna. Recent computer development has

made computer-aided design the usual practice for the investigation of antenna properties.

This chapter highlights the high-frequency methods for the calculation of antenna patterns.

These methods are generally used for antenna structures much larger than a wavelength.

High frequency methods can be divided into two parts. Geometrical Optics, based on field

distribution is described in section 3.2 and section 3.3 highlighted Physical Optics described,

which is based on the current distribution. Both methods are limited by the diffraction

effects which occur on the aperture edges of the reflector. This phenomenon can be analysed

using the Geometrical Theory of Diffraction or the Physical Theory of Diffraction. Including

these effects for the analysis, then section 3.4.2 and 3.4.3 respectively describe the extension

of these 2 high-frequency techniques. Section 5 highlights the comparison between these two

techniques in the Plane Wave Spectrum method, based on the Fast Fourier Transform.

3.1 Radiation structures

A voltage connected to a radiating feed source creates a surface current density. This current

density creates an electromagnetic wave, which radiates into free space in the case of a

transmitter. For a reflector antenna, this radiation might also originate from the aperture
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plane of the paraboloid.

3.1.1 Radiation current source

The electromagnetic radiation is predicted by Maxwell’s equations for harmonic time-varying

fields. These following equations are the solutions represented in differential form and ap-

plying the Stockes’ theorem [17][18].

∇× E = −Jm − jwB (3.1.1)

∇×H = J + jwD (3.1.2)

∇ ·B = ρm (3.1.3)

∇ ·D = ρ (3.1.4)

E and H are the vector electric and magnetic field intensities. B is the magnetic flux

density and D represents the electric flux density.

Equations (3.1.1) and (3.1.2) are the Maxwell’s equations derived from Faraday’s and

Ampere’s Law respectively. Jm and J are the magnetic and electric conduction current

densities respectively, the angular frequency with w = 2πf . ρm is a fictitious magnetic

charge density and ρ is the electric charge density.

The radiation electric field away from the source can be computed over the current

distribution on the surface. This concept helps in the calculation of the electric or magnetic

field using E = −∇V . It is convenient also to define an electric or magnetic potential vector

to compute the magnetic or electric fields respectively. The differential equations for each

vector can be written as [16]:

A =
µ

4π

∫
V

Jes
e−jkR

R
ds

′
(3.1.5a)

Am =
ε

4π

∫
V

Jms
e−jkR

R
ds

′
(3.1.5b)

where A and Am are, respectively, the electric and magnetic vector potentials , Jes and

Jms are the electric and magnetic current densities and the volume at which charge and
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current densities are nonzero. k is the wave number which is related to the wavelength λ.

k =
2π

λ
= w
√
µε (3.1.6)

Figure 3.1 shows that the distance from the integration point to the point where fields

are observed is R
′
, where R

′
=
∣∣R−Ri

∣∣. The distance between the origin and the point of

observation is R, and Ri is the point of integration.

Figure 3.1: Distribution of currents on a reflector surface

The corresponding electric and magnetic fields can be written [19]:

E =
1

jwε

[
k2A+∇

(
∇ · A

)]
− 1

ε
∇× Am (3.1.7a)

H =
1

jwε

[
k2Am +∇

(
∇ · Am

)]
+

1

µ
∇× A (3.1.7b)

Replacing the expression of the electric and magnetic vector potential in eqs. (3.1.5b)

and (3.1.5b), the solution from equations above can be expressed in terms of current densities
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in the far and near fields:

E(R
′
) = − k

2

4π

∫
V

[
Jms × R̂

( j
kR

+
1

k2R

)]
e−jkRds

′
+

k2η

4π

∫
V

[
Jes

(
− 1

kR
− 1

k2R2
+

j

k3R3

)
+
[
Jes · R̂

]
R̂
( j

kR
+

3

k2R2
− 3j

k3R3

)]
e−jkRds

′
(3.1.8a)

H(R
′
) =

k2

4π

∫
V

[
Jes × R̂

( 1

kR
+

1

k2R

)]
e−jkRds

′
+

k2

4πη

∫
V

[
Jms

(
− 1

kR
− 1

k2R2
+

j

k3R3

)
+[

Jms · R̂
]
R̂
( j

kR
+

3

k2R2
− 3j

k3R3

)]
e−jkRds

′
(3.1.8b)

where,

R̂ =
R−Ri

|R−Ri|
=
R−Ri

R′ (3.1.9)

Only the terms with 1/R are taken into account in the far-field terms because at a

distance far from the source, terms in 1/R2 or 1/R3 will tend to zero. The radiative near-

field terms depend on 1/R2 terms, and near-fields terms have 1/R3 terms dependence. η is

the intrinsic (or wave) impedance (η = 377Ω in free space).

3.1.2 Aperture distribution source

Parabolic reflector antennas can be analysed as aperture antennas by assuming that their

surface is infinitely flat. The radiation far field can be computed from the electric and

magnetic fields over the aperture. The closed reflecting surface is divided by the aperture

plane into two spaces, as depicted in Figure 3.2; the one containing the source is called the

half-space and the second part is the free-source, where the radiation is calculated [20].
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Figure 3.2: Radiation fields on a reflector aperture plane

Huygen’s principle, as discussed in [10][16][21],is applied to calculate the radiation fields

on the aperture plane,viz, the incident field in the aperture is replaced by an equivalent

magnetic and electric source on a closed surface and this equivalent source is assumed to be

zero outside the surface. This new current source can be expressed mathematically as:

Jes = n̂×H = n̂× (H2 −H1) (3.1.10a)

Jms = −n̂× E = −n̂× (E2 − E1) (3.1.10b)

where H1 and E1 represent the tangential magnetic and electric fields on the first region

(region 1); H2 and E2 are fields on region 2 and n̂ is the unit vector normal to the surface.

The parabola surface is assumed to be an infinite plane, and if fields (E,H) on the first

region are chosen to be zero, then, currents in (3.1.10a) and (3.1.10b) are calculated on the

boundary and can be expressed in term of the aperture magnetic and electric field as:

Jes = n̂×Ha (3.1.11a)

Jms = −n̂× Ea (3.1.11b)

The radiation pattern of reflector antennas can either be computed from the distribution

of surface currents on the reflectors, or from the prime reflector aperture field, by considering

the reflector antenna as an aperture radiator. These methods are called, respectively, the

current distribution method and the aperture distribution method. These methods are

specified as an asymptotic high frequency method and ignore the diffraction effects on the

reflector surface.
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3.2 Geometric Optics theory

Geometrical optics or the ray optics technique is based on the aperture distribution assump-

tion, to compute the propagation wave for the incident, reflected and the refracted fields.

Maxwell’s equation’s prediction of the electromagnetic wave is related to the Geometrical

Optics as discussed in [22]. The GO method is accurate for analysing or designing reflec-

tor antennas, since they have large dimensions compared to the wavelength. Then, too, its

approximation cost is independent of the size of the structure and its accuracy improves as

structure size increases.

The classical geometrical optics starts from Fermat’s principle. Fermat’s principle states

that the path of a light ray follows is an extremum in comparison with the nearby paths.

The optical path length is defined as [23]:

δ

∫ P1

P0

n(s)ds (3.2.1)

where P0 and P1 are the extremum, δ represents the calculus variation and n(s) is the index

of refraction of the medium, which is a function of position along the path between points P0

and P1. In a homogeneous medium, the rays are straight lines wherein the index of refraction

is constant.

n(s) =

√
µε

µ0ε0
(3.2.2)

The solution of the electric and magnetic fields from the exact electromagnetic theory

can be expanded into power series in inverse powers of the angular frequency ω [24][25].

E(R
′
, ω) = e−jk0L(R

′
)

∞∑
m=0

Em(R
′
)

(jω)m
(3.2.3a)

H(R
′
, ω) = e−jk0L(R

′
)

∞∑
m=0

Hm(R
′
)

(jω)m
(3.2.3b)

where L(R
′
) is called the optical path length or eikonal and k0 =

√
µ0ε0 is the propagation

constant in the vacuum. The equiphase wave fronts are given by the level surfaces of the

eikonal function. The polarisation, the phase and wavelength are not taken into account

in the classical geometric optics. The extension of this technique can be done by using the

asymptotic solution of the Maxwell’s equation as ω →∞.

E(R
′
, ω) ≈ E0(R

′
)e−jk0L(R

′
) (3.2.4a)

H(R
′
, ω) ≈ H0(R

′
)e−jk0L(R

′
) (3.2.4b)
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In geometric optics, the eikonal equation came from the solution of the Maxwell’s equa-

tion, which is expressed in form [23]:

∣∣∇L(R
′
)
∣∣2 = n2 (3.2.5)

where the function L(R
′
) must satisfy the differential equation:

|∇L|2 =

(
∂L

∂x

)2

+

(
∂L

∂y

)2

+

(
∂L

∂z

)2

= n2 (3.2.6)

3.2.1 Propagation of rays in Geometrical Optics

The principle of GO can be proved by computing a secondary wave front surface Ln after a

short time t = tn+1 > tn with (n = 0, 1, 2, · · · ), from a primary wave front surface L0 at t0,

as illustrated in Figure 3.3. This secondary wave front is a straight line for an homogeneous

medium. However, it has a curvature in an inhomogeneous medium.

Figure 3.3: Primary and secondary wave of radiated wave after [24].

Since the rays in the medium move in a velocity equal to the velocity of light, the phase

increases between the 2 successive surfaces (ω/c)δL, while the wave traverses from one surface

to another with a time difference δt = t1−t0. Then, the secondary wave front L1 is described

from the connection of the surface normal to each of the rays [24].

The wave fronts are defined by letting the function L(R
′
) equal a constant. The local

wave vector ∇L(R
′
) evaluated at any point in space is always normal to the wave front

passing through it. The direction of the ray can be expressed as [26].

ŝ =
∇L
n

(3.2.7)
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where ŝ is the unit vector normal to the wave front. The fields at any point over a ray

are perpendicular to the ray.

3.2.2 Reflection on the boundary

To enhance the use of geometric optics, it is more important to define the behaviour of

the ray on the boundary, rather than determining the geometrical optics properties of rays

through the surface. In geometrical optics, the direction of the fields is defined by the ray

equation. Let r(s) be the position vector of the ray over the path and, since ŝ = dr/ds, the

equation can be written from (3.2.7) as [26]:

d2r

ds2
=
dr

ds
· ∇
(
dr

ds

)
= ŝ · ∇(ŝ) =

∇L
n
· ∇
(
∇L
n

)
(3.2.8)

In an homogeneous medium this equation is equal to zero, at which the wave front is a

straight line.

d2r

ds2
=

1

2
∇
(
|∇L|2

n2

)
= 0 (3.2.9)

At the boundaries, as the 2 mediums differ from each other in their reflective indexes

respectively, n1 and n2, as illustrated in Figure 3.4, the behaviour of the ray follows Snell’s

Law. The equation (3.2.8) is integrated at the point of reflection, where the tangential

component of the rays is vanishing, thus the incident ray is related to the reflected. Applying

Stoke’s theorem and assuming that the boundary surface is for δ → 0.∫∫
dS · ∇ × (ŝn) =

∮
C

dl · ŝn = 0 (3.2.10)

where dl is the differential line over the closed reflection surface and dS is the unit vector

normal to the surface.

Figure 3.4: Derivation from Snell’s Law: the unit vector ŝi is in the direction of the incident
ray and ŝr is in the direction of the reflected ray after [24]
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From Snell’s principle, the transmitted and reflected ray are:

n1sinθi = n2sinθt (3.2.11)

and at the reflection region, the indexes of refraction are identical (n1 = n2). From Figure

3.4, the angle of reflection is θt + θr = π. Therefore the relation between the incident and

reflected angles is:

n1sinθi = n1sinθr (3.2.12)

3.2.3 Propagation power of the rays

In geometric optics, the power per unit solid angle between two points is influenced by the

conservation of energy flux in a tube of rays [24]. The total power within the cross section

of the flux tube must be constant since power propagates in the direction of the rays only.

When the flux tube cross section dA0 and power density S0 are known at a reference point

and the flux tube cross section area dA is known, then the radiation density S is given in

terms of S0 as:

S0dA0 = SdA (3.2.13)

Radiation densities S and S0 are assumed constant throughout the cross section areas

dA0 and dA respectively, thus no power flows across the side of the tube [8]. For the

electromagnetic wave, the time average Poynting vector can be written as [26]:

S =
1

2
ReE ×H∗ =

1

2nη
ReE ×

(
∇L× E

)∗
=

1

2nη

(
E · E

)∗∇L
= ŝ

1

2η

∣∣E∣∣2 (3.2.14)

3.3 Physical Optics theory

Physical Optics (PO) or wave optics is one of the high frequency methods commonly used

for reflector antenna analysis because of its accuracy. It is based on current distribution

method by using Huygen’s principle as discussed in §3.1.1.
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3.3.1 Induced current density for PEC

The principle of PO is to integrate the induced current distribution on the reflector surface.

Considering the surface as a perfect conductor, the induced current density is the compo-

sition of the incident and reflected tangential magnetic fields on the surface. Ignoring the

contribution of current on the reflector shadowed region and the tangential component, the

H -field on the surface is doubled on the illuminated region, according to the method of im-

ages [27][24]. Assuming the reflecting surface to be locally plane, the physical optics current

density for a PEC (n̂×H i
= n̂×Hr

) is given by:

Js =

{
n̂×

(
H
i
+H

r)
; illuminated region

0 ; shadowed region
(3.3.1)

or

Js =

{
2n̂×H i

; illuminated region

0 ; shadowed region
(3.3.2)

where H
i

and H
r

are the incident and reflected magnetic fields computed across the surface.

In case of a dual reflector , the radiation field may radiate from the feed source or be

scattered from the sub-reflector. The PO technique can account for diffraction, interference

and polarization effects, as well as aberrations and other complex effects.

The radiation current density approximation represented in (3.3.2) is defined as the

Physical Optics approximation. It is valid only for large electrical size antenna structures,

i.e. either the radius of curvature of the reflector or the radius of curvature of the incident

wave are greater than about 5λ [27][28].

3.3.2 PO radiation fields

The radiation fields scattered on the reflector surface can be computed using eqs. (3.1.8a)

and (3.1.8b). The PO current over the surface is assumed to be constant in amplitude and

phase, the radiation integral is then reduced to a simple summation [16]. From (3.1.8b), the

magnitude of the magnetic field over a conducting surface is:

H(Ri) = − 1

4π

∫
∑
(
jk +

1

R′

)
R̂× Js(Ri)

e−jkR
′

R′ ds (3.3.3)

Computation is simplified by replacing the reflector surface
∑

by an adjacent N -plane

rectangular facet ∆k, where k = 1, · · · , N corresponds with the triangle. Replacing the
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surface
∑

by the triangle facet, then (3.3.3) becomes [29]:

H(Ri) = − 1

4π

N∑
k=1

(
jk +

1

R
′
k

)
R̂k × Tk(Ri)ds (3.3.4)

in which,

Tk(Ri) =

∫
∆k

Jk(Ri)
e−jkR

′

R′ ds (3.3.5)

and the PO surface current on the surface can be expressed in terms of the incident field

Hs.

Jk(Ri) = 2n̂k ×Hs(Ri) (3.3.6)

3.3.3 Dual-reflector application

PO technique is commonly used for dual reflector antenna analysis because of its accuracy.

Firstly, as the radiation feed source illuminates the sub-reflector, the induced current on

the sub-reflector is computed. Subsequently, the near field scattered from the sub-reflector

becomes a new source to illuminate the main reflector, and its far field scattered is determined

from the integration of the induced current over the reflector. The complexity of this method

is revealed by the use of the various coordinate systems of the structure as illustrated in

Figure 3.5.

Figure 3.5: Offset Gregorian dual reflector coordinate system after [30]
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3.4 Analysis of the diffraction effect on the sub-reflector

rim

3.4.1 Huygens-Fresnel principle of diffraction

One of the most difficult problems to solve in optics is the diffraction phenomenon. Diffrac-

tion theory is based on the Huygens-Fresnel principle. According to Huygens’ construction,

every point on a primary wave-front serves as a source of secondary spherical wavelets, such

that the primary wave-front is the envelope of these wavelets in a subsequent time (see Fig-

ure 3.6). Moreover, the wavelets advance with a speed and frequency equal to those of the

primary wave at each point in space. This principle was further added to Fresnel, where the

superposition of the secondary wave-front takes into account the amplitude and phase of the

wavelets [31].

Figure 3.6: Huygens geometry construction

The GO described earlier is used to determine the scattering field in the illuminated region

but cannot predict the non-zero field in the shadow. However, the analysis of diffraction on

the parabolic reflector edges or rim will permit the computation of the field in the shadow

region as illustrated in Figure 3.7. Wave diffraction in space is a local phenomenon at high

frequency, hence the field value of the diffracted rays is proportional to the field value of

the incident rays at the point of diffraction multiplied by a coefficient called the diffraction

coefficient [8].

26

Stellenbosch University http://scholar.sun.ac.za



Chapter 3. High-frequency Methods for Reflector Antennas

Figure 3.7: Rays diffracted in the parabolic reflector edges [32][23].

where QE is the diffraction point, the incident rays to the edge forms the edge diffracted

field ed ans the surface diffracted field sr. ES is the boundary between between ed ans sr

and tangent to the surface on QE. RB and SB define the shadow boundaries of the incident

and reflected field, respectively.

The computation of this diffraction coefficient depends strictly on the properties of the

waves and the boundary where the point of diffraction is considered. The complex geometries

of reflector antennas are approximated with the help of canonical problems to investigate

the diffracted field, where the exact edge geometry is simplified by this canonical problem.

This simple model is then used to calculate the diffracted field. The surface edge geometry

is defined for a canonical problem and the examination is reduced into a half plane problem

for analysis of a cylindrical reflector antenna.

3.4.1.1 Edge diffraction in the sub-reflector surface

The electromagnetic wave from the feed source illuminates the ellipsoid sub-reflector surface,

and the total electric field Etot is the sum of the incident field from the source Ei and the

radiated field from the reflector Er for a finite size antenna. However, in a discontinuous

medium such as an edge, the field on the shadowed region is not negligible according to

Huygens source. The total field in the aperture is given for this case as [23]:

−→
E tot =

−→
E iui +

−→
E rur +

−→
E d (3.4.1)

where
−→
E d is the edge diffracted field. The GO method can evaluate directly

−→
E i and

−→
E r;

and the diffraction integral is applied for
−→
E d resolution.

The analysis of reflector antennas results in a great improvement performance when

accounting the diffraction on the edge. The following sections describe the extension of the

27

Stellenbosch University http://scholar.sun.ac.za



Chapter 3. High-frequency Methods for Reflector Antennas

PO and GO methods, respectively called PTD or Physical Theory of Diffraction and GTD

or Geometric Theory of Diffraction.

3.4.2 Geometrical Theory of Diffraction

An incoming incident rays striking an edge surface boundary creates non-uniform diffracted

rays. Either PTD or GTD are, respectively, techniques used to describe this diffraction

phenomena at a particular region called the shadow, wherein, the electric field is assumed

to be zero for the ordinary GO.

3.4.2.1 Geometrical Optics fields

The GTD presented in this section is an assumption technique developed by Keller in 1950s

for the extension of GO as described in [33]. To make use of the efficiency of GO, Keller

took into account the diffracted ray in the shadow region; however the GTD is still limited

because of the non-uniformity of the diffracted fields on the transition region surrounding the

surface boundary [34]. Keller’s conception is based on Fermat’s principle, and investigates

the diffraction point location and the orientation of the diffracted rays propagation.

3.4.2.2 Diffracted fields on a curved surface

Figure 3.8 represents the diffraction at the curved surface edge. For an oblique incident ray

having an angle β0 on the edge, the diffracted field lies on the surface of a cone with an angle

β0/2. The diffracted electric field on the surface is expressed as [23]:

Ed(s) = Ei(QE) ·D(φ, φ
′
, β0)A(s)e(−jks) (3.4.2)

where Ei(QE) is the incident field at the point of diffraction QE, D(φ, φ
′
, β0) is the dyadic

diffraction coefficient for a perfect conducting wedge.
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Figure 3.8: Diffracted at a curved edge [24].

Then, the spacial attenuation factor or spreading factor A(s), which is defined as the

variation of the field intensity along the diffracted ray, for an incident spherical wave is given

as [24]:

A(s) =

√
ρ

s(ρ+ s)
≈
√
ρ

s
for s� ρ (3.4.3)

where s is the distance from the diffraction point to the field observation point and the ρ

is the distance between the caustic at the edge and the second caustic of the diffracted ray.

The caustic distance ρ is related to the normal incidence β
′
0 as [35]:

1

ρ
=

1

ρe
− n̂e · (ŝ

′ − ŝ)
asin2β0

(3.4.4)

in which,

ρe is the radius of curvature of the incident wave front at the point of diffraction taken into

the plane of the incident ray, containing the unit vectors ŝ
′

and ê;

a is the radius of curvature of the edge at the point of diffraction QE, and

n̂e is the unit normal vector to the edge directed away from the centre of curvature.

From Figure 3.8, the unit vectors β̂0

′

and β̂0 are related respectively by:

β̂0

′

= ŝ
′ × φ̂′

(3.4.5a)

β̂0 = ŝ× φ̂ (3.4.5b)

29

Stellenbosch University http://scholar.sun.ac.za



Chapter 3. High-frequency Methods for Reflector Antennas

The diffracted field is obtained from the dyadic diffraction coefficient at the edge. This

diffraction coefficient can be described by:

D(φ, φ
′
; β0) = −β̂ ′

0β̂0Ds(φ, φ
′
; β0)− φ̂′

φ̂Dh(φ, φ
′
, β0) (3.4.6)

where Ds and Dh are, respectively, the scalar diffraction coefficient for the soft boundary

condition (Dirichlet) and the scalar diffraction coefficient for the hard (Neumann) boundary

condition at the edge. They can be represented respectively by:

Ds(φ, φ
′
; β0) = Di(φ, φ

′
; β0)−Dr(φ, φ

′
; β0), (3.4.7a)

Dh(φ, φ
′
; β0) = Di(φ, φ

′
; β0) +Dr(φ, φ

′
; β0) (3.4.7b)

where

Di,r(φ, φ
′
; β0) = − e−jπ/4

2n
√

2πβsinβ
′
0

×

{
cot
[π + (φ+ φ

′
)

2n

]
F [kLia+(φ− φ′

)]

+cot
[π − (φ− φ′

)

2n

]
F [kLia−(φ− φ′

)]

∓
{
cot
[π + (φ+ φ

′
)

2n

]
F [kLrna+(φ− φ′

)]

+cot
[π + (φ+ φ

′
)

2n

]
F [kLroa−(φ+ φ

′
)]
}}

(3.4.8)

wherein F (X) is the transition function expressed as:

F (X) = 2j
√
XejX

∫ ∞
√
X

e−jτ
2

dτ ; (3.4.9)

and

a±(φ± φ′
) = 2cos2

(
2nπN± − (φ± φ′

)

2

)
(3.4.10)

at which N± are the integers which mostly satisfy the equations [23]:

2πnN+ − (φ± φ′
) = π (3.4.11a)

2πnN− − (φ± φ′
) = −π (3.4.11b)
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where Li and Lr are the distance parameters, which expressed as

Li =
s (ρie + s) ρi1ρ

i
2β0

ρie (ρi1 + s) (ρi2 + s)
; (3.4.12a)

Lr =
s (ρr + s) ρr1ρ

r
2β0

ρr (ρr1 + s) (ρr2 + s)
(3.4.12b)

where ρi1, ρi2 and ρr1, ρr2 are the principal radii of curvature of the incident wavefront and

the reflected wavefront at the point of diffraction QE respectively. Then, ρie, ρ
i
r are radii

of curvature of the incident and reflected wave front at the point QE taken from the plane

containing the incident, the reflected and diffracted ray respectively and the unit vector ê.

The superscripts ”o” and ”n” on Lr in equation (3.4.8) indicate the radii of curvature ρr1,

ρr2 and the distance parameters ρr must be calculated from the ”o” face and ”n” face of

the wedge. At the far field observation where s � ρi, ρi1, ρ
i
2, ρ

r, ρr1, ρ
r
2, eqs. (3.4.12a) and

(3.4.12b) reduce into:

Li =
ρi1ρ

i
2

ρie
sin2β

′

0 (3.4.13)

and

Lro = Lrn = Lr =
ρr1ρ

r
2

ρr
sin2β

′

0 (3.4.14)

3.4.3 Physical Theory of Diffraction

The PTD or Physical Theory of Diffraction is an asymptotic technique developed in the

1950s by Professor Ufimtsev to overcome the diffraction issue [36]. It is an improvement of

PO technique wherein the diffraction effects such as the discontinuity of the surface currents

at boundaries of the illuminated and shadow regions near the edges of the surface is taken

into account.

The PO current in (3.3.2) §3.3.1 is corrected by a nonuniform current that accounts for

diffraction effects and is expressed as [37]:

−→
J s(r) =

−→
J PTD(r)−

−→
J PO(r) (3.4.15)

where
−→
J PO(r),

−→
J PTD(r) are the PO and the PTD current contribution respectively,

Js(r) is the surface current density.

Besides, the scattered field in PTD is, of course, different from that calculated using

the Geometrical Theory of Diffraction, because it includes the ”nonuniform” current or the

fringing current at the surface edges. The total scattered fields resulting from the current
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on the surface is given as:

Es
tot(r) = Es

PO(r) + Es
PTD(r) (3.4.16)

Es
PO(r) and Es

PTD(r) are the PO and the PTD scattered fields respectively. The compu-

tation of the scattered fields for this present method is discussed in the next paragraph.

3.4.3.1 Method of Equivalent Current

Es
PTD(r), called the correction term, can be calculated by using the Method of Equivalent

Current(MEC). The MEC reduces the evaluation of surface integrals for the fringe surface

currents to line integrals around the edges of the surface of the scatterer, as discussed in

literature [38],[39]. Using MEC, the PTD scattered fields are described as:

Es
PTD(r) =

jk0

4π

∮
(η0r̂ × r̂ × If + ŝ×Mf )

−jk0r

r
dl (3.4.17)

If and Mf are the fringe electric and the magnetic equivalent edge currents respectively.

Asymptotic techniques as GTD and PTD have been performed to deal with the diffraction

problem. However, they are sometimes limited by the size and the complexity of the geometry

of the antenna, even though several approximations are applied to accomplish the task and

to obtain the correct results.

Actually, the development of various software solutions for antenna analysis not only

reduces the task of an engineer, but also standardises a low cost antenna design. Moreover,

the electromagnetic problem involving particularly the scattering, propagation, radiation

and acoustic fields can be also proved using a Plane Wave Spectrum or PWS. This method

is outlined in a subsequent section.

3.5 Antenna Radiation pattern using Plane Wave Spec-

trum

Several methods have been developed for the resolution of electromagnetic problems. Each

method has its own particular advantages. The combination of methods is actually necessary

to investigate the properties of antennas with complex geometry.

Superposition of plane waves propagating in different directions with different amplitudes

is called a Plane Wave Spectrum or an angular spectrum of a plane wave [1]. It is applied to

compute the test zone field from a known reflector aperture field distribution. This method is

accurate for the investigation of reflectors having a notched rim for reduced edge diffraction

[40].
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3.5.1 Plane waves spectrum representation

The properties of a plane wave travelling in a uniform, isotropic and lossless open region is

described in literature [41]. Waves are said to be plane if their equi-phase surface is planar.

If the equiamplitude surfaces of plane waves are also equiphases, then, they are known as

homogeneous. Assuming that the total field satisfies the harmonic time dependence ejwt,

given by the homogeneous Helmholtz equation [19] [42]:

∇2E(x, y, z) + k0E(x, y, z) = 0 (3.5.1)

where k0 = w
√
µ0ε0 is the wave number in free space. Therefore, the electric field solution

of (3.5.1) can be written in terms of the angular spectrum, which is the superposition of

plane waves propagating in different directions with different amplitudes:

E(x, y, z) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
F (kx, ky, z)e

−jkrdkxdky (3.5.2)

Figure 3.9 illustrated the free space propagator vector k and the position vector r are re-

spectively and they are described by:

k = kxx̂+ kyŷ + kz ẑ = k0(ux̂+ vŷ + wẑ) (3.5.3a)

r = xx̂+ yŷ + zẑ (3.5.3b)

In spherical coordinates, u = sinθcosφ, v = sinθsinφ and w = cosθ are the direction

cosine.

Figure 3.9: Plane wave propagation coordinate system.

By replacing the value of k and r, (3.5.2) can be written in spectral domain for z = 0 as

[43][44]:

E(x, y, 0) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

F (kx, ky)e
−j(kxx+kyy)dkxdky (3.5.4)
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and the wave number in z-direction is given by:

k2
z = k2

0 −
(
k2
x + k2

y

)
(3.5.5)

or

kz =

 +
√
k2

0 − (k2
x + k2

y), if k2
x + k2

y ≤ k2
0

−j
√

(k2
x + k2

y)− k2
0, if k2

x + k2
y > k2

0

(3.5.6)

when k2
x + k2

y ≤ k2
0, the real value of kz will correspond with the radiation field of the

aperture, kz corresponds to the evanescent waves for k2
x + k2

y > k2
0, and F (kx, ky) is the

two-dimensional angular spectrum of the field.

3.5.2 The Angular spectrum approximation

The antenna far field is approximated by the angular spectrum. The PWS method requires

two general assumptions for far field antenna computation which are [1]:

a. the aperture antenna dimensions have a finite length, wherein the field sources lying

in the half-space behind the aperture plane are finite and occupy a finite volume;

b. the kr values must be large compared to the wavelength and the greatest dimension

of the aperture .

The two-dimensional inverse Fourier transform integral is computed using the method of

stationary phase, as described in literature [41][6]. The integral equation (3.5.6) is computed

using this method and the radiated far field can be expressed approximately as:

E(r, θ, φ) ' jk
ejkr

2πr
[cosθf(kx, ky)] (3.5.7)

with

f(kx, ky) = fx(kx, ky)x̂+ fy(kx, ky)ŷ + fz(kx, ky)ẑ (3.5.8)

The θ and φ components are dominant in the far zone field. (3.5.7) shows that the two-

dimension inverse Fourier transform can be approximated into a multiplication of a normali-

sation constant with a trigonometric function. Despite this fact (3.5.7) is valid for only some

values of stationary points which can be described as:

kx = k0sinθcosφ (3.5.9a)

ky = k0sinθsinφ (3.5.9b)

kz = k0cosθ (3.5.9c)
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The Eθ and Eφ component can then be written as:

Eθ(r, θ, φ) ' jk
ejkr

2πr
(fxcosθ + fysinφ) (3.5.10a)

Eφ(r, θ, φ) ' jk
ejkr

2πr
(−fxsinθ + fycosφ) (3.5.10b)

3.6 Conclusion

In this chapter a brief overview of some high frequency asymptotic techniques from CEM

theory are presented. It is shown that the diffraction limitations of the GO and PO tech-

niques can be corrected for by including the diffraction term analysis using the PTD and

GTD extension methods. These are based on the physical and geometrical assumption re-

spectively and are accurate for electrically large antennas. These two techniques used often

for computer-aided applications because they produce favourable memory and runtime re-

sults. Even if several approximations are assumed for the dual reflector antenna analysis,

these high-technique methods are restricted by the complexity of the dual reflector antenna

geometry.
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Chapter 4

Description of a Gregorian Reflector

Antenna and Creation of a FEKO

Reference

Introduction

A
reflector antenna with a low polarization and side lobe level is difficult to engineer

because of the aperture blockage or scattering of the feed or sub-reflector. An offset

antenna is a most interesting structure employed to avoid not only this blockage, but also the

multiple reflections between the feed and reflectors, although an increase of cross polarization

is the penalty.

This chapter highlights a description of a classical offset dual reflector; section 4.1 shows

the geometry structure for a particular type of offset reflector, section 4.1.5 describes pa-

rameters of the design and section 4.2.1 investigates the feed system.

The full antenna radiation properties are computed using a numerical method, based on a

combination of Method of Moments (MoM) and the Physical Optics high frequency technique

using a software package FEKO in section 4.2. This technique is suitable for accurate analysis

of an offset dual reflector antenna when the following is done: an analytical function is used

to approximate the pattern of the feed, and the antenna system is then subdivided into two

parts with ; the MoM applied for the small sub-reflector and PO for the main reflector.
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4.1 Description of the Gregorian Reflector Antenna

4.1.1 Gregorian geometry structure

An offset Gregorian reflector antenna is a paraboloidal reflector with a concave sub-reflector

of ellipsoidal shape, located at a distance from the vertex of the prime reflector, that dis-

tance being greater than the prime focal distance of the main reflector. The system offers

several significant advantages over its axis-symmetric counterpart for many applications,

such as remote sensing, satellite communications, radio astronomy, etc. Figure 4.1 depicts

the geometric structure of this antenna and its parameters are described in Table 4.1.

Figure 4.1: Front and side view of a Gregorian dual reflector after [45]

F0 and F1 are the foci of the ellipsoid sub-reflector. F0 is pointed at the prime reflector

focal point and the feed source is placed at F1. Rays from F1 are reflected by the sub-reflector.

Reflected rays will emanate the main reflector through F0.

(0, xsr, zsr) is the sub-reflector axis and (0, xm, zm) defines the main reflector axis, which

is situated at the system axis (0, x, z). These two axes are tilted at an angle β. Angles are

considered positive if the rotation on the y axis is counterclockwise, and negative if in the

opposite direction [46], except for the angle θe on the sub-reflector, which is always positive.
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Table 4.1: Gregorian design parameters
Parameter Description

D Diameter of the main reflector on the xy plane
f Focal length of the parabolic main reflector
d0 Distance between the point Q0 on the main and the sub-reflector z

axis
dc Minimum vertical distance between the main and the sub-reflector

edges along x axis
θ0 Offset angle of the main reflector
θm Offset angle at the top of the main reflector
θL Offset angle at the bottom angle of the main reflector
β Tilt angle between the sub- and main reflector
e eccentricity of the ellipse(0 ≺ e ≺ 1)
θe Half-angle subtended by the sub-reflector as viewed from the focal

point F1

a Surface parameter of the sub-reflector
c Half interfocal distance
α Tilt angle between the sub-reflector and the feed
Vs Sub-reflector projection height
Lt Maximum length of the antenna system along the x axis
Ls Distance between the focal point and the point P0 on the sub-

reflector
Lsr Maximum diameter of the sub-reflector
Lm Distance between the sub-reflector point P0 and the point Q0 on

the main reflector

4.1.2 Main Reflector

4.1.2.1 Characteristics of the Main Reflector

The prime reflector has a circular aperture when projected on the aperture plane. It is

described by the diameter D of the paraboloid, the focal length f, and offset distance d0.

In Figure 2.4, f represents the focal length of the paraboloid with the origin located on the

second focal point F0, ρm is the distance from that focal point F0 into the paraboloid surface

point and θ is the offset reflector angle.

4.1.2.2 Main reflector parameters

The offset angle of the main reflector has three different values, which are: θ0, the angle from

the main reflector z-axis into the centre of the paraboloid surface and, θL, θm, the bottom
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and the top angle respectively. From Figure4.1 the equation can be written:

tan

(
−θ0

2

)
=
d0

2f
(4.1.1a)

or

θ0 = −2arctan

(
d0

2f

)
(4.1.2a)

The bottom and the top offset angle of the main reflector can be derived from (4.1.2a) as:

θL = −2arctan

(
d0 − D

2

2f

)
(4.1.3a)

θm = −2arctan

(
d0 + D

2

2f

)
(4.1.3b)

D is the diameter of the main reflector and d0 is the clearance between the top of the

sub-reflector and the bottom of the main reflector. The negative sign indicates that the

orientation of the angle is counterclockwise.

4.1.3 Sub-reflector

4.1.3.1 Characteristics of the sub-reflector

A sub-reflector that has an elliptical aperture is described by its projected height Vs, the

tilt angle between the main reflector and sub-reflector axis β, interfocal distance 2c, and

eccentricity e, as listed in Table 4.1.

The feed parameters are the sub-reflector edge angle θe, as observed from the reflector

system focus, and the feed pointing angle α; and Lt is the total length of the antenna

system. The ellipse is the locus of points for which the sum of the distances from two

given points, viz the foci, is constant and equal to 2a; where a is the major radius of the

ellipse(F1P0 + F0P0 = 2a). Thus the surface of the ellipse is defined as:

ρm + ρs = 2a (4.1.4)

or in terms of the interfocal distance and eccentricity as:

ρm + ρs =
2c

e
(4.1.5)
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4.1.3.2 Reflection from the sub-reflector

The ellipse is rotated about its axis to form solid a figure that reflect incident spherical waves

into spherical waves with different caustics (focus).The sub-reflector changes the curvature

of waves coming from one focus into waves with their caustic at the second sub-reflector

focus. In polar coordinates, this can be defined as:

ρ =
eT

1− ecosθ
(4.1.6)

where T is the distance from the focal point into a line called the directrix Figure 4.2(b)

[47], ρ is the distance from the focus onto the sub-reflector surface and θ is the offset main

reflector Figure 4.2(a).

(a) (b)

Figure 4.2: Ellipsoid geometry. (a) rectangular coordinate. (b)section of the ellipse sub-
reflector

The eccentricity e of the sub-reflector is the ratio of the distance from the origin of a point

on the curve to the distance from the same point to the directrix e = R1

R2
. For a Gregorian

system this distance T is given in terms of the interfocal distance as [16]:

T =
c(1− e2)

e2
(4.1.7)

Put (4.1.7) into (4.1.6), the distance from the left focus of the sub-reflector denoted ρm

is:

ρm =
(c
e

) e2 − 1

ecosγm − 1
(4.1.8)
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and the distance from F0 onto the sub-reflector surface can be derived:

ρs = −
(c
e

) e2 − 1

ecosγs + 1
(4.1.9)

The projection of the line F1P0 onto the sub-reflector axis zsr gives angle γm, and γs is

the projection of the line F0P0 onto the zsr axis. These angles are related by the eccentricity

[48].

(e+ 1)tan
(γm

2

)
= |e− 1| tan

(γs
2

)
(4.1.10)

4.1.4 Equivalent parabola analysis

A dual offset reflector model can be geometrically transformed on its equivalent parabola.

This new geometry is based on the optics theory and eases the analysis. This model geometry

is illustrated in Figure 4.3. An equivalent parabola geometry has the same diameter as the

dual offset (D = Deq), but its focal length feq is longer than that of the paraboloid main

reflector. The ratio of these 2 focal lengths is called the magnification, M = feq/f for a

Gregorian system, it is given in terms of the eccentricity by:

M =
1 + e

1− e
(4.1.11)

Figure 4.3: Equivalent paraboloid of a dual offset Gregorian geometry with circular aperture
after [48]

The field of rays flowing from the source into a point on the aperture plane of the main

reflector in the x-axis, if it has an equivalent paraboloid, is related as follows [48]:

EP (θ, φ) =
E(θ, φ)

ρeq
(4.1.12)
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with

ρeq =
2feq

1 + cos(γf )
(4.1.13)

and the equivalent focal length is:

feq = f
|e2 − 1|

(e2 + 1)− 2ecosβ
(4.1.14)

Equation(4.1.12) shows that the radiation aperture field at P is similar to that of the equiv-

alent paraboloid. Then, the radiation aperture field of the equivalent paraboloid is similar

to the aperture of an offset dual reflector antenna if the diffraction effects are ignored.

Based on the equivalent parabola principle, α is defined as the angle of orientation of the

equivalent paraboloid. It depends on both the eccentricity of the ellipsoid sub-reflector and

the angle β as indicated in (4.1.16). This is applied from the Muzigutchi condition, which

is used to reduce the cross-polarization of the antenna systems [49][50].

tan
(α

2

)
=
|e2 − 1|
e2 + 1

tan

(
β

2

)
(4.1.15)

or

α = 2arctan

[
|e2 − 1|
e2 + 1

tan

(
β

2

)]
(4.1.16)

The intersection of an ellipsoid with any circular cone having a vertex at either focus is a

symmetric planar curve [51]. The equivalent paraboloid can be symmetric depending upon

the selection of the antenna system parameters, which reduces the spillover losses.

Hence the offset dual reflector system with focused feed equivalent can be analysed as a

single paraboloid surface.

4.1.5 Antenna design parameters

For this present case, five of these parameters described in Table 4.1 are defined as input

parameters. D, θL for the prime reflector; β, Lsr for the sub-reflector and the ratio f /D. This

last one is a free parameter for the engineer, which is in fact constrained in practice. A lower

value of this parameter will bring the feed into the optical path, while too high value will

place the feed behind the main reflector. Computation of the derived parameters obviously

relies on the input. The design procedure will be started with a few steps of calculation.

4.1.5.1 Ellipsoid parameters

First, the eccentricity e of the sub-reflector depends strictly on the value of the angle β,

which should be positive to avoid not only a complex value for e, but also a feed blockage
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on the prime reflector. For the case of a Gregorian system, eccentricity is given by [46]:

e =
1−

√
tan(β/2)
tan(β−θ)/2

1 +
√

tan(β/2)
tan(β−θ)/2

(4.1.17)

Vs is the sub-reflector projection height, which is equal to the difference between the

maximum and minimum values of the ellipse in x coordinate (x value of the points P1 and

P2 respectively (see Figure 4.1).

Vs = xP1 − xP2 (4.1.18)

from (4.1.9), the sub-reflector surface on the xsr coordinate is derived

xsr = ρssinθ = −
(c
e

) (e2 − 1)sinθ

ecos(θ − β) + 1
(4.1.19)

According to (4.1.19), the maximum and the minimum distance of the sub-reflector, which

is related to xP1 and xP2 depends on the offset angle of the main reflector. Thus, the

sub-reflector projection height can be expressed as:

Vs =
(c
e

) (e2 − 1)sinθm
ecos(θm − β) + 1

−
(c
e

) (e2 − 1)sinθL
ecos(θL − β) + 1

(4.1.20)

and hence the interfocal distance of the ellipse can be taken from (4.1.20), and the minimum

radius Rmin of curvature of the sub-reflector can be calculated in terms of the eccentricity

and interfocal distance (4.1.22).

c =
eVs

(e2 − 1)
[

sinθL
ecos(θL−β)+1

− sinθm
ecos(θm−β)+1

] (4.1.21)

Rmin =
c |e2 − 1|

e
(4.1.22)

Angle α, defined as the feed angle, can be derived from the Muzigutchi condition in

(4.1.16).

α = 2arctan

[
e+ 1

e− 1
tan

(
β

2

)]
(4.1.23)

The half subtended angle of the ellipse sub-reflector as viewed from the first focal point θe

is computed from (4.1.10). From Figure 4.2, if the angle situated at the first focal point

is expressed in terms of α and the angle on the second focal point represented by β, then

angles can be expressed as: γm = α + θe and γs = θL + β. Thereafter (4.1.10) becomes:

tan

(
α + θe

2

)
=

1− e
1 + e

tan

(
θL + β

2

)
(4.1.24)
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and,

θe = 2arctan

[(
1− e
1 + e

)
tan

(
θL − β

2

)]
− α (4.1.25)

4.1.5.2 Paraboloid design parameters

The main reflector is characterized by the distance dc, which is equal to the difference between

its lower rim and the upper rim of the sub-reflector in the x coordinate. It is convenient for

this height to be positive, to eliminate blockage.

dc = xQ1 − xP2 = d0 −
D

2
+
(c
e

) (e2 − 1)sinθL
ecos(θL − β) + 1

(4.1.26)

Let Lmr and Lsr be the length of the main and the sub-reflector on the z-axis, respectively.

The maximum length of the system Lt is the sum of these two lengths. From Figure 4.1,

these distances are Lmr = ρmcosθ and Ls = −ρsrcosθ. Replacing ρm and ρs on each value

respectively, then the maximum length of the system is given by:

Lt = Lmr + Lsr =
2fcosθL

1 + cosθL
+
(c
e

)( 2cosθL(e2 − 1)

ecos(θL − β) + 1

)
(4.1.27)

From these design equations, values of the parameter are computed for f/D = 0.33 at a

frequency Freq = 1.25 GHz, as illustrated in Table 4.2. Angles are in degrees and lengths or

diameter are expressed in terms of the wavelength λ.

Table 4.2: Parameter Values computed from the design equations
Parameter Value

D 50λ
d0 25λ
β 33.28◦

θL 0◦

Lsr 16.67λ
α -64.89◦

e 0.36
c 3.71λ
dc 0
Lt 23.55λ
θe 48.89◦

Rmin 8.95λ

The lower offset angle of the main reflector is equal to zero(θL = 0). Thus, the system

is situated on the main reflector z axis (dc = 0). A 2D plot of the Gregorian model is

depicted in Figure 4.4. Thereafter, parameter values are transferred in FEKO to create the

corresponding 3D geometry.
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Figure 4.4: An offset Gregorian dual reflector antenna geometry generated in Matlab

4.2 Creation of a Gregorian antenna Reference in FEKO

4.2.1 The system feed

Selection of the feed system is one of the most important parts of the design. System require-

ments determine the feed type, which depends upon the frequency range of the antenna. A

linear polarized application frequently uses a horn as a feed. This generally provides the

most efficient antenna system for dual-reflector antennas and has very low insertion loss and

often a Gaussian shape pattern that has minimal spillover loss [30]. The performance of

antenna systems is improved by knowing the feed configurations. Horn or waveguide feeds

with single mode are the most often used for antenna reflectors [28]. The ideal feed source

with a radiation pattern as defined in (2.3.2) in §2.3, illuminates the sub-reflector.

4.2.1.1 Simulation in FEKO

An analytical function, which approximates the feed pattern, is generated in FEKO.

FEKO is a numerical electromagnetic software package. It is used for designing and

investigating electromagnetic problems, based on a full wave solution of Maxwell’s equations.

FEKO uses Method of Moments (MoM) technique or hybrid methods including Physical

Optics (PO), GO and GTD alongside with MoM for the analysis of electromagnetic problems.

This technique is based on the integral equation and gives a solution in frequency domain.

Parameters in Table 4.2 were used to create the model of the dish reflector in FEKO. The

source, linearly polarized, is positioned on the focal point of the reflector. The full Method
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of Moments technique is used for various values of f /D to compute the antenna gain in the

far field. Figure 4.5 depicts the orientation of the ideal source towards a paraboloid reflector

in rectangular coordinates.

Figure 4.5: Ideal source oriented towards a paraboloid reflector with the diameter of the dish
D = 50λ, generated with FEKO

4.2.1.2 Method Of Moments

Historically, Method of Moments technique or MoM was the first numerical method applied

to electromagnetic problems in the 1960s [10]. Its principle is to transform an integro-

differential equation into a set of simultaneous matrix equation (or linear equations) which

may then be solved by numerical techniques.

With MoM technique, an equivalent current is computed to replace the scattering surface

[52]. The conducting surfaces are segmented into small rectangles, which is called meshing.

Then the normal surface currents are estimated on each rectangle by obtaining the current

distribution on the surface. A fine mesh is required in MoM to obtain an accurate result.

Using FEKO, a minimum mesh step size of one tenth of a wavelength is suggested [53].

4.2.1.3 Results gain of the feed

As mentioned earlier, for each variation of f /D there is only one maximum value of aper-

ture efficiency each of the different feeds, which involves a maximum gain. The red curve

represents the analytical approximation calculation and the plot in blue is the results from

the CEM code in FEKO. Gain results are plotted in terms of the subtended angle θ0 and

compared in Matlab as illustrated in Figure 4.6.
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(a) (b)

(c) (d)

Figure 4.6: Comparison of approximate gain of the full-wave results from FEKO and the
analytical approximation for different feed sources (a) n=2, (b) n=4, (c) n=6 and (d) n=8.

At high frequency, the diffraction effect on the dish edges can be neglected. Then, for a

large electrical size of reflector, for example D=50λ (reflector diameter), the full wave FEKO

results and the analytical approximation agree well. The full-wave methods are accurate for

the analysis of the reflector, but they are used especially for a small electrical size antenna

because their computation run time tends to be intensive.

The analytical approximation run time is much faster than the MoM technique; a few

seconds in Matlab against 5 minutes for numerical computation (FEKO) at a single fre-

quency.

4.2.1.4 Advantages of using a dual reflector

The major advantage of using a dual offset reflector is that the feed does not block the

aperture. Considering the equivalent parabola gives an easy analysis of the antenna reflector
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characteristics. The axis of the equivalent paraboloid is oriented in the angular centre of

the sub-reflector, this condition yielding an axially symmetric equivalent paraboloid, thereby

minimizing spillover losses.

The ability to use computer-aided design (CAD) tools has become an essential require-

ment for a good antenna engineer. Furthermore, a large number of antenna design software

packages and electromagnetic tools have been developed and have appeared on the market

[10]. FEKO, which was used in this project, can even use hybrid methods to compute an-

tenna properties. Besides this, the prime and sub-reflectors for a dual reflector model can

be analysed by two different methods, for example to increase the speed of the simulation,

or to make results more accurate.

4.2.2 Gregorian reflector antenna simulation using hybrid tech-

nique

The methods available to solve electromagnetic problems depend on the nature and size of

the antenna. FEKO, which is a commercial electromagnetic package based on Method of

Moment and extensions, is used to generate a reference solution of the antenna topology

under consideration.

A 3D model of an offset Gregorian dual reflector antenna as generated by CADFEKO (a

component of FEKO) as illustrated in Figure 4.7. The model is created using the variables

listed in Table 4.3. The system axis defined by (x,y,z), is placed at the dish focal point.

The sub-reflector focal point F0. The distance d0 ≥ 0 is chosen to reduce the feed blockage

by putting the sub-reflector on the boundary of the main beam. Radiation from the source

is deflected by the ellipsoidal sub-reflector through its virtual focal point F1. This point is

coincident with the focus on the dish main reflector; this main reflector will collimate the

beam to give the pencil beam radiation pattern of the system.

Figure 4.7: 3D Geometry of an Offset Gregorian Dual reflector generated from CADFEKO
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Table 4.3: Parameters of the antenna design
Parameter Values Unit

Antenna system

f/D 0.33
Lm 36.172 λ
Lt 23.626 λ
Ht 61.987 λ

Main Reflector

D 50 λ
f 16.66 λ
d0 0 λ
h 25 λ
θ0 -1.287 rad
θm -1.966 rad
θL 0 rad

Sub-Reflector

c 3.708 λ
Vs 11.82 λ
Rmin 8.984 λ
Lsr 16.67 λ
Ls 10.606 λ
β 0.581 rad
θe 0.853 rad
α -1.133 rad
e 0.360

4.2.2.1 FEKO simulation set-up

The surface of the parabolic main reflector is large compared to the size of the sub-reflector,

as shown in Table 4.3. The solution of such a problem can be better found by separating

the solution in three steps as:

� Description of the feed pattern,

� Computation of the sub-reflector radiation pattern using the MLFMM technique in

FEKO,

� Computation of the main reflector pattern using PO approximation.

4.2.2.2 Feed pattern description

The feed is simplified by recognising that a horns radiation pattern can be well approximated

by an analytical formula which specifies the pattern as having a cosnθ dependence on the

angle of boresight. This analytical function is generated by FEKO and it radiation pattern

is shown in Figure 4.8.
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Figure 4.8: Radiation pattern of the idealised feed cos7θ.

4.2.2.3 Sub-reflector pattern

Figure 4.9 illustrates the 3D geometry of the ellipsoid sub-reflector generated by CAD-

FEKO where the analytical feed pattern is used to excite the sub reflector. Adopting the

FEKO guidelines, the sub-reflector is of moderate electrical size (up to approximately 10λ

in diameter) and can be treated using the MoM formulation, and specifically the iterative

MLFMM (Multi-level Fast Multipole Method) implementation thereof.

It is applied to accelerate the matrix-vector multiplication operation to solve the iteration

of the matrix system. The MLFMM technique improves a slow solution time which is

proportional to N ∗ [logN ]2 and requires a scaling in memory proportional to O(NlogN),

against O(N2) memory requirement and a computational complexity of O(N3) for MoM

[53][54][55].

(a) (b)

Figure 4.9: (a) Front and (b) side view of the ellipoid sub-reflector oriented towards the
feed source

Figure 4.10 shows the radiation pattern of the feed and sub-reflector combination. The
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’ripple’ in main beam is a result of the interaction of diffraction terms of the sub-reflector

edges. This effect of amplitude of about +/-1 dB is significant because it is the first deviation

from the GO solution to manifest as the model is run for descending frequencies.

Figure 4.10 shows that the amplitude of the ripple depends on the diffraction pattern of

the sub-reflector. This diffraction pattern is frequency dependent.

Figure 4.10: Radiation pattern of a 16.67λ sub-reflector illuminated with a -10 dB edge taper
pattern at different frequencies.

4.2.2.4 Radiation pattern of the Gregorian antenna system

Once the feed and sub-reflector pattern is known this combined radiation pattern of the sub-

reflector is saved in a FEKO ”.ffe” file and is used to illuminate the main reflector. The new

source is positioned at the focal point of the paraboloid main reflector, which is coincident

with the virtual focal point of the sub-reflector. The limitation of this approach is that the

dish should be in the far field of the sub-reflector and while this criterion is met at the upper

frequencies.

The FEKO simulation provides an approximate full wave radiation pattern of the antenna

system as shown in Figure 4.11.
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(a) (b)

Figure 4.11: (a)front and(b)side view of the paraboloid main reflector pointed towards the
new source with D=50λ, freq=1.25 GHz and f/D = 0.33.

For a single frequency freq=1.25 GHz, the simulation for 6 hours for a full far-field solution

(number of points 180x360) in FEKO by applying the hybrid method (PO + MLFMM). This

simulation time is reduced somewhat by reducing a number of far field points but for a high

gain antenna filed pints spaced a fraction of the beamwidth apart are required over the region

of interest.

(a) (b)

Figure 4.12: Radiation pattern of an offset Gregorian dual reflector antenna in (a): H- and
(b): E-plane for different frequencies with f/D=0.3333.

52

Stellenbosch University http://scholar.sun.ac.za



Chapter 4. Description of a Gregorian Reflector Antenna and Creation of a FEKO
Reference

(a) (b)

Figure 4.13: Radiation pattern of an offset Gregorian dual reflector antenna in (a): H- and
(b): E-plane for different frequencies with f/D=0.65.

Results in Figure 4.12 illustrate the frequency dependence of the antenna gain and they

show the advantages of using a reflector antenna, such has a high gain, narrow beamwidth

and low side lobe level. By comparing Figure 4.12 and Figure 4.13, it is clear that the f/D

parameter affects not only the gain but also the side lobe level, which increases with this

parameter.

4.3 Conclusion

The classical design of a dual offset Gregorian reflector antenna requires an analysis of several

parameters of the feed or reflectors. However, some of them can have a trade-off depending

upon the application. Maximum gain is obtained when the feed is pointed at the focal

point of the sub-reflector, while displacement of the source towards the sub-reflector can

reduce the diffraction effects. Furthermore, the high frequency technique is suitable for the

analysis of a dual reflector antenna. The computation effort is however too large for the fast

iterative analysis, an approximate solution is then proposed as a fast and practical way of

investigating the reflector pattern.
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Chapter 5

Fast Approximation Technique for

Reflector Antenna Patterns

Introduction

D
etermination of the radiation pattern is the major issue in this antenna characteri-

zation. A fast approximate solution to the radiation pattern of a Gregorian antenna

is discussed in this chapter. Three steps are involved:

� find an equivalent feed pattern including an approximate diffraction term. To do this:

1. The feed pattern is approximated by an analytical function, as was done for the

FEKO model.

2. The E-field that the feed generates at the sub-reflector is found using the Plane

Wave Spectrum (PWS) of the feed. To do this:

(a) the analytical radiation pattern is converted to a Plane Wave Spectrum,

which requires only the introduction of a cos term;

(b) As the axis of the feed horn is not perpendicular to the aperture of the

sub-reflector an axis rotation of the field is required. In accordance with

Fourier theory this is accomplished by adding a linear phase delay term in

the opposite domain, which in this case is the spatial domain.

3. The focussing effect of the sub-reflector is now taken into account by adjusting

the phase of the field. This is done by first finding the point of reflection for any

ray and then the required phase delay can then be found as the product of the

wave number and the physical distance from the aperture plane to the refection

point and back.
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4. The limited size of the sub-reflector can now be taken into account by trun-

cating the field outside of the reflector region. This introduces an approximate

diffraction effect.

5. Transforming the field back to the source produces the equivalent feed pattern

inclusive of an approximate diffraction term.

� the offset dual reflector geometry is replaced with an equivalent parabola,

� find the radiation pattern of the equivalent system by combining the standard aperture

integration technique with the Gauss- Legendre quadrature integration technique [19].

5.1 Radiation pattern of the sub-reflector using PWS

In this quasi-analytical approximation approach, an equivalent parabola geometry is consid-

ered; the two reflectors are pointed towards the feed source, wherein only the feed axis is

considered for the entire problem.

The feed located at the second focal point of the ellipse forms a beam parallel to the focal

axis and its pattern intensity is approximated from an analytical function given by (2.3.2).

The radiation properties in the sub-reflector focal region are found by computing the plane

wave spectrum integral using FFT algorithm.

A rectangular mesh grid is created at the feed axis, the size of the aperture is taken to

be equal to the size of the sub-reflector, as illustrated in Figure 5.1(b). The mesh grid is

created by the following expressions[56][6]:

∆x =
Lsr

Nx− 1
, x = −Lsr

2
+m∆x, −Nx

2
≤ m ≤ Nx

2
− 1 (5.1.1a)

∆y =
Lsr

Ny − 1
, y = −Lsr

2
+ n∆y, −Ny

2
≤ n ≤ Ny

2
− 1 (5.1.1b)

where Nx and Ny are the number of points distributed in the x-and y direction of the aperture

plane respectively. ∆x and ∆y represent the sample spacings. The selection of ∆x and ∆y

will lead to PWS equally spaced in k-space. The sample spacings and spectral extents are

given as:

∆x =
π

kx0

(5.1.2a)

∆y =
π

ky0

(5.1.2b)

where kx0 and ky0, real numbers, denote the largest magnitudes of kx and ky respectively.
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The corresponding spectral spacings ∆kx, ∆ky in k space are given respectively by:

∆kx =
2π

Nx∆x
(5.1.3a)

∆ky =
2π

Ny∆y
(5.1.3b)

The spacing between the sampling points should be less than or equal to λ/2 to satisfy the

Nyquist criterion. Reduction of this sampling interval has no benefit for a higher resolution

in the far field.

(a) (b)

Figure 5.1: (a): Projection of the sub-reflector towards the feed axis, z: distance from the
source to the sub-reflector aperture. (b):rectangular mesh grid for the sub-reflector view
from the top of its axis. Lsr is the maximum aperture of the sub-reflector. [56]

Assume that the offset Gregorian dual reflector antenna has a secondary geometric optics

focus at the location of the phase centre of the feed source. Only one reflected ray can be

drawn from the source through the sub-reflector to each point on the main reflector surface,

and the reflected ray to each point on the main reflector rim corresponds to a reflection point

on the sub-reflector rim [57].

The sub-reflector is tilted at an angle φ0 in the feed z-axis, as is shown in Figure 5.1(a).

The radiated field from the sub-reflector will have a sharp cutoff at the shadow bound-

ary; for a large diameter sub-reflector, the scattered field observed appears to have a sharp

discontinuity.

The sub-reflector aperture field is evaluated from the feed pattern using the geometrical

optics method. Assuming that this feed pattern is uniform, then only the propagator factor

term, e−jkz, is rotated on the y-axis, instead of rotating the feed pattern. Figure 5.2 shows the

sub-reflector with the rotated E-field on the aperture plane, sampled with ∆x = ∆y = λ/2
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and Nx = Ny = 512. The correct E-field over the sub-reflector surface is obtained by adding

a phase term on this rotated aperture E-field.

(a) (b)

Figure 5.2: (a) 3D and (b) front view of the E-field on the sub-reflector rotation as a function
of φ0.

The field on the sub-reflector aperture is cut-off (see Figure 5.3); the difference between

the aperture field into this truncation will give the diffracted term on the sub-reflector as

shown in Figure 5.4.

Figure 5.3: Truncated sub-reflector aperture field
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(a) (b)

Figure 5.4: (a): 3D and (b): 2D view of the diffraction term on the sub-reflector

The diffraction approximation is given by adding this cosnθ with the back transformation

of the diffraction term of the sub-reflector aperture at the origin (see Figure 5.5). The back

transform pattern is obtained from the two-dimension iFFT algorithm. So the approximate

diffraction pattern Ud
feed can be defined in term of the diffraction term Dterm as:

Ud
feed = Ufeed +Dterm (5.1.4)

Figure 5.5: Diffraction term back transformed at the origin
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(a) (b)

Figure 5.6: (a): Top and (b): side view of sub-reflector cut pattern

This diffracted pattern shows in Figure 5.6 is used as a new source for the evaluation of

the radiation properties of the equivalent parabola.

5.2 Radiation of the main reflector

5.2.1 Aperture Integral Technique

The Aperture Integral technique is used to evaluate the main beam and near side lobes of the

reflector antenna pattern. Assuming that Ud
feed is the approximate diffracted feed pattern.

The aperture field of the reflector can be determined from the field radiated by the feed.

The feed’s radiation intensity Ud
feed is related to the aperture field as [19]:

Ud
feed = R2 1

2η
|Ei|2 =

1

2η

∣∣∣fi(θ′
, φ

′
)
∣∣∣2 (5.2.1)

Assuming that the reflector is perfectly conducting, then the reflected field must satisfy the

relationship n̂.Er = n̂.Ei, which implies that fields have the magnitude (|Er| = |Ei|). Next,

the aperture field is obtain from the propagation of the radiated field Er by a distance to

the aperture:

Ea =
e−2jkz0

Er
=
e−jk(R+z0)

R
fr(θ

′
, φ

′
) (5.2.2)

or this expression can written in the parabola case as:

Ea =
e−2jkF

R
fa(θ

′
, φ

′
) (5.2.3)
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where θ
′
, φ

′
are the feed angles, and F = R+ z0 as depicted in Figure 5.7. fa is the aperture

pattern and |fa| = |fr| = |fi|.

Figure 5.7: Parabolic main reflector pointed towards the diffracted source.

The radiation pattern of the main reflector can be evaluated from equations (3.5.10a)

and (3.5.10b); where the vector f = x̂fx + ŷfy is the Fourier transform over the reflector

aperture:

f(θ, φ) = 2Fe−2jkF

∫ θ
′
0

0

∫ 2π

0

fa(θ
′
, φ

′
)e2jkF tan( θ

′

2
)sinθcos(φ−φ′ )tan

θ
′

2
dθ

′
dφ

′
(5.2.4)

in which F is the equivalent parabola focal length, θ
′
0 is the reflector subtended angle. The

2D surface integral in (5.2.4) requires a computation time to get the radiation pattern of the

antenna. However, because of the characteristics of the aperture field associated with the

parabolic reflector, Gauss Legendre can be used to determine the radiation pattern.

5.2.2 Gauss Legendre technique

A Gauss-Legendre quadrature integration technique, which can be used to evaluate the

numerical integral will approximate the integral into a double sum [19]:

fA(θ, φ) =

N1∑
i=1

1∑
j=1

w1iFA(θ
′

i, φ
′

j)w2j = wT1 FAw2 (5.2.5)

where (w1i, θ
′
i) and (w2j, φ

′
j) are called the quadrature weights and computed over the

intervals [0, θ
′
0] and [0, 2π]; FA is the matrix FA(θ

′
i, φ

′
j), and the two-dimensional Fourier
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transform pattern is expressed by:

fA(θ, φ) =

∫ θ
′
0

0

∫ 2π

0

FA(θ
′
, φ

′
, θ, φ)dθ

′
dφ

′
(5.2.6)

The H- and E-plane of the reflector radiation pattern is computed from (5.2.5) by setting

φ = 0 and π/2:

gH(θ) = |(1 + cosθ)fA(θ, 0)|2 H − plane (5.2.7a)

gE(θ) =
∣∣∣(1 + cosθ)fA(θ,

π

2
)
∣∣∣2 E − plane (5.2.7b)

Results below show the computation of the main beam and near side lobes using this method.

The figures show that the beam width of the reflector is a frequency dependent and the side

lobe level SLL varies with the edge illumination, i.e, augmentation of the f/D will increase

the edge illumination.

(a) (b)

Figure 5.8: Offset Gregorian dual reflector radiation pattern for(a):f/D=0.3333, and (b):
f/D=0.65 with freq= 1 GHz.
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(a) (b)

Figure 5.9: Offset Gregorian dual reflector radiation pattern for(a):f/D=0.3333, and (b):
f/D=0.65 with freq= 1.25 GHz.

(a) (b)

Figure 5.10: Offset Gregorian dual reflector radiation pattern for(a):f/D=0.3333, and (b):
f/D=0.65 with freq= 2 GHz.

5.3 Comparison of the fast approximation results with

FEKO

Comparison is done for various frequency and f/D parameters.

Results from the numerical simulation in Figure 5.11-5.13 show that the beamwidth

is originally wider than the analytical; which indicates that the simulation result is more

tapered than the one for the fast approximation. The E and H-plane radiation pattern from

the analytical approximation is symmetrical because of the use of the equivalent parabola

geometry with a field polarized in ŷ direction. As mentioned earlier, the gain pattern of the

dual reflector antenna depends on the frequency. For a lower frequency, 1 GHz for example,
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the numerical approach has 5 dB lower side lobe level than the fast approximation and

this reduced at high frequency. These two methods have its advantages, however the fast

approximation saves a time and reduces the memory requirement, by taking Nx = Ny = 512

sampling of points for the analytical computation.

(a) (b)

(c) (d)

Figure 5.11: Comparison of the fast approximation technique and the numerical simulation
of the dual reflector radiation pattern for f/D=0.3333 in (a): H-and, (b): E-plane, and for
f/D=0.65 in (c): H-and, (d): E-plane at freq= 1 GHz.
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(a) (b)

(c) (d)

Figure 5.12: Comparison of the fast approximation technique and the numerical simulation
of the dual reflector radiation pattern infor f/D=0.3333 in (a): H-and, (b): E-plane, and for
f/D=0.65 in (c): H-and, (d): E-plane at freq= 1.25 GHz.
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(a) (b)

(c) (d)

Figure 5.13: Comparison of the fast approximation technique and the numerical simulation
of the dual reflector radiation pattern in for f/D=0.3333 in (a): H-and, (b):E-plane, and for
f/D=0.65 in (c): H- and, (d): E-plane at freq= 2 GHz.

The fast approximation method is faster that the FEKO simulation. This analytical

technique is accurate for the prediction of the main beam because of the application of the

integral technique, however it cannot predict any information concerning the SLL, though it

has less than 2 dB difference for a high edge illumination. In addition, the 3 dB beamwidth

(HPBW) as listed in Table 5.1, enhances the performance of this fast approximation wherein

the error is less at high frequency. For example, for a f/D=0.3333, at 1 GHz the beam width

error is 8.18%, while it is reduced into 6.73% at 2 GHz in the E-plane.
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Table 5.1: Comparison of the beamwidth results
f/D Freq[GHz] Type FEKO[deg] Fast appr.[deg] Error[%]

0.3333

1
E-plane 0.8935 0.8204 8.18
H-plane 0.8713 0.8456 2.95

1.25
E-plane 0.7111 0.656 7.749
H-plane 0.6978 0.679 2.70

2
E-plane 0.4396 0.41 6.73
H-plane 0.4333 0.4228 2.42

0.65

1
E-plane 0.8193 0.77 6.02
H-plane 0.7911 0.794 0.367

1.25
E-plane 0.6481 0.616 4.95
H-plane 0.643 0.6448 0.28

2
E-plane 0.4029 0.385 4.44
H-plane 0.396 0.3969 0.23

The error in this table is given by the ratio of the difference between the FEKO and the

fast approximation beam width to the beam width of FEKO as:

Error[%] =
|FEKOBW − FastApprBW |

FEKOBW

(5.3.1)

5.4 Matlab GUI application

This section will describe the implementation of a GUI generated in Matlab for a quick

visualisation and investigation of the offset Gregorian dual reflector antenna geometry and

its radiation pattern.

5.4.1 Overview of the GUI

A Graphical User Interface or GUI, is a figure window generated in Matlab, which has menus,

text, graphics, etc., whereby the user can control interactively with the mouse and keyboard.

In Matlab, a GUI design requires two principal steps: create the layout first, and write the

callback functions that perform the desired operations [58].

The selection of the location and properties of the objects in a GUI can be achieved

with certain commands such as, uicontrol and uimenu in the m-file. A tool called GUIDE

provided by Matlab simplifies the access to handle graphics objects, and allows creation of

GUI by clicking or moving the desired components off of a virtual menu.

By typing guide on the Matlab command window; the Layout Editor appears, which has

a large white area with a grid. Layout editor contains a toolbar with short-cuts and provides
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a quick design of the interface. After saving this GUIDE, the m-file for the GUI will appear

in a separate Editor/Debugger window. For each given object, a function callback can be

created and edited in m-file.

5.4.2 GUI design

The GUI implemented in Figure 5.14 below consists of the following parts:

� the antenna input parameters,

� results of the computation for some parameters,

� plots of the geometry and the radiation pattern of the system.

Figure 5.14: A quick visualisation of Gregorian dual reflector properties with a default
parameters

5.4.2.1 Input parameters

The diameter D, the lower offset angle θL of the main reflector, the sub-reflector length Lsr

and, the f/D of the system are defined as input parameters. Those parameters change the

geometry of the antenna directly . Results which this GUI generates vary for a range of

frequencies from 1 to 2 GHz.

5.4.2.2 Computation of results

For feeding reflectors, the program implements an ideal feed source given by cosnθ pattern.

The radiation pattern of the antenna system is evaluated using the plane wave spectrum

method. The sub-reflector pattern is evaluated from the spectrum based on the Fourier
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transform, whereby the integral equation can be performed by the FFT algorithm. The

Gauss Legendre technique is used to compute the integral equation of the main reflector

pattern.

5.4.2.3 Plots of the Geometry and Pattern

The plot of the geometry, as well as the patterns and usual antenna parameters, are given

in a well-organized manner on a single page, making it an easy task to compare the features

of the various antenna geometries. The plot in Figure 5.14 shows the radiation pattern of

the entire system in E- and H-plane, the geometry is plotted from the axis system, the gain

of the feed and the 3-dB beam width of the equivalent parabola system.

The creation of this GUI will give the users a quick view of how the changing of the diam-

eter of the reflector affects the gain. Equivalent parabola concepts are applied to investigate

the gain and radiation pattern of the dual reflector antenna.

5.5 Conclusion

The fast approximation for the evaluation of reflector radiation pattern has been discussed

in this chapter. As expected from the formulation the main beam from fast approximation

agree well with the full wave with an error of 6.02% (1 GHz) at low frequency and 0.23%

at 2 GHz for an f/D=0.65. The side lobe levels are not well predicted because of the

complex formulation. The creation of GUI in Matlab is presented to analyse how change the

parameters affect the radiation characteristics.
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Conclusions

Application of two different methods for the investigation of reflector antenna pattern has

been done. The antenna geometry is generated and the radiation pattern is computed using

an hybrid method. The simulation was split into two parts for the two different reflectors

(sub-reflector and main reflector) to get results of greater accuracy and a radiation pattern

point source has been used for the entire simulation to save on computational time and

memory storage.

The radiation properties of this antenna have also been evaluated from a fast approxi-

mation technique based on the plane wave spectrum. The offset geometry was transformed

into its equivalent parabola for this approach. A phase term was added to compensate the

non-planar reflector.

This approach shows that the radiation far-field of the antenna relates to the Fourier

transform of the aperture field and the double integrals of Fourier transform was solved

using the FFT algorithm.

These two approaches are applicable for the reflector antenna analysis. The numerical

computation was done an hybrid method, the feed pattern is used as a point source and

the sub-reflector pattern is computed using MLFMM. Thereafter this sub-reflector pattern

is used as a point source also pointed at the main reflector focal point and PO is applied on

the main reflector.

This method requires an excessive time and memory, while the PWS application is faster

than the hybrid method used in simulation, however it cannot gives any precision for the

side lobes. An interface GUI in Matlab was generated, to give a quick visualisation of

the radiation properties of an offset Gregorian dual reflector antenna using a plane wave

spectrum approach.
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Appendix A

Analytical evaluation of directivity

using spectrum [1].

A.1 Directivity using PWS

The directivity of a reflector antenna can be compute from the feed pattern. It is defined as

the ratio of the maximum radiation intensity of the antenna over the radiated power divided

by unit of the solid angle.

D = 4π
Umax
Prad

(A.1.1)

This radiation intensity is proportional to the far electric field as:

U(θ, φ) =
r2

2η
|E(r, θ, φ)|2 (A.1.2)

in which the far field, the electric field can be expressed as:

E(r, θ, φ) =
e−jkr

r
E(θ, φ) (A.1.3)

where r is the radius and (θ, φ) is the angle in the far field. By replacing the electric field on

each value given by (A.1.3). Then, (A.1.2) is reduced into:

U =
1

2η
|E(θ, φ)| (A.1.4)

A–1
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Appendix A. Analytical evaluation of directivity using spectrum [1].

The electric field also can be evaluated from the angular spectrum and it is expressed in

rectangular coordinates as:

E(x, y, z) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

F (kx, ky)e−j(kxx+kyy+kzz)dkxdky (A.1.5)

where F (kx, ky) describes the plane wave spectrum of the field; and (A.1.5) defines the

relationship between the near-field zone and the far field for a planar systems.

A.2 The total radiated power

The time averaged power flux that is transmitted per unit area across an aperture plane,

radiated by an arbitrary current density can be given by:

Pr =
1

2
Re

{∫
(ET ×H∗T ).êzdxdy

}
(A.2.1)

Taking the cross product of the tangential electric field and the complex conjugate of the

tangential magnetic field yields.

(ET ×H∗T ) .êz =

∣∣∣∣∣∣∣
êx Ex Hx

êy Ey Hy

êz 0 0

∣∣∣∣∣∣∣ .êz =
(
ExH

∗
y − EyH∗x

)
(A.2.2)

Then (A.2.1) becomes:

Pr =
1

2
Re

{∫
ExH

∗
ydxdy

}
− 1

2
Re

{∫
(EyH

∗
xdxdy

}
(A.2.3)

and from the Parseval’s theorem [1], the total radiated power is given as:

Pr =
1

8π2
Re

{∫ ∞
−∞

∫ ∞
−∞

ExH
∗
ydkxdky

}
− 1

8π2
Re

{∫ ∞
−∞

∫ ∞
−∞

EyH
∗
xdkxdky

}
(A.2.4)

A–2
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