

 Department of Digital Systems

Thesis

of

Dimou Orfeas

mwe1901

on the

Design and Development of an IoT System for Indoor Air

Quality Estimation Using Low-Power Hardware and Bluetooth

Technologies

Supervising Committee: Dr. Antonis Gotsis (External)

 Prof. Athanasios Kanatas

 Prof. George Efthymoglou

March 2021

http://www.ds.unipi.gr/en/

1

Introduction

The main objective of the Thesis is to design and develop an IoT System that is able to estimate Indoor Air

Quality, in other words, CO2 levels. As humans exhale CO2, CO2 levels are higher in Indoor spaces where

air cannot escape fast. Taking that into consideratio, approximately all people exhale almost the same

amount of CO2, the level of CO2 in an Indoor space is proportional to the number of people inside. That

said, this IoT system will be able to measure the CO2 level and convert it into number of people inside. This

System could prove very useful in areas with lots of people, as it is able to calculate the average number of

them without performing a headcount, thus saving as time. Also, the ability to calculate people fast, can help

to prevent overcrowding and maintain health restrictions about max number of persons in a given space.

To create such a system, we will be using an VOC sensor (BME680) for acquiring CO2-equivalent levels, a

microcontroller (STM32WB55) to process/export the data acquired from the sensor and a phone to collect

transmitted data. Since we want flexibility and an easy installation/usage, the system will be powered with

batteries and the data will be transmitted by making use of, the Bluetooth Technology. The microcontroller

that we have chosen to use, combines Bluetooth and low power consumption capabilities.

In the following Chapters we will analyze the theory behind IoT, BLE, I2C and show the proper way to

program, use, and acquire data to our phone from the STM32WB55.

Finally, through experiments that we have performed, we will provide some indicative results and how we

can use them.

2

Contents

Introduction ... 1

Chapter 1: Background .. 3

1.1 The IoT Concept ... 3

1.2 The Bluetooth .. 4

1.3 The Microcontrollers... 7

1.4 The I2C Serial Communication Bus ... 9

Chapter 2: Hardware used in the project ... 12

2.1 STM32WB55 Nucleo ... 12

2.2 BME680 .. 13

Chapter 3: Hardware Setup .. 14

3.1 STM32-BME680 Connection Diagram .. 14

Chapter 4: Software Tools ... 15

4.1 Installation of STM32 Cube IDE .. 15

Chapter 5: Software Code and Settings ... 17

5.1 Device Configuration Tool ... 17

5.2 BME680 Code .. 24

5.3 BLE Code .. 30

5.4 Transfer value Between Different Classes. ... 41

Chapter 6: Smartphone Application ... 43

6.1 App Installation ... 43

6.2 Data Collection & Visualization ... 44

Chapter 7: Results .. 47

7.1 Final Results and Testing .. 47

Conclusions .. 48

Bibliography .. 49

3

Chapter 1: Background
1.1 The IoT Concept

There is a lot of talk at the moment, about the Internet of Things (IoT) and its impact on everything. But

what is the Internet of Things? How does it work? And is it really that important?

In a nutshell, the Internet of Things is the concept of connecting any device to the Internet and to other

connected devices, like sensors, software, and other technologies for the purpose of exchanging data. These

devices range from ordinary household objects to sophisticated industrial tools. The IoT is a giant network

of connected things and people – all of which collect and share data about the way they are used and about

the environment around them.

The way that it works is that devices and objects with built in sensors are connected to an Internet of Things

platform which integrates data from the different devices and applies analytics to share the most valuable

information with applications built to address specific needs.

By the word ‘Things’ we refer to machines or physical objects, so it becomes important to understand what

kind of objects can be connected via Internet. We can categories these objects into categories –

1. Objects with intelligence or Smart Objects.

Smart Object: “Smart objects are those physical and digital objects which can be identified, have

sensing/actuating capabilities, computational power, also storing, and networking capabilities.”

2. Objects without intelligence or Non-Smart Objects.

Non-Smart Objects: Non-smart objects are generally those objects which do not have intelligence

and processing capabilities. Sensors and actuators are non-smart devices.

But why Is Internet of Things (IoT) so important?

Over the past few years, IoT has become one of the most important technologies of the 21st century. Now

that we can connect everyday objects to the internet via embedded devices, seamless communication is

possible between people, processes, and things. By means of low-cost computing, the cloud, big data,

analytics, and mobile technologies, physical things can share and collect data with minimal human

intervention.

While the idea of IoT has been in existence for a long time, a collection of recent advances in several

different technologies has made it practical.

• Access to low-cost, low-power sensor technology. Affordable and reliable sensors are making IoT

technology possible for more manufacturers.

• Connectivity. A host of network protocols for the internet has made it easy to connect sensors to

the cloud and to other “things” for efficient data transfer.

• Cloud computing platforms. The increase in the availability of cloud platforms enables both

businesses and consumers to access the infrastructure they need to scale up without having to

manage it all.

• Machine learning and analytics. With advances in machine learning and analytics, along with

access to varied and vast amounts of data stored in the cloud, businesses can gather insights faster

and more easily. The emergence of these allied technologies continues to push the boundaries of

IoT and the data produced by IoT also feeds these technologies.

• Conversational artificial intelligence (AI). Advances in neural networks have brought natural-

language processing (NLP) to IoT devices and made them appealing, affordable, and viable for

home use.

4

1.2 The Bluetooth

Bluetooth wireless technology (BWT) was developed in 1994 at Ericsson in Sweden. The original purpose

of BWT was to eliminate the need for proprietary cable connections between devices such as RS-232 data

cables.

BWT-enabled devices operate in the unrestricted 2.4-gigahertz (GHz) Industrial, Science, Medical (ISM)

band. The ISM band ranges between 2.400 GHz and 2.483 GHz (ISM Band). Bluetooth sends and receives

radio waves in a band of 79 different frequencies (channels) centered on 2.45 GHz, set apart from

radio, television, and cellphones, and reserved for use by industrial, scientific, and medical gadgets. BWT-

enabled devices use a technique called frequency hopping to minimize eavesdropping and interference from

other networks that use the ISM band. With frequency hopping, the data is divided into small pieces called

packets. The transmitter and receiver exchange a data packet at one frequency, and then they hop to another

frequency to exchange another packet. They repeat this process until all the data is transmitted.

Bluetooth is a radio-wave technology, mainly designed for communicating over short distances less than

about 10m or 30ft.

This IoT protocol (Bluetooth Low Energy) brings the protocol on a new level. It opens new opportunities for

devices with small battery capacity. However, the range of this protocol is even less than Wi-Fi has.

Besides, the data exchange speed is suitable only for small sized data. Minding these facts, we can see that

Bluetooth is a perfect option for wearable devices.

At the next Figure we can see the different Protocol stacks of Bluetooth. The Bluetooth is a collection of

different protocols grouped together under a single specification.

The first Protocol stack is the HS (High Speed) Bluetooth which uses the protocol SPP (Serial Peripheral

Protocol) and it is one of the first Protocols that were used. In the second Protocol stack, the Smart Ready-

LE (Low Energy), is the one that most mobiles, laptops, and tablets use. It consists of protocols of both

Protocol stacks as it can communicate with both. Also, the devices that use it have enough memory space to

include all protocols. Finally, the third Protocol stack (Smart- LE (Low Energy)) is the one that we are going

to use in this project.

The core specifications of the device that we use is the Bluetooth 5 that is available since 2016. Our device

is compatible with version 5 but it doesn’t have all the new functions and features that were added.

https://en.wikipedia.org/wiki/RS-232

5

Focusing on the protocols of the Bluetooth smart:

GAP: Generic Access Profile

Everything on both ends of the communicating devices start with this protocol.

• The Gap layer controls advertising and connections (makes a device visible to the outside world)

• Also determines how two devices can interact with each other.

While advertising the packet transmitted includes information of the data that are going to be

transmitted once connected.

Once we establish the connection, we can move on to the GATT protocol.

GATT: Generic Attribute Profile

In this step our Central asks the peripheral about what services it offers and their characteristics (like

read, write, notification etc).

So, our Central device reads the service and gets a response of what the service or characteristics are.

Also, the Central can write to the Peripheral and get a response.

6

ATT: Attribute Protocol

This protocol defines what the communication is going to be between client and server. In our case the

server is the peripheral. The Attributes are stored in the server and listed as tables. The Attributes contain

lots of information, like ID’s, parameters, data length etc.

So, ATT is just an array of bytes stored in a table, data logic and hierarchy given by GATT and app layer.

Summarizing, when the GAP procedure finishes and the devices are ready to communicate, the GATT

comes into play and a connection is established and defines data exchange between two BLE devices. It

adds a data model and hierarchy on top of the ATT (by means of concepts called services and

characteristics). The services are organized in GATT profiles and each profile can contain multiple services.

• A service is a container for logically related data items

• Characteristics are logically related data items within one service and consist of a type, a value, some

properties, permissions and optionally descriptors.

• Descriptors either provides additional details or allows configuration of behavior related to the

characteristics (e.g., turn on notifications)

7

1.3 The Microcontrollers

A microcontroller (μC or uC) is a solitary chip microcomputer fabricated from VLSI fabrication. A micro

controller is also known as embedded controller. Today various types of microcontrollers are available in

market with different word lengths such as 4bit, 8bit, 64bit and 128bit microcontrollers. Microcontroller is a

compressed micro computer manufactured to control the functions of embedded systems in office machines,

robots, home appliances, motor vehicles, and a number of other gadgets. A microcontroller includes

components like – memory, peripherals and most importantly a processor. Microcontrollers are basically

employed in devices that need a degree of control to be applied by the user of the device.

Types of Microcontrollers

Microcontrollers are divided into various categories based on memory, architecture, bits and instruction sets.

Following is the list of their types

Bit

Based on bit configuration, the microcontroller is further divided into three categories.

• 8-bit microcontroller − This type of microcontroller is used to execute arithmetic and logical

operations like addition, subtraction, multiplication division, etc.

• 16-bit microcontroller − This type of microcontroller is used to perform arithmetic and logical

operations where higher accuracy and performance is required

• 32-bit microcontroller − This type of microcontroller is generally used in automatically controlled

appliances like automatic operational machines, medical appliances, etc.

Memory

Based on the memory configuration, the microcontroller is further divided into two categories.

• External memory microcontroller − This type of microcontroller is designed in such a way that they

do not have a program memory on the chip. Hence, it is named as external memory microcontroller.

• Embedded memory microcontroller − This type of microcontroller is designed in such a way that the

microcontroller has all programs and data memory, counters and timers, interrupts, I/O ports are

embedded on the chip.

Instruction Set

Based on the instruction set configuration, the microcontroller is further divided into two categories.

• CISC − CISC stands for complex instruction set computer. It allows the user to insert a single

instruction as an alternative to many simple instructions.

• RISC − RISC stands for Reduced Instruction Set Computers. It reduces the operational time by

shortening the clock cycle per instruction.

8

Microcontroller Basics:

Any electric appliance that stores, measures, displays information or calculates comprise of a

microcontroller chip inside it. The basic structure of a microcontroller comprises of:

CPU: Microcontrollers brain is named as CPU. CPU is the device, which is employed to fetch data, decode

it and at the end complete the assigned task successfully. With the help of CPU all the components of

microcontroller are connected into a single system. Instruction fetched by the programmable memory is

decoded by the CPU.

Memory: In a microcontroller memory chip works same as microprocessor. Memory chip stores all

programs & data. Microcontrollers are built with certain amount of ROM or RAM (EPROM, EEPROM, etc)

or flash memory for the storage of program source codes.

Input/output ports: I/O ports are basically employed to interface or drive different appliances such as-

printers, LCD’s, LED’s, etc.

Serial Ports: These ports give serial interfaces amid microcontroller & various other peripherals such as

parallel port.

Timers: A microcontroller may be in-built with one or more timer or counters. The timers & counters

control all counting & timing operations within a microcontroller. Timers are employed to count external

pulses. The main operations performed by timers, are pulse generations, clock functions, frequency

measuring, modulations, making oscillations, etc.

ADC: (Analog to digital converter) ADC is employed to convert analog signals to digital ones. The input

signals need to be analog for ADC. The digital signal production can be employed for different digital

applications (such as- measurement gadgets).

DAC: (digital to analog converter) this converter executes opposite functions that ADC perform. This device

is generally employed to supervise analog appliances like- DC motors, etc.

Interpret Control: This controller is employed for giving delayed control for a working program. The

interpret can be internal or external.

Special Functioning Block: Some special microcontrollers manufactured for special appliances like- space

systems, robots, etc, comprise of this special function block. This special block has additional ports, so as to

carry out some special operations.

9

1.4 The I2C Serial Communication Bus

I²C or I2C is an abbreviation of Inter-Integrated Circuit, a serial communication protocol made by Philips

Semiconductor. It is created with an intention of communication between chips residing on the same Printed

Circuit Board (PCB). It is commonly usually used to interface slow speed ICs to a microprocessor or a

microcontroller. It is a master-slave protocol, usually a processor or a microcontroller is the master and other

chips, for example Temperature Sensor, etc. will be the slave. We can have multiple masters and multiple

slaves in the same I2C bus. Hence it is a multi-master, multi-slave protocol.

It needs only two wires for exchanging data and ground as the reference.

• SDA – Serial Data

• SCL – Serial Clock

• GND – Ground

I2C bus is popular because it is simple to use, there can be more than one master, only upper bus speed is

defined and only two wires with pull-up resistors are needed to connect almost unlimited number of I2C

devices.

Devices on an I2C bus are always a master or a slave.

Master is the device which always initiates a communication and drives the clock line (SCL). Usually, a

microcontroller or microprocessor acts a master which needs to read data from or write data to slave

peripherals.

A slave device is always responding to a master and won’t initiate any communication by itself. Each slave

device will have a unique address such that master can request data from or write data to it.

Each slave device has a unique address. Transfer from and to master device is serial and it is split into 8-bit

packets. All these simple requirements make it very simple to implement I2C interface even with cheap

microcontrollers that have no special I2C hardware controller. We only need 2 free I/O pins and few simple

i2C routines to send and receive commands.

https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Bus_(computing)

10

The initial I2C specifications defined maximum clock frequency of 100 kHz. This was later increased to 400

kHz as Fast mode. There is also a High-speed mode which can go up to 3.4 MHz and there is also a 5 MHz

ultra-fast mode.

I2C Addresses

Basic I2C communication is using packets of 8 bits or bytes. Each I2C slave device has a 7-bit address that

needs to be unique on the bus. Some devices have fixed I2C address while others have few address lines

which determine lower bits of the I2C address. This makes it very easy to have all I2C devices on the bus

with unique I2C address. There are also devices which have 10-bit address as allowed by the specification.

7-bit address represents bits 7 to 1 while bit 0 is used to signal reading from or writing to the device. If bit 0

(in the address byte) is set to 1 then the master device will read from the slave I2C device.

Master device needs no address since it generates the clock (via SCL) and addresses individual I2C slave

devices.

I2C Protocol

I2C protocol is using only 2 lines (one for clock and one for data) for communication. But usually, we do

not need to worry about it as in most of the device’s hardware itself will take care of these things.

Start Condition

I2C start condition is issued by a master device to give a notice to all slave devices that the communication

is about to start. Thus, start condition triggers all slave devices to listen to the data in the bus. To issue start

condition, the master device pulls SDA low and leaves SCL high. In the case of multi-master I2C there is a

possibility that 2 masters wish to take ownership of the bus at the same time. In these cases, the device

which pull down SDA first gains the control of the bus.

11

Address Frame

Address frame is always sent just after the first start condition during every communication sequence. In this

master devices specifies the address of the slave device to which the master wants to communicate. There

are basically 2 types of addressing 7-bit addressing and 10-bit addressing. In the 7-bit addressing mode,

master sends address first (MSB first) followed by read/write (R/W) indicating bit (0 => Write, 1 => Read).

Data Frames

Data frame(s) are transmitted just after the address frame. It can be sent from master to slave OR from slave

to master depending on the above R/W bit through SDA line. The master will continue generating required

clock signals. Devices can send one or more than one data frame as per the requirements.

Stop Condition

Master device will generate stop condition once all data frames has been sent/received. As per I2C

standards, STOP condition is defined as a LOW to HIGH transition on SDA line after a LOW to HIGH

transition on SCL, with SCL HIGH.

Acknowledge (ACK) and Not Acknowledge (NACK)

Each byte of data in I2C communication includes an additional bit known as ACK bit. This bit provides a

provision for the receiver to send a signal to transmitter that the byte was successfully received and ready to

accept another byte.

10-bit Addresses

We know that I2C bus uses 7-bit addressing, which means that devices are limited to 127 devices and

address clashes can happen. 10-bit address scheme is introduced to solve this problem. 10-bit address

devices can be mixed with 7-bit devices and it increases the address range about 10 times.

12

Chapter 2: Hardware used in the project
2.1 STM32WB55 Nucleo

STM32 is a family of 32-bit microcontroller integrated circuits by STMicroelectronics. The STM32

chips are grouped into related series that are based around the same 32-bit ARM processor core.

Internally, each microcontroller consists of the processor core, static RAM, flash memory, debugging

interface, and various peripherals.

The unparalleled range of STM32 microcontrollers, based on an industry-standard core, comes with a

vast choice of tools and software to support project development, making this family of products ideal

for both small projects and end-to-end platforms.

All Nucleo boards by STMicroelectronics support the mbed IDE development and has an additional

onboard ST-LINK/V2-1 host adapter chip that supplies SWD debugging, virtual COM port, mass

storage. There are three Nucleo board families, each supporting a different microcontroller IC package

footprint. The debugger embedded on Nucleo boards can be converted to SEGGER J-Link debugger

protocol.

The STM32WB55xx and STM32WB35xx multiprotocol wireless and ultra-low-power devices embed

a powerful and ultra-low-power radio compliant with the Bluetooth Low Energy SIG specification v5.0

and with IEEE 802.15.4-2011. They contain a dedicated Arm Cortex -M0+ for performing all the real-

time low layer operation.

The devices are designed to be extremely low-power and are based on the high-performance Arm

Cortex -M4 32-bit RISC core operating at a frequency of up to 64 MHz. The Cortex -M4 core features

a Floating-point unit (FPU) single precision that supports all Arm single-precision data-processing

instructions and data types. It also implements a full set of DSP instructions and a memory protection

unit (MPU) that enhances application security.

13

2.2 BME680

The BME680 is a digital 4-in-1 sensor from Bosch with gas, humidity, pressure, and temperature

measurement based on proven sensing principles. The sensor module is housed in an extremely compact

metal-lid LGA package with a footprint of only 3.0 × 3.0 mm² with a maximum height of 1.00 mm (0.93 ±

0.07 mm). Its small dimensions and its low power consumption enable the integration in battery-powered

devices, such as handsets or wearables.

The sensor communicates with a microcontroller using I2C or SPI communication protocols. The gas sensor

can detect a broad range of gases like volatile organic compounds (VOC). For this reason, the BME680 can

be used in indoor air quality control.

The BME680 contains a MOX (Metal-oxide) sensor that detects VOCs in the air. This sensor gives you a

qualitative idea of the sum of VOCs/contaminants in the surrounding air – it is not specific for a specific gas

molecule.

MOX sensors are composed of a metal-oxide surface, a sensing chip to measure changes in conductivity,

and a heater. It detects VOCs by adsorption of oxygen molecules on its sensitive layer. When the sensor

comes into contact with the reducing gases, the oxygen molecules react and increase the conductivity across

the surface. As a raw signal, the BME680 outputs resistance values. These values change due to variations in

VOC concentrations:

14

Chapter 3: Hardware Setup
3.1 STM32-BME680 Connection Diagram

We can power the Stm32WB55 from the pin 24 of CH7(left side) or from the mini-usb port of ST-Link.

The STM32 communicates with BME680 via a I2C bus.

• Vcc=2-6V for BME680 (in this project we have used 3.3V)

(For debugging reasons, we can use an usb to serial convertor to take a serial output. It is not a necessary

part of the project)

15

Chapter 4: Software Tools
4.1 Installation of STM32 Cube IDE

The main tool that we will use is the STM32 CubeIDE which is an eclipse-based IDE. To download the tool,

simply, visit the site (https://www.st.com/en/development-

tools/stm32cubeide.html?ecmp=tt11319_gl_link_may2019&2).

To install, simply follow the installation Wizard.

If you run into an error like the following, replace the .exe file to your c:/

Install all the necessary drivers when asked. Once the installation is completed and execute the tool, we will

see the following screen.

https://www.st.com/en/development-tools/stm32cubeide.html?ecmp=tt11319_gl_link_may2019&2
https://www.st.com/en/development-tools/stm32cubeide.html?ecmp=tt11319_gl_link_may2019&2

16

Then select File -> New -> STM32 Project

The IDE will start downloading the necessary libraries to display. Wait for a few minutes and then you will

see the following image:

Here we are called to complete the type of the stm32 device we are about to use. In our case we complete

the STM32WB55RG and we select and click next on the result with the nucleo mark.

We give a name to our project (in our case is Final) and choose the language we will use (we will use C).

Leave the rest of the choices as it is.

The project will start building the necessary code and visual display and will take some time.

When it is completed, we are ready to start working on our project.

17

Chapter 5: Software Code and Settings
5.1 Device Configuration Tool

At first, we are looking at an empty project with our specific stm32.

1. Here we can change the hardware setting of the device, either from the left list or by directly pressing

on each pin.

We begin with the System Core -> HSEM -> tick on activation. We need this part for our BLE

libraries.

2. Next, we choose the RCC which we use to give timing to our BLE. We make the changes:

We change both clocks (low and high) to the Crystal/Ceramic Resonator.

This will activate pins PC14, PC15 accordingly.

18

3. After that, we go to the Timers, where we need to activate the RTC.

The RTC is used by the Middleware to manage the RF wakeup system.

4. Up next, we go to Connectivity and we need to activate I2C in order for the STM32 to communicate

with the BME680. Pins PB8(SCL) and PB9(SDA) will be marked.

5. Also, we will activate the RF for the BLE function. Pin RF1 will be highlighted.

6. Finally, we will go to the Middleware and activate STM32_WPAN -> BLE to activate the BLE

function.

Also, we need to change the Configuration at the BLE Applications and Services Tab.

19

We must change the Custom Template to enable, to be able to send our own services and from the Local

Name we can name our Bluetooth device. The final form must be:

Now as an extra step that is not necessary for the final result we can activate the Usart1 in order to be able to

get serial output for debugging purposes, and enable a led in order to test our device connection via

Bluetooth.

Steps 7,8 can be ignored.

7. We move to Connectivity->USART1 -> change the mode to Asynchronous

Also, at the configuration we can change the parameter Settings. In our case we have the default.

Pins PA9(TX) and PA10(RX) will be highlighted. Note: To get a serial out an usb to serial convertor must

be used.

20

8. For the Led we go manually on pin PB5 and select from the list GPIO_Output.

For easier use, we right click on the pin ->Enter User Label to name it. We will name it as LED_BLUE

All the pinout and Configurations are completed. Although we have completed everything, we can

notice an error notification on Clock Configuration Tab. We move to this tab to fix the error. When the

program will ask to solve the issue, we press yes.

21

This action will solve partially the issue. Next, we must make some changes. In the top left corner, we

enabled our low-speed external crystal (32.768 KHZ). So, we must make sure that this is selected in our

multiplexer (Mux). We change the Mux to LSE.

Next, we enabled our high-speed external crystal (32 MHZ). Also, here we must change the multiplexer, this

time to HSE_SYS.

22

Finally, we move to the bottom right corner we have the RF system wakeup and again we need to change to

multiplexer to LSE

The last step is to choose the Project manager tab -> Advanced Settings and then check the Generated

Function Calls. All peripherals must be enabled before we enable the middleware.

23

In Conclusion, this must be the final settings.

If everything is completed, press save, and the program will generate the necessary code.

The generated code project tree must be like the following image:

24

5.2 BME680 Code

The first step to start writing the code is to add the necessary libraries for the BME680.

We can download the necessary files from (https://github.com/BoschSensortec/BME680_driver).

Then create a new file inside the Drivers folder and place inside the bme680.c

Also, add the files bme680_defs.h and bme680.h inside the Inc file.

Once we have all the necessary files added, we can proceed to the Src-> main.c

Starting, we need to add the libraries that we will use and the drivers of the bme680.

We begin at line 23,29, 30, 31. We added the string.h to be able to take an output at uart1 for debugging

reasons and math.h to be able to use log.

https://github.com/BoschSensortec/BME680_driver

25

We move on by adding lines 38, 39, 59, 60, 61 ,63 ,64, 65 as shown. Here we declare the variables that we

will use.

Finally, we add lines 77, 78, 79 as shown, to declare some essential functions for the sensor.

26

Since we have declared some function, we must also add them. So, we add lines 471 till 493 in the “USER

CODE BEGIN 4” part as shown below. Those functions are necessary for the communication of the sensor

with the microcontroller.

We also can find these functions at the README.md file that we have downloaded with the drivers.

Since we have defined the functions that we will use, we are ready to return to calibrate the sensor and ask

for data outputs.

27

Before we ask for data from the sensor, we must activate and calibrate it, as it is described by the

manufacturer.

Therefore, we add lines 120 till 160 as shown below. This part is given by the manufacturer in the

README.md file that we have downloaded.

This part of the code it is activated first (once the device is activated) in order to activate and calibrate the

sensor. It runs only once and then the program will enter the while(1) loop.

28

This next part inside the while(1) is not necessary for the project but we use it for debugging reasons.

Its purpose is to give as an uart1 output the address of each I2C devices that are connected with the STM32.

We can use to find an address or if we want to know if the microcontroller communicates with the sensor.

Its main function is to ping all available addresses and wait for a reply. If a device replies, it outputs the

address through the uart1. If the address doesn’t return anything, it prints a “.”.As we mentioned above this

part can be omitted.

29

Finally, we are ready to take measurements from the sensor. This next part will be inside the while(1) loop

and continually will give measurements. There are parts that make use of the uart1, but those parts are only

for debugging reasons. We can remove them. The same applies for the Delay at line 225.

So, we add lines 199 till 225.

The measurements that we receive from the bme680 sensor are:

• data.temperature =>Temperature(C°)

• data.pressure =>Pressure (hPa)

• data.humidity =>Humidity (%)

• data.gas_resistance =>Gas Resistance (Ohm)

But the measurement that we want is the IAQ (Index of Air Quality).

To calculate it, we use function:

𝑰𝑨𝑸 = 𝐥𝐨𝐠(𝒈𝒂𝒔 𝒓𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒄𝒆) + 𝟎. 𝟒𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚

30

5.3 BLE Code

Since we have the bme680 code up and working, it is time to set the BLE function in our project.

So, the first thing that we must do is, to tune our HSP (High Speed Clock). We start by setting the otp (One-

Time-Programmable) code. They can be used for permanent store of configuration data for your device.

The manufacturer provides this info and we simply add it to the code.

We add line 25 and lines 67 till 72 in stm32wbxx_hal_msp.c class.

31

Next, we need to put the interrupt service routine in. So, the IPPC is doing the interrupts so the Cortex m4

can communicate with the Cortex m0, and we also need to put in the wakeup handler for Our RTC.

We do this so our software interrupts and time servers from the library stack can be used inside the

application.

We make this addition inside the stm32wbxx_it.c

We add lines 26 and 203 till 218 inside the stm32wbxx_it.c class.

32

The typical architecture that we have is based on a Sequencer (or Simple Task Scheduler). That mean that

we set various tasks and what goes through we have a switch statement (for all our tasks). Eventually we get

to the point that all the tasks are complete therefore the device goes to case idle which means enter low

power mode.

Inside the Scheduler (inside the utilities folder) we can have up to 32 different tasks, the ability to request a

task to be executed or pause and resume, or even wait for specific events to happen to be executed.

Here is a list of API commands for various tasks:

To include the Scheduler to our main.c we add the lines 32 and 224.

33

The BLE Advertising data is a defined string and has certain parameters according to the BLE protocols. We

can configure the advertising data which is part of the Protocol data unit.

Inside the Advertising data there is a predefined structure, and it tells us certain things about manufacturer

specific data and where our local name is.

Inside the class app_ble.c are all the necessary code for the correct function of the Bluetooth. It already

contains the following commands:

As we mentioned above, we will add a led for debugging reasons. To do so we must offer a new service.

This will be a P2P service, a primary service.

34

By this point this is the communication between Client and Server. The Led will be controlled through a

phone application that we will cover in another Chapter.

To set the code for the Led, we must input the following code into p2p_server_app.c

We add lines 85 till 90 into p2p_server_app.c

35

Now we must create a new service for our bme680. But the Client must receive information about what it is

transmitted in our Advertising Data in the form of a mask.

We set this mask accordingly with the feature masks that are available from the data reading app developer.

Since we want to send CO, we will use bit 15.

We must configure the mask in the Advertising part of app_ble.c. Here we have 4 bytes which means 32 bit.

That means, that in order to have a CO mask, the bit 15 must change to 1.

00000000 00000000 10000000 00000000 = 00 00 80 00 in Hex

We change the line 249 from 0x00 to 0x80

36

We have set the mask, but it is still classed as an unknown service. That is why we must make the service

recognizable for the client. We will modify the service UUID in template_stm.c.

At line 87 we give a unique UUID and at line 89 a unique characteristic UUID. At 89 we also add the mask

for CO in Hex.

The Packet that we want to send is 6 bytes, 2 bytes as a timestamp and 4 bytes for the CO reading, according

with the BlueST protocol.

This means that we must align the Service Characteristics with the GATT client expectations. We will make

this change at the template_stm.c

At line 229 we change 2 to 6 bytes.

Also make the same change at line 271.

37

We have finished the services part we are moving to the application part. Now we can begin to build the

structure for these 6 bytes. We move to the file named template_server_app.c

We add lines 35,36 and 44.

Next, we will Initialize the new app context variables. We add lines 157 and 158.

Now we need to send the update characteristic function. When we send our notify, there is a task happening

to send all our bytes.

We add lines 163 and 165 till 170.

38

Moving on, we need to register a task to be used to update characteristics. We register a notify CO2 task.

We create a task Id at app_conf.h and create a task initialization at template_server_app.c

We add line 455.

We add line 134.

The image below shows the current function of the system. The next step that we will perform will set a

100ms refresh rate.

39

We add line 49 at template_server_app.c

Now that the updates are coming through, we are going to create and use a time server. This is run by the

RTC wakeup timer (we make use of the LSE). That means that we can create virtual timers to start, stop,

pause in order to reduce energy consumption.

So, we are going to create a Software timer for periodic characteristic update.

We create a timer and add lines 136 till 139 in template_server_app.c

The next step for us is, to update our structure and add a software time ID. We add line 45.

40

And now we need to create the callback for the Software Timer, as to declare it and execute it.

We add lines 63 and 69 till 72.

Finally, we need to start and Stop the Software Timer. We add lines 80,86,89 and 95.

41

5.4 Transfer value Between Different Classes.

We have completed the ble and bme680 functions, but they belong into different classes.

We need to be able to transfer the IAQ data from the main.c to the template_server_app.c to export them through

the ble function but these classes are not connected. To do so, we will create a new class (co.c) and header (co.h).

We create these new classes and input all the lines in the next image.

We have created the new class and now we must make the connection between main.c and

template_server_app.c

At main.c we add lines 31 and 223.

42

At template_server_app.c we add lines 23 and 164.

At line 164 we multiply co with 100 due to the BlueST protocol (reference at page 34).

43

Chapter 6: Smartphone Application
6.1 App Installation

In this chapter we will explain how we can display IAQ data remotely to our mobile phone.

We can do this with through the usage of the ST BLE Sensor app, provided free at Play Store.

Once the installation is complete, the app is ready to be used. We execute the app to reach the display below.

Caution: We must activate the Bluetooth and deactivate Wifi on our phone. Also, we must activate the

Location Information.

44

6.2 Data Collection & Visualization

Once our device is activated, we press at the “CONNECT TO A DEVICE” Button. This will open the page,

displaying in the following image. Here we can view the Server Name that we gave earlier.

We press on the name of our device and wait for the connection to be completed. Once the connection is

completed, we can swipe to see information and data from the Server. At the first we see the received data as

plot. If we press the play button, data will be displayed in a plot with time.

45

When we swipe right, we can see the current value of the IAQ that is being received.

If we swipe right again, we can see the received power in dBm and we can toggle the Blue led that we have

configured for debugging reasons. Once the led button has been pressed, a blue led will turn on, on our

server board.

46

Finally, if we swipe right again, we can view the Local name and received power of the server.

47

Chapter 7: Results
7.1 Final Results and Testing

Now that we have completed all the above stages of the project, our phone device is ready to receive

measurements from the sensor.

The sensor that we have used (bme680) gives as an output an equivalent of CO as part of the IAQ. This is

the value that we receive at our phone. That said, by performing test measurements at given space and given

number of people we can determine the exact number of people in an indoor space.

With the help of Matlab and many calibrating measurements, we can reach a connection between number of

people and prices of IAQ and gas resistance. This is left as future work. In the following tables we can see

such measurements but in order to reach a satisfactory level, we require many more, thus future work is

going to be needed.

Remember, that in order to get the IAQ we use the following function:

𝑰𝑨𝑸 = 𝐥𝐨𝐠(𝒈𝒂𝒔 𝒓𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒄𝒆) + 𝟎. 𝟒𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚

1 Person Temp (C°) Pressure(hPa) Hum (%) IAQ Gas Resistance (ohms)

0 min 22.91 1017.77 46.96 18795 29415

10 min 23.68 1017.71 45.84 18345 32979

20 min 22.39 1017.89 46.76 18713 37865

30 min 21.68 1018.15 48.78 19523 40112

40 min 21.97 1018.41 48.37 19357 40074

50 min 22.1 1017.97 48.59 19445 40074

60 min 22.17 1017.89 49.1 19650 39619

2 Persons Temp (C°) Pressure (hPa) Hum (%) IAQ Gas Resistance (ohms)

0 min 22.42 1008.41 55.05 22030 16723

10 min 22.65 1008.43 54.4 21771 20547

20 min 22.82 1008.53 55.21 22094 21563

30 min 22.95 1008.57 54.5 21810 22321

40 min 22.94 1008.73 54.49 21807 23110

50 min 22.97 1008.77 54.28 21723 23631

60 min 22.94 1008.79 54.28 21722 24076

The code is set to transmit only IAQ to our phone device, but by a simple change the value at line (223 of

main.c) we can send any of the above measurements. Also, since the Bluetooth transmission is in advertise

mode, we could collect all these measurements to a server and thus giving us the ability to store and analyze

data.

48

Conclusions

Having completed the project we now have a fully working IoT system that gives us helpful data to calculate

the exact number of people in a given indoor space.

More work is needed and more tests to be executed before the device is correctly calibrated, but the system

is robust and ready for use. For more accuracy in our measurements, a more expensive and accurate sensor

could be used. As long as the new sensor is I2C compatible, the whole project will be ready to function with

minimum changes.

Thanks to our device small size and indoor expected function, the general boxing cost, should be low. Also,

since we expect the device to function indoors and for a short amount of time, the general wear and tear of

the device will be at minimum, thus prolonging the expected lifetime of the device.

Moreover, the low consumption and sleep functions, further drop the usage cost and the Bluetooth addition

makes the device portable.

As for the usage of the project, it could greatly help at controlling and monitoring masses of people in large

and small indoor spaces. Also, the above project could help in the Health department, by controlling and

keeping a low number of people, thus reducing the spread of viruses, or in the Security department, by

upholding certain regulations.

In any case, the project could really help society at crowd control and to be used as a steppingstone for an

even larger or future IoT applications.

49

Bibliography
[1] Getting Started with the Internet of Things: Connecting Sensors and Microcontrollers to the Cloud

(Make: Projects) 1st Edition, Kindle Edition by Cuno Pfister

[2] Getting Started with Bluetooth Low Energy, Kevin Townsend, Charles Cufi, Akiba & Robert

Davidson

[3] Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and

802.15.4 radio solution – Datasheet

[4] "8052-Basic Microcontrollers" by Jan Axelson 1994

[5] "The Surprising Story of the First Microprocessors". Shirriff Ken, Institute of Electrical and

Electronics Engineers

[6] BME680 – Datasheet

[7] Carmine Noveillo, “Mastering STM32”, https://leanpub.com/mastering-stm32

[8] https://community.st.com/docs/DOC-1413-tutorial-interfacing-a-stm32l053-discovery-with-an-i2c-

sensor

[9] I2C-bus specification Rev 2.1; Philips Semiconductors; January 2000

[10] I2C-bus specification Rev 3; NXP Semiconductors; June 19, 2007

[11] I2C-bus specification Rev 4; NXP Semiconductors; February 13, 2012

[12] I2C-bus specification Rev 5; NXP Semiconductors; October 9, 2012

[13] STM32WB workshop MOOC (https://www.st.com/content/st_com/en/support/learning/stm32-

education/stm32-moocs/STM32WB_workshop_MOOC.html)

[14] Getting-started-with-the-bluest-protocol-and-sdk-stmicroelectronics Datasheet

https://leanpub.com/mastering-stm32
https://community.st.com/docs/DOC-1413-tutorial-interfacing-a-stm32l053-discovery-with-an-i2c-sensor
https://community.st.com/docs/DOC-1413-tutorial-interfacing-a-stm32l053-discovery-with-an-i2c-sensor
https://www.st.com/content/st_com/en/support/learning/stm32-education/stm32-moocs/STM32WB_workshop_MOOC.html
https://www.st.com/content/st_com/en/support/learning/stm32-education/stm32-moocs/STM32WB_workshop_MOOC.html

