J;\{% NANENIZTHMIO MEIPAIQZ
.J\'I A -~

L] |
B>~ UNIVERSITY OF PIRAEUS

Department of Digital Systems

Thesis

of

Dimou Orfeas
mwel901

on the

Design and Development of an IoT System for Indoor Air
Quality Estimation Using Low-Power Hardware and Bluetooth
Technologies

Supervising Committee: Dr. Antonis Gotsis (External)
Prof. Athanasios Kanatas

Prof. George Efthymoglou

March 2021

http://www.ds.unipi.gr/en/

Introduction

The main objective of the Thesis is to design and develop an 10T System that is able to estimate Indoor Air
Quality, in other words, CO2 levels. As humans exhale CO2, CO2 levels are higher in Indoor spaces where
air cannot escape fast. Taking that into consideratio, approximately all people exhale almost the same
amount of CO2, the level of CO2 in an Indoor space is proportional to the number of people inside. That
said, this 10T system will be able to measure the CO2 level and convert it into number of people inside. This
System could prove very useful in areas with lots of people, as it is able to calculate the average number of
them without performing a headcount, thus saving as time. Also, the ability to calculate people fast, can help
to prevent overcrowding and maintain health restrictions about max number of persons in a given space.

To create such a system, we will be using an VOC sensor (BMEG680) for acquiring CO2-equivalent levels, a
microcontroller (STM32WB55) to process/export the data acquired from the sensor and a phone to collect
transmitted data. Since we want flexibility and an easy installation/usage, the system will be powered with
batteries and the data will be transmitted by making use of, the Bluetooth Technology. The microcontroller
that we have chosen to use, combines Bluetooth and low power consumption capabilities.

In the following Chapters we will analyze the theory behind IoT, BLE, 12C and show the proper way to
program, use, and acquire data to our phone from the STM32WB55.

Finally, through experiments that we have performed, we will provide some indicative results and how we
can use them.

s Co—eo—d#h) (

. m Sensor
- . .’:ﬁ Microcontroller Phone Device

Bluetooth Connection

cContents

INEFOQUCTION ...ttt bbbt h et e et e e st e bt e bt e bt b et et e s eme e st entebeebesbeebe st e b et enneneenennen 1
Chapter 1: BACKGIOUNG.......ccuiiiiieiiieereee ettt b et b et ettt ea e bt eb e s b e et et et et enneneeneereas 3
IO I 1= o O] =T o) TSRS 3
1.2 TRE BIUBLOOTN. ...ttt ettt sttt 4
1.3 THE MICIOCONIIOIIETS. ...ttt sttt b e st b e e b e a e e e e e ene e 7
1.4 The 12C Serial COMMUNICALION BUScc.couiiiiiieiiieiieieiesiesee ettt n e ene s 9
Chapter 2: Hardware used iN the PrOJECT.........ccii ittt 12
2.1 STMB2WBDBS5 NUCIEO ...ttt ettt b et bbb e b 12
2.2 BIMIEBBOD........oeeeeeeieieieieieieieieiee ettt E ettt b b bbb bbb n sttt 13
Chapter 31 HAFAWAEIE SETUPDc.eeuieiiiiiitiiteitetet ettt ettt b e b sttt et ae bt ae bt s b b et e s et e s eneeneene 14
3.1 STM32-BMEG80 CONNECLION DIAGIAMeueeuieiieiiriieientestententeie ettt st sttt e eae s sbesse bt e s e s e e e eneeseas 14
Chapter 4: SOFIWAIE TOOISiiiieieiecececte ettt ettt st e e s be s ba et e steesa e beeas e tesbeestesteessanbesrnessesseensenses 15
4.1 Installation 0f STM32 CUDE IDEcooieiiiiiieirieistetstet ettt 15
Chapter 5: Software Code and SETHINGSccveirieieieieeece ettt st st a et e e te s be e b e stesrsebesrnessesseensenes 17
51 Device Configuration TOONcoceeeriririirieieieiet ettt ettt b et be st sbe s e e e e eneene s 17
5.2 BIMEGSBO COUEuvieieiieiieeeesiesteeie et et et et e e st et e te st e entesseese e seeseessesseensesseeseenseaseesseseessansesseensesseensansenseensenes 24
5.3 BLE COUE. ...cteteteietete ettt ettt st st e st et et e st e st e st s bt e b e s be st et et en e e st e Rt e Rt eReebeetenbentenensenteneeneereas 30
5.4 Transfer value Between DIfferent CIASSES.ceoviiriririiirieirietrercerte ettt 41
Chapter 6: SMArtphone APPIICALION........ccveieiieiete sttt st aesteese e tesseessestesssesessnessesseessenses 43
G TS A AN o o I TS 7= 1= U o PR 43
6.2 Data Collection & VISUBHZALIONc.ccuruiiiiiiniiiiieiceeec ettt 44
CRAPLEE 72 RESUILS ...ttt ettt ettt et et e et e b e s te et e s beeaaesbeebeeabesteesaebeeasestesbeeabesteessenbesssensesbeensentes 47
7.1 Final RESUILS N TESTINGccviitieitiitieiecie ettt ettt ettt te st et e s te e e et e s teesaesbeeasestesbeensesbeessebeessesesseenseeas 47
CONCIUSIONS ...ttt et b et bbb bbbt b st b et s b e bt e b bbb b et eb e bt bt b et en s 48
2 o] [Tl r=1 o] 0 V28OS 49

Chapter 1: Background
1.1 The loT Concept

There is a lot of talk at the moment, about the Internet of Things (IoT) and its impact on everything. But
what is the Internet of Things? How does it work? And is it really that important?

In a nutshell, the Internet of Things is the concept of connecting any device to the Internet and to other
connected devices, like sensors, software, and other technologies for the purpose of exchanging data. These
devices range from ordinary household objects to sophisticated industrial tools. The 10T is a giant network
of connected things and people — all of which collect and share data about the way they are used and about
the environment around them.

The way that it works is that devices and objects with built in sensors are connected to an Internet of Things
platform which integrates data from the different devices and applies analytics to share the most valuable
information with applications built to address specific needs.

By the word ‘Things’ we refer to machines or physical objects, so it becomes important to understand what
kind of objects can be connected via Internet. We can categories these objects into categories —

1. Objects with intelligence or Smart Objects.
Smart Object: “Smart objects are those physical and digital objects which can be identified, have
sensing/actuating capabilities, computational power, also storing, and networking capabilities.”
2. Objects without intelligence or Non-Smart Objects.
Non-Smart Objects: Non-smart objects are generally those objects which do not have intelligence
and processing capabilities. Sensors and actuators are non-smart devices.

But why Is Internet of Things (I0T) so important?

Over the past few years, 10T has become one of the most important technologies of the 21st century. Now
that we can connect everyday objects to the internet via embedded devices, seamless communication is
possible between people, processes, and things. By means of low-cost computing, the cloud, big data,
analytics, and mobile technologies, physical things can share and collect data with minimal human
intervention.

While the idea of 10T has been in existence for a long time, a collection of recent advances in several
different technologies has made it practical.

o Access to low-cost, low-power sensor technology. Affordable and reliable sensors are making l1oT
technology possible for more manufacturers.

o Connectivity. A host of network protocols for the internet has made it easy to connect sensors to
the cloud and to other “things” for efficient data transfer.

e Cloud computing platforms. The increase in the availability of cloud platforms enables both
businesses and consumers to access the infrastructure they need to scale up without having to
manage it all.

e Machine learning and analytics. With advances in machine learning and analytics, along with
access to varied and vast amounts of data stored in the cloud, businesses can gather insights faster
and more easily. The emergence of these allied technologies continues to push the boundaries of
loT and the data produced by 0T also feeds these technologies.

o Conversational artificial intelligence (Al). Advances in neural networks have brought natural-
language processing (NLP) to 10T devices and made them appealing, affordable, and viable for
home use.

1.2 The Bluetooth

Bluetooth wireless technology (BWT) was developed in 1994 at Ericsson in Sweden. The original purpose
of BWT was to eliminate the need for proprietary cable connections between devices such as RS-232 data
cables.

BWT-enabled devices operate in the unrestricted 2.4-gigahertz (GHz) Industrial, Science, Medical (ISM)
band. The ISM band ranges between 2.400 GHz and 2.483 GHz (ISM Band). Bluetooth sends and receives
radio waves in a band of 79 different frequencies (channels) centered on 2.45 GHz, set apart from

radio, television, and cellphones, and reserved for use by industrial, scientific, and medical gadgets. BWT-
enabled devices use a technique called frequency hopping to minimize eavesdropping and interference from
other networks that use the ISM band. With frequency hopping, the data is divided into small pieces called
packets. The transmitter and receiver exchange a data packet at one frequency, and then they hop to another
frequency to exchange another packet. They repeat this process until all the data is transmitted.

Bluetooth is a radio-wave technology, mainly designed for communicating over short distances less than
about 10m or 30ft.

This 10T protocol (Bluetooth Low Energy) brings the protocol on a new level. It opens new opportunities for
devices with small battery capacity. However, the range of this protocol is even less than Wi-Fi has.

Besides, the data exchange speed is suitable only for small sized data. Minding these facts, we can see that
Bluetooth is a perfect option for wearable devices.

At the next Figure we can see the different Protocol stacks of Bluetooth. The Bluetooth is a collection of
different protocols grouped together under a single specification.

€3 Bluetooth’ GBBIuemnu €3 Bluetooth
BR/EDR/(HS)* Y) BR/EDR/(HS) + LE* (SMART) LE*
SPP SPP GAP GATT GAP GATT
RFCOMM RFCOMM SMP ATT SMP ATT
Link Manager Link Manager Link Layer Link Layer

BR/EDR PHY — BR/EDR + LE PHY — LE PRY

The first Protocol stack is the HS (High Speed) Bluetooth which uses the protocol SPP (Serial Peripheral
Protocol) and it is one of the first Protocols that were used. In the second Protocol stack, the Smart Ready-
LE (Low Energy), is the one that most mobiles, laptops, and tablets use. It consists of protocols of both
Protocol stacks as it can communicate with both. Also, the devices that use it have enough memory space to
include all protocols. Finally, the third Protocol stack (Smart- LE (Low Energy)) is the one that we are going
to use in this project.

The core specifications of the device that we use is the Bluetooth 5 that is available since 2016. Our device
is compatible with version 5 but it doesn’t have all the new functions and features that were added.

https://en.wikipedia.org/wiki/RS-232

Focusing on the protocols of the Bluetooth smart:

GAP: Generic Access Profile
Everything on both ends of the communicating devices start with this protocol.

e The Gap layer controls advertising and connections (makes a device visible to the outside world)
e Also determines how two devices can interact with each other.

Observer LUTLCIEIN Broadcaster \\
‘| want data” & pove dota’ @/
=) Do scan) I

m) Set discoverable

@ Scanning... . @ Advertising... l /

Discovered <

Peripheral

“Ok, | want to connect” (
=) Connect Stops advertising

While advertising the packet transmitted includes information of the data that are going to be
transmitted once connected.

Once we establish the connection, we can move on to the GATT protocol.

GATT: Generic Attribute Profile

In this step our Central asks the peripheral about what services it offers and their characteristics (like
read, write, notification etc).

GATT Client Gnedin Peripheral | GATT Server C

“Ok,_what can you do for me?”

) SERVICE
m)» Discover services

ATTRIBUTES
CHARACTERISTIC @
=) Discover characteristics
+ descriptors CHARACTERISTIC (W]
m) Read characteristic SERVICE
m) Enable notifications CHARACTERISTIC @ @ PROFILE
DESCRIPTOR

—

So, our Central device reads the service and gets a response of what the service or characteristics are.
Also, the Central can write to the Peripheral and get a response.

ATT: Attribute Protocol

This protocol defines what the communication is going to be between client and server. In our case the
server is the peripheral. The Attributes are stored in the server and listed as tables. The Attributes contain
lots of information, like ID’s, parameters, data length etc.

» 16-bit handle, an identifier used to access the attribute
ATTRIBUTE = « 16-bit or 128-bit UUID which defines the attribute
type and nature of the data in the value
« value of a certain length (bytes)
« permissions (read, write,...)

So, ATT is just an array of bytes stored in a table, data logic and hierarchy given by GATT and app layer.

Summarizing, when the GAP procedure finishes and the devices are ready to communicate, the GATT
comes into play and a connection is established and defines data exchange between two BLE devices. It
adds a data model and hierarchy on top of the ATT (by means of concepts called services and
characteristics). The services are organized in GATT profiles and each profile can contain multiple services.

SERVICE
CHARACTERISTIC @

PROFILE

CHARACTERISTIC (W)

SERVICE
CHARACTERISTIC @ ©

e A service is a container for logically related data items

e Characteristics are logically related data items within one service and consist of a type, a value, some
properties, permissions and optionally descriptors.

e Descriptors either provides additional details or allows configuration of behavior related to the
characteristics (e.g., turn on notifications)

1.3 The Microcontrollers

A microcontroller (uC or uC) is a solitary chip microcomputer fabricated from VLSI fabrication. A micro
controller is also known as embedded controller. Today various types of microcontrollers are available in
market with different word lengths such as 4bit, 8bit, 64bit and 128bit microcontrollers. Microcontroller is a
compressed micro computer manufactured to control the functions of embedded systems in office machines,
robots, home appliances, motor vehicles, and a number of other gadgets. A microcontroller includes
components like — memory, peripherals and most importantly a processor. Microcontrollers are basically
employed in devices that need a degree of control to be applied by the user of the device.

Types of Microcontrollers

Microcontrollers are divided into various categories based on memory, architecture, bits and instruction sets.
Following is the list of their types

Bit

Based on bit configuration, the microcontroller is further divided into three categories.

e 8-bit microcontroller — This type of microcontroller is used to execute arithmetic and logical
operations like addition, subtraction, multiplication division, etc.

e 16-bit microcontroller — This type of microcontroller is used to perform arithmetic and logical
operations where higher accuracy and performance is required

e 32-bit microcontroller — This type of microcontroller is generally used in automatically controlled
appliances like automatic operational machines, medical appliances, etc.

Memory

Based on the memory configuration, the microcontroller is further divided into two categories.

e External memory microcontroller — This type of microcontroller is designed in such a way that they
do not have a program memory on the chip. Hence, it is named as external memory microcontroller.

e Embedded memory microcontroller — This type of microcontroller is designed in such a way that the
microcontroller has all programs and data memory, counters and timers, interrupts, 1/0 ports are
embedded on the chip.

Instruction Set
Based on the instruction set configuration, the microcontroller is further divided into two categories.

e CISC — CISC stands for complex instruction set computer. It allows the user to insert a single
instruction as an alternative to many simple instructions.

e RISC — RISC stands for Reduced Instruction Set Computers. It reduces the operational time by
shortening the clock cycle per instruction.

Microcontroller Basics:

Any electric appliance that stores, measures, displays information or calculates comprise of a
microcontroller chip inside it. The basic structure of a microcontroller comprises of:

CPU: Microcontrollers brain is named as CPU. CPU is the device, which is employed to fetch data, decode
it and at the end complete the assigned task successfully. With the help of CPU all the components of
microcontroller are connected into a single system. Instruction fetched by the programmable memory is
decoded by the CPU.

Memory: In a microcontroller memory chip works same as microprocessor. Memory chip stores all
programs & data. Microcontrollers are built with certain amount of ROM or RAM (EPROM, EEPROM, etc)
or flash memory for the storage of program source codes.

Input/output ports: 1/0 ports are basically employed to interface or drive different appliances such as-
printers, LCD’s, LED’s, etc.

Serial Ports: These ports give serial interfaces amid microcontroller & various other peripherals such as
parallel port.

Timers: A microcontroller may be in-built with one or more timer or counters. The timers & counters
control all counting & timing operations within a microcontroller. Timers are employed to count external
pulses. The main operations performed by timers, are pulse generations, clock functions, frequency
measuring, modulations, making oscillations, etc.

ADC: (Analog to digital converter) ADC is employed to convert analog signals to digital ones. The input
signals need to be analog for ADC. The digital signal production can be employed for different digital
applications (such as- measurement gadgets).

DAC: (digital to analog converter) this converter executes opposite functions that ADC perform. This device
is generally employed to supervise analog appliances like- DC motors, etc.

Interpret Control: This controller is employed for giving delayed control for a working program. The
interpret can be internal or external.

Special Functioning Block: Some special microcontrollers manufactured for special appliances like- space
systems, robots, etc, comprise of this special function block. This special block has additional ports, so as to
carry out some special operations.

1.4 The 12C Serial Communication Bus

I2C or 12C is an abbreviation of Inter-Integrated Circuit, a serial communication protocol made by Philips
Semiconductor. It is created with an intention of communication between chips residing on the same Printed
Circuit Board (PCB). It is commonly usually used to interface slow speed ICs to a microprocessor or a
microcontroller. It is a master-slave protocol, usually a processor or a microcontroller is the master and other
chips, for example Temperature Sensor, etc. will be the slave. We can have multiple masters and multiple
slaves in the same 12C bus. Hence it is a multi-master, multi-slave protocol.

It needs only two wires for exchanging data and ground as the reference.

e SDA — Serial Data
e SCL — Serial Clock
¢ GND - Ground

Vce
Pull Up
S Resistors
SCL
SDA
12C
Master
Slave 1 Slave 2 Slave 3
\, y

12C bus is popular because it is simple to use, there can be more than one master, only upper bus speed is
defined and only two wires with pull-up resistors are needed to connect almost unlimited number of 12C
devices.

Devices on an 12C bus are always a master or a slave.

Master is the device which always initiates a communication and drives the clock line (SCL). Usually, a
microcontroller or microprocessor acts a master which needs to read data from or write data to slave
peripherals.

A slave device is always responding to a master and won’t initiate any communication by itself. Each slave
device will have a unique address such that master can request data from or write data to it.

Each slave device has a unique address. Transfer from and to master device is serial and it is split into 8-bit
packets. All these simple requirements make it very simple to implement 12C interface even with cheap
microcontrollers that have no special 12C hardware controller. We only need 2 free I1/O pins and few simple
i2C routines to send and receive commands.

https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Bus_(computing)

The initial 12C specifications defined maximum clock frequency of 100 kHz. This was later increased to 400
kHz as Fast mode. There is also a High-speed mode which can go up to 3.4 MHz and there is also a 5 MHz
ultra-fast mode.

12C Addresses

Basic 12C communication is using packets of 8 bits or bytes. Each 12C slave device has a 7-bit address that
needs to be unique on the bus. Some devices have fixed 12C address while others have few address lines
which determine lower bits of the 12C address. This makes it very easy to have all 12C devices on the bus
with unique 12C address. There are also devices which have 10-bit address as allowed by the specification.

7-bit address represents bits 7 to 1 while bit 0 is used to signal reading from or writing to the device. If bit O
(in the address byte) is set to 1 then the master device will read from the slave 12C device.

Master device needs no address since it generates the clock (via SCL) and addresses individual 12C slave
devices.

12C Protocol

12C protocol is using only 2 lines (one for clock and one for data) for communication. But usually, we do
not need to worry about it as in most of the device’s hardware itself will take care of these things.

= -y =

sm—*‘\ [XXXOC\ /N OCKIIXCX X

acknowledgement acknowledgement | Sr|

! signal from slave signal from receiver | }

| | |

SCL lgorsr! 1 2\ ____J1\J8\ /9 1\ /2\ /308 \ /9 'SrorP |

L——J ACK ¢ 4 ACK . 4

START or STOP or
repeated START byte complete, — — clock line held LOW repeated START

condition interrupt within slave while interrupts are serviced condition

Start Condition

12C start condition is issued by a master device to give a notice to all slave devices that the communication
is about to start. Thus, start condition triggers all slave devices to listen to the data in the bus. To issue start
condition, the master device pulls SDA low and leaves SCL high. In the case of multi-master 12C there is a
possibility that 2 masters wish to take ownership of the bus at the same time. In these cases, the device
which pull down SDA first gains the control of the bus.

10

Address Frame

Address frame is always sent just after the first start condition during every communication sequence. In this
master devices specifies the address of the slave device to which the master wants to communicate. There
are basically 2 types of addressing 7-bit addressing and 10-bit addressing. In the 7-bit addressing mode,
master sends address first (MSB first) followed by read/write (R/W) indicating bit (0 => Write, 1 => Read).

Data Frames

Data frame(s) are transmitted just after the address frame. It can be sent from master to slave OR from slave
to master depending on the above R/W bit through SDA line. The master will continue generating required
clock signals. Devices can send one or more than one data frame as per the requirements.

Stop Condition

Master device will generate stop condition once all data frames has been sent/received. As per 12C
standards, STOP condition is defined as a LOW to HIGH transition on SDA line after a LOW to HIGH
transition on SCL, with SCL HIGH.

Acknowledge (ACK) and Not Acknowledge (NACK)

Each byte of data in 12C communication includes an additional bit known as ACK bit. This bit provides a
provision for the receiver to send a signal to transmitter that the byte was successfully received and ready to
accept another byte.

10-bit Addresses

We know that 12C bus uses 7-bit addressing, which means that devices are limited to 127 devices and
address clashes can happen. 10-bit address scheme is introduced to solve this problem. 10-bit address
devices can be mixed with 7-bit devices and it increases the address range about 10 times.

11

Chapter 2: Hardware used in the project
2.1 STM32WB55 Nucleo

STM32 is a family of 32-bit microcontroller integrated circuits by STMicroelectronics. The STM32
chips are grouped into related series that are based around the same 32-bit ARM processor core.
Internally, each microcontroller consists of the processor core, static RAM, flash memory, debugging
interface, and various peripherals.

The unparalleled range of STM32 microcontrollers, based on an industry-standard core, comes with a
vast choice of tools and software to support project development, making this family of products ideal
for both small projects and end-to-end platforms.

All Nucleo boards by STMicroelectronics support the mbed IDE development and has an additional
onboard ST-LINK/V2-1 host adapter chip that supplies SWD debugging, virtual COM port, mass
storage. There are three Nucleo board families, each supporting a different microcontroller IC package
footprint. The debugger embedded on Nucleo boards can be converted to SEGGER J-Link debugger
protocol.

The STM32WB55xx and STM32WB35xx multiprotocol wireless and ultra-low-power devices embed
a powerful and ultra-low-power radio compliant with the Bluetooth Low Energy SIG specification v5.0
and with IEEE 802.15.4-2011. They contain a dedicated Arm Cortex -MO0+ for performing all the real-
time low layer operation.

The devices are designed to be extremely low-power and are based on the high-performance Arm
Cortex -M4 32-bit RISC core operating at a frequency of up to 64 MHz. The Cortex -M4 core features
a Floating-point unit (FPU) single precision that supports all Arm single-precision data-processing
instructions and data types. It also implements a full set of DSP instructions and a memory protection
unit (MPU) that enhances application security.

Circuit Diagram Stm32wb55 Pinout
‘ oNG MB1355C

PG4
PB
PE% 015 PBS

GND GND D8 PC12

PRA
oo DD ADD s
GND D 5V_USB_MCU

GND GND

B NC NG ol NC

B IOREF IOREF S o PAI2

— NRST NRST i PATY

Ve 3N D10 PAG/PBI0 PB12

5 +5V +5V NC

: D9 PAQ

7

8

WU/CSS
VIN VIN D7 PC13 PB1
| A | : NC D6 PA3 PBS/PBISFAS
Muit-protocol RF stack PO AO D5 PA1S PB14
2 watchdogs PGl A1 D4 PCIO PB13/PB3
Lo PAT A2 D3 PA10 AGND
raets MO A b2 Peg Pes
NC PC3 A4 il PA2 PDO
NC P2 A5 0 PA3 PD1
Voltage scaling Sensing CNB
modes)
Encryption/security
Analog M Aduinotno M ST morpho
SAR 4.25 Msps o
8 x40LCD drwver

12

2.2 BMEGS80

The BMEG68O is a digital 4-in-1 sensor from Bosch with gas, humidity, pressure, and temperature
measurement based on proven sensing principles. The sensor module is housed in an extremely compact
metal-lid LGA package with a footprint of only 3.0 x 3.0 mm? with a maximum height of 1.00 mm (0.93 +
0.07 mm). Its small dimensions and its low power consumption enable the integration in battery-powered
devices, such as handsets or wearables.

The sensor communicates with a microcontroller using 12C or SPI communication protocols. The gas sensor
can detect a broad range of gases like volatile organic compounds (VOC). For this reason, the BME680 can
be used in indoor air quality control.

The BMEG680 contains a MOX (Metal-oxide) sensor that detects VOCs in the air. This sensor gives you a
qualitative idea of the sum of VOCs/contaminants in the surrounding air — it is not specific for a specific gas
molecule.

MOX sensors are composed of a metal-oxide surface, a sensing chip to measure changes in conductivity,
and a heater. It detects VOCs by adsorption of oxygen molecules on its sensitive layer. When the sensor
comes into contact with the reducing gases, the oxygen molecules react and increase the conductivity across
the surface. As a raw signal, the BMEG80 outputs resistance values. These values change due to variations in
VVOC concentrations:

BMEG680 Pinout
. - vce Powers the sensor
&QE , . GND Common GND
* scL SCL pin for 12C communication
- SCK pin for SPI communication
VOCs/Pollutants BME680 Resistance SDA :gf\(ﬂg;’;gfﬂﬂ;‘:':;I“t‘;‘gf:f:icatiOn
sDO SDO (MISQ) pin for SPI communication
€S Chip select pin for SPI communication
. ! BMEG680 Ranges
Sensor Operation Range
Temperature -40to 85 °C
NO VOCs/Pollutants BME680 Resistance ., midiy 010 100%

= Higher concentration of VOCs » Lower resistance Pressure Aliouira

= Lower concentration of VOCs » Higher resistance

13

Chapter 3: Hardware Setup
3.1 STM32-BMEG680 Connection Diagram

o o

FunN/ i

at y IR e runsoes
" | 1

= Funse3

=
i e o Ol 5 ¢
2 - .

5 = 0 o -
* GND 'S

5 §CK/333 .

3¢ rence 00D : IC
° 1D nIsosne .

3 RESCT 3%
° Pen/nosiziig *

. W

* S | PUN/CS/330 .
* T PRI PN/ 09 5 S
' S 3¢
. P e *

 » Ny @ d
. I .

) _ YIN p?) .
* *

. .

. *

- ’

. *

- -

- »

gL Lyy -

wu-3t.com/3taddnuclec

STM32 BME6GS0
pin 16 of CH7 (left side) Vcc
pin 20 of CH7 (left side) Gnd
pin 5 of CH10 (right side) SDA
pin 3 of CH10 (right side) SCL
We can power the Stm32WB55 from the pin 24 of CH7(left side) or from the mini-usb port of ST-Link.
The STM32 communicates with BME680 via a 12C bus.
e Vce=2-6V for BMEG8O (in this project we have used 3.3V)

(For debugging reasons, we can use an usb to serial convertor to take a serial output. It is not a necessary
part of the project)

14

Chapter 4: Software Tools
4.1 Installation of STM32 Cube IDE
The main tool that we will use is the STM32 CubelDE which is an eclipse-based IDE. To download the tool,

simply, visit the site (https://www.st.com/en/development-
tools/stm32cubeide.html?ecmp=tt11319 gl link_may2019&2).

To install, simply follow the installation Wizard.

mf'.'::ee:'.:'::-}'.'E-L.Z_._'eZE — x
Welcome to the STMicroelecironics
‘,I STM32CubelDE Wizard
life.augmented

Setup will guide you through the installation of
STMicroelectronics STM32CubeIDE.

ﬁ It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Mext to continue.

Mext = Cancel

If you run into an error like the following, replace the .exe file to your c:/

MSIS Error ot

e Error launching installer

Install all the necessary drivers when asked. Once the installation is completed and execute the tool, we will
see the following screen.

(55 workspace_1.40- STM32CubelDE - o x
Fle Edt Source Refactor Navigste Search Project Run Window Help
Heb G| Bt @8- @G- -0~ Qi Nt s - ol e [Queacees | 22 | [
5 Project Explorer 33 Bg v=no %= Outine 52 =y
=g
There i no active edtor that provides an
outin
Pr | & Tasks) Comsole [Propertes 3 Y S0 [SuidAnsyzer 13 2 #v=n
Otems
Description Resource Poth
Memory Regions Memory Details
Region Sartaddiess Endaddress Size Free

15

https://www.st.com/en/development-tools/stm32cubeide.html?ecmp=tt11319_gl_link_may2019&2
https://www.st.com/en/development-tools/stm32cubeide.html?ecmp=tt11319_gl_link_may2019&2

Then select File -> New -> STM32 Project

E workspace_1.4.0 - 5TM32CubelDE
File Edit Source Refactor MNavigate Search Project Run Window Help

Mew Alt+Shift+MN > [CY] Makefile Project with Existing Code
Open File... [€] C/C++ Project
[} Open Projects from File System... E 5TM32 Project
Recent Files > E 5TM32 Project frem an Existing 5TM32CubeMX Configuration File (ioc)
Close Ctrl+W [Project..

The IDE will start downloading the necessary libraries to display. Wait for a few minutes and then you will
see the following image:

MCUMPU Selectar

MCU/MPU Filters

[EIL} E\, Q Features Block Diagram Docs & Resources Datashest Buy
Ql a
art Mumber ~ LoRa
Core > U sigfox
Series > M,
Line > STM32WL sub-GHz wireless SoCs
Mulii-protocel & long-1ange communicationz
Package >
Other > MCUs/MPUs List: 1752 items Display similar items Ty Export
Berigheral N || Partho | Reference [Marketing . X]UnitPricef..X| _Board _X| Package X| _Flash _X] _Rram] 0 __X] _Freq__X]
P 134 STM32F030... STM32F030... Active 0.597 LQFP43 32 kBytes 4 kBytes 39 48 MHz R
x STM32F030... STM32F030__ Active 0.722 LQFP43 64 kBytes 8 kBytes 39 48 MHz
STM32F030... STM32F030... Active 11 LQFP48 256 kBytes 32 kDytes v 48 MHz
STM32F030... STM32F030__ Active 0.424 TSS0P20 16 kBytes 4 kBytes 15 48 MHz
STM32F030... STM32F030... Active 0.518 LQFP32 32 kBytes 4 kBytes 25 48 MHz
STM32F030... STM32F030__ Active 0.754 nuct... sTMaz. LQFP64 64 kBytes 8 kBvtes 55 48 MHz

Here we are called to complete the type of the stm32 device we are about to use. In our case we complete
the STM32WB55RG and we select and click next on the result with the nucleo mark.

We give a name to our project (in our case is Final) and choose the language we will use (we will use C).
Leave the rest of the choices as it is.

Project
Project Name: | Finall
Use default location
C:/Users/nikol/STM32CubelDE/workspace_1.4.0 Browse...

Options

Targeted Language
@®c OC+

Targeted Binary Type
(®) Executable () Static Library

Targeted Project Type
(®) 5TM32Cube () Empty

@' < Back Mext > Cancel

The project will start building the necessary code and visual display and will take some time.

When it is completed, we are ready to start working on our project.

16

Chapter 5: Software Code and Settings

5.1 Device Configuration Tool

At first, we are looking at an empty project with our specific stm32.

Pinout & Canfiguration

v Software Packs v Pinout

{5E Pinout view == System view

System Core >
Analog >

Timers >

Connectivity >

Multimedia >

Security >

Computing >

Middleware > o

Utities N STM32WB55RGVx

VFQFPN68
Q@ I @ W 4 al]
1. Here we can change the hardware setting of the device, either from the left list or by directly pressing
on each pin.
We begin with the System Core -> HSEM -> tick on activation. We need this part for our BLE
libraries.
System Core b Activated
DMA
o HSEM |
WDG
v R Z-
TSC
WWDG

2. Next, we choose the RCC which we use to give timing to our BLE. We make the changes:
We change both clocks (low and high) to the Crystal/Ceramic Resonator.
This will activate pins PC14, PC15 accordingly.

High Speed Clock (HSE) Crystal/Ceramic Re_ |

System Core hd
" Low Speed Clock (LSE) |Crysta|f'Ceramic Re. . V|
DMA [Master Clock Output
v _:: O LSCO Clock Output
IWDG [0 SAI1 Extern CLock
L CRS SYNC [Disable v
RCC
v SYS
TsC
WWDG

17

3. After that, we go to the Timers, where we need to activate the RTC.

Categoriesy| A->Z

Activate Clack Source

System Core >
[Activate Calendar
Analog ’ Alarm A [Disable |
Timers ~ Alarm B |Disable |
N [Timestamp
LPTIMA WakeUp Disable v |
LPTIM2
H Tamper
TIMA [Tamper 2
TIMZ2
TIMAG [Tamper 3
TIM17 Calibration |Disable ~

[Reference clock detection
The RTC is used by the Middleware to manage the RF wakeup system.

4. Up next, we go to Connectivity and we need to activate 12C in order for the STM32 to communicate
with the BMEG680. Pins PB8(SCL) and PB9(SDA) will be marked.

¢

oe3 I2¢ |i2C v]

LPUART1
QUADSPI
RF

SPI
SPI2
USART1
UsB

5. Also, we will activate the RF for the BLE function. Pin RF1 will be highlighted.
.

[2C3 Activate RF1

LPUART1
QUADSPI
SPI1
SPI12
USART1
UsB

6. Finally, we will go to the Middleware and activate STM32_WPAN -> BLE to activate the BLE
function.

-
FATFS BLE
FREERTOS o
+ 5TM32 WPAN O THREAD

Also, we need to change the Configuration at the BLE Applications and Services Tab.

18

We must change the Custom Template to enable, to be able to send our own services and from the Local
Name we can name our Bluetooth device. The final form must be:

@ Parameter Settings
@ BLE Applications and Semices

Configure the below parameters :

Qe] © © ®
~ BLE Application Type
BLE Application Type Server profile
~ Semer Maode
BT SIG Beacon Disabled
BT SIG Blood Press... Disabled
BT SIG Health Ther... Disabled
BT SIG Heart Rate S... Disabled
Custom P2P Server Enabled
Custom Template Enabled
~ BLE Semices Configuration

BLE_CFG_SVC_MA . 7

BLE_CFG_CLT MA_. 0
~ P2P Semice

P2P_SERVER_MNUM... P2P_SERVER1
~ Local Mame
LOCAL_MNAME P2PSRV1

Now as an extra step that is not necessary for the final result we can activate the Usartl in order to be able to

get serial output for debugging purposes, and enable a led in order to test our device connection via
Bluetooth.

Steps 7,8 can be ignored.

7. We move to Connectivity->USART1 -> change the mode to Asynchronous

12C3 Mode |Asynchronous V|

LPUART1 Hardware Flow Control (RS5232) |Disable ~ |
QUADSPI [Hardware Flow Control (RS485)

=T Slave Select{NS5) Manageme :|E'iaa;l-; |
SPI12

~ USART1

usB

Also, at the configuration we can change the parameter Settings. In our case we have the default.

@ Parameter Settings @ User Constants

(Configure the below parameters :
~ Basic Parameters

Baud Rate 115200 Bits/s

Word Length 8 Bits (including Parity)

Parity MNane

Stop Bits 1
~ Advanced Parameters

Data Direction Receive and Transmit

Over Sampling 16 Samples

Single Sample Disable

ClockPrescaler clock /1

Fifo Mode Disable

Tufifo Threshold 1 eighth full configuration

Rxfifo Threshold 1 eighth full configuration
~ Advanced Features

Auto Baudrate Disable

TX Pin Active Level Inversion Disable

RX Pin Active Level Inversion Disable

Data Inversion Disable

TX and RX Pins Swapping Disable

Qverrun Enable

DMA on RX Error Enable

MSB First Disable

Pins PA9(TX) and PA10(RX) will be highlighted. Note: To get a serial out an usb to serial convertor must
be used.

19

8. For the Led we go manually on pin PB5 and select from the list GPIO_Output.

Reset_State
COMP2_0U
12C1_SMBA
LCD _SEGY
LPTIMA_INA1

RCC_0SC32_IN LPUARTY. T

RCC_OSC32_0OUT |FEREES SAIN_SD_B
SPI_MOSI

TIMA6_BKIN

TSC_G2_102

[2C1_SCL [EIEE USART1_CK
GPIO_Input

12C1_SDA
GPIO_Analog

EVENTOUT

GPI0_EXTI5

For easier use, we right click on the pin ->Enter User Label to name it. We will name itas LED_BLUE

tpLt

GPIO O

GPIO_Output (PB5) LED_BLUE |

{

All the pinout and Configurations are completed. Although we have completed everything, we can
notice an error notification on Clock Configuration Tab. We move to this tab to fix the error. When the
program will ask to solve the issue, we press yes.

Pinout & Canfiguration @ Clock Configuration Project Manager

Resolve Clock Issues

RTCILCD Source Mux

HSE HSE_RTC le) l:lTDLCD (KH) CPU1 HFRE HCLK1 (MHz)
= o L: s - B —
Khz Ll S
Lsi1 T

L EnableCSS

LsI2 RC [To IWDG (KHz)

System Clock Mux

0 Do you want to run automatic clock issues solver ?

Otherwise you can da it later by clicking on button “Resolve Clock Issues”

[Do not show this message again HELKS Clock 1
HEE
T 1 Remember my decision for next projects. ®
HSE PRES . Hel U

TSE
—

—..I:Iro USB (MHz)
12C1 Clock Mux

This action will solve partially the issue. Next, we must make some changes. In the top left corner, we
enabled our low-speed external crystal (32.768 KHZ). So, we must make sure that this is selected in our
multiplexer (Mux). We change the Mux to LSE.

Next, we enabled our high-speed external crystal (32 MHZ). Also, here we must change the multiplexer, this
time to HSE_SYS.

RTC/LCD Source Mux
HSE [HSE_RTC
132 | -~ I:ITc LCD {KHz)
Input freguency
L5E
LSE * - (E 32768 |To RTC [KHz)
KHz Lel
O
L5I1 RC
32 KHz I -
LSIZ RC L] .-I:ITc IWDG [KHz)
32 KHz
System Cloch Mux
M5l RC "
32000 » O
R HSI 5Y5C
z —
SE_SYS :
(]
PLL Source Mux r,’ G
L] —
_... D
HSI RC - PLLM L~
‘—h L% |-<I—| B w -
16 MHz *N PLLQ
Lol (o
HSE PRES FLLP
PLL 128
FLLSAITR
< xs ~|)
i FLLEAITD -
FLLSAIF Mz
PLLSAIT ~| _
RC 48 MHz
54
Input freguency
i HSE -
Hz ‘ —

21

Finally, we move to the bottom right corner we have the RF system wakeup and again we need to change to

multiplexer to LSE
L=k 9 PCLK1
Sl

®
LPUART1 Clock Mux —
HE| o LPTIMZ (MHz)
PCLK1 — G,
—|® LSE
SYSCLK — 0
—_—
HSI o - Iro LPUART1 (MHz)
— RFWHKP Clock Mux

=) [ppalHEE o

= 12 TR o RF system wakeup [KHz)

—| @

SMP 5 Clock Mux

o SMPS 5tep Down (MHz)

The last step is to choose the Project manager tab -> Advanced Settings and then check the Generated
Function Calls. All peripherals must be enabled before we enable the middleware.

Project Manager

Clock Configuration

Project

STM32_WPAN

Code Generator

Generated Function Calls

“ Function Name IP Instance Name W Do Not Generate Function Call W Visibility (Static)
O

MX_GPIO_Init GPID

SystemClock_Config RCC O O
Advanced Setftings MX_12C1_Init 12C1 O
MX_RF_Init RF O
MX_RTC_Init RTC O
MX_USART1_UART _Init USART1 O
APPE_Init STM32_WPAN O O

22

In Conclusion, this must be the final settings.

12C1_SCL @ PB8
12C1_SDA @ PB9
LED_BLUE @ PB5
USART1_RX @ PA10
USART1_TX @ PAS
HSE(High speed clock)
LSE(Low speed clock)
RTC Activated

HSEM Activated

RF Activated
STM32_WPAN BLE

RCC_OSC32_N [k8

RCC_0SC3z_ouT (RS

12c1_scL (§E
1201_SDA =1

[ZSI USART1_RX

STM32WB55RGVX
VFQFPN68

RCC_OSC_IN

Check PO Int
System Core e Timers b
DMA LPTIM1
GPIO LPTIM2
IWDG TiM1
NVIC TiIM2
v TIM16
TimM17
TSC
WWDG
Connectivity ha Middleware v
12C1 FATFS
LPUART1
QUADSPI
SPI1
SPI2
usB

If everything is completed, press save, and the program will generate the necessary code.

The generated code project tree must be like the following image:

v [[3 Final > [app_common.h _
> [al Includes » [n] app_cenf.h 5 g app_entry.c
w [Core > [n app_entry.h 5 g hw_lpm.c
3 Inc > [b] hw_conf.h > [hw_timerserver.c
¥ = 51 > [B] main.h 5> [main.c
» [= Startup » [stm32whbxx_hal_conf.h 5 g stm32wbxx_hal_msp.c
» 2 Drivers > [n stm32whso_it.h 5 g strm32wh_it.c
w‘ }_@ utilities_conf.h 5 € syscalls.c
STM32 WPAN 5 [sysmem.c
== Debug = CMSIS s [€] systemn_stm32whac.c
Eﬁ delete.launch s = STM32WBxx_HAL_Driver
[1] Final.ioc _
£ Final.launch =
STM32WESSRGVX_FLASH.Id v & STM32_ WPAN
STM32WES5RGVX_RAM.Id » (= ble
s [= interface
» = utilities
v & App » |E| st 32_wpan_commonh
5 £ app_ble.c —
5 [n] app_bleh
5 [B] ble_conf.h
» [n] ble_dbg_conf.h
s €] p2p_server_app.c
5 [k p2p_server_app.h
» @ template_server_app.c
» @ template_server_app.h

23

5.2 BMEG80 Code

The first step to start writing the code is to add the necessary libraries for the BME680.
We can download the necessary files from (https://github.com/BoschSensortec/BMEG80_driver).

Then create a new file inside the Drivers folder and place inside the bme680.c

Also, add the files bme680_defs.h and bme680.h inside the Inc file.
W E Final

[l Includes
w 2 Core

w = Inc
[k app_common.h
[k app_conf.h
[n] app_entry.h
[n] brne6dD_defs.h
[brme630.h
[k hw_conf.h
[k rnain.h
@ stm32whi_hal_conf.h
[h] stm32whxx_it.h
[n| utilities_conf.h

= Src

[z=- Startup
s 2 Drivers

w = BMEGED_I2C_Driver
(] brnef.c
= CMSIS
= STM32WBxx_HAL_Driver

Once we have all the necessary files added, we can proceed to the Src-> main.c
Starting, we need to add the libraries that we will use and the drivers of the bme680.

We begin at line 23,29, 30, 31. We added the string.h to be able to take an output at uartl for debugging
reasons and math.h to be able to use log.

E

/* USER CODE END Header */

[
Woca

&

/* Includes —-------------mm - */
#include "main.h"

#include "math.h"

#include "app_entry.h"

[R L S)
i k2 =

[¥ [=Y

= /* Private dincludes --------mmmmm e e *f
/* USER CODE BEGIN Includes */

#include <stdio.h>

#tinclude <bmeg3@.h>

#include <bmegdd _defs.h:

#include <string.h>

[T L T S T]
O =]

L Ld L gL gL
= L Ra =& o

'* USER CODE END Includes *;

24

https://github.com/BoschSensortec/BME680_driver

We move on by adding lines 38, 39, 59, 60, 61 ,63 ,64, 65 as shown. Here we declare the variables that we
will use.

main.c

34 /* USER CODE END Includes */

35

360 /* Private typedef --------emcmmcmmm e =
37 /* USER CODE BEGIN PTD */

a8 struct bmeGB8_dev gas_sensor; /fsensor data for gas resistance

29 struct bmeg8@ field data data; //sensor data

48 f* USER CODE END PTD */

41

422 /* private define ------------------- - --- - -\ -\ - - -\ - - - - -\ - - -\ - -\ . -\ -\ : : i N} b *f
43 f* USER CODE BEGIN PD */

44 f* USER CODE END PD */

45

465 /* Private mMacrg --------- - *f
47 /* USER CODE BEGIN PM */

48

49 f* USER CODE END PM */

S8

51 /* Private variables --------------------------—------- - - : .} l l L *f
52 I2C HandleTypeDef hiZcl;

53

54 RTC_HandleTypelef hrtc;

35

56 UART _HandleTypeDef huartl;

57

58 J/* USER CODE BEGIN PV */

L0 uintle_t size; /fSfused for uartl output

g8 uintle_t gas_read; J/variable for air quality

b1 char msg[256]; //used for uartl output

62

53 wolatile uintd_t set_required_settings; {//needed for sensor calibraticn

54 wvolatile int8_t rslt = @; //variable for the results

L5 wolatile uintl6 t meas_period; J//needed for sensor calibraticon

66 /* USER CODE END PV */

67

68 /* Private function prototypes -----------c-memmmmce e e =

Finally, we add lines 77, 78, 79 as shown, to declare some essential functions for the sensor.

main.c

68 /* Private function prototypes ---------------mmmm oo */
59 wold SystemClock Config(woid);

78 static woid MX GPIO Init({wvoid);

71 static woid MX _USART1 UART Init({void);

72 static woid MX_RF_Init(wvoid);

73 static void MX_RTC_Init(void);

74 static wvoid MX_I2C1 Init(wvoid);

76 /* USER CODE BEGIN PFP */

27 wvoid user_delay ms(uint32_t periocd);

73 intd t wser_i2c_read{uint8 t dewv_id, uint3 t reg_addr, uint® t *reg data, uintls_t len);
79 intd t wser_i2c_write{uintd t dev_id, uint8 t reg_addr, uintd t *reg_data, uintls_t len);
8@ /* USER CODE END PFP */

a1

822 /* Private user code -------mmmmm o e e */

83 /* USER CODE BEGIN & */

84 /* USER CODE END @& */

25

Since we have declared some function, we must also add them. So, we add lines 471 till 493 in the “USER
CODE BEGIN 4” part as shown below. Those functions are necessary for the communication of the sensor
with the microcontroller.

We also can find these functions at the README.md file that we have downloaded with the drivers.

main.c

469
47@ /* USER CODE BEGIN 4 */
71=void user_delay ms{uint32_t period) //Delay till the measurement is ready

\I\

472

-
o

+
w

HAL_Delay(peried);

-
-
%

7)

475

476

477=int8_t user_i2c_read(uintd_t dev_id, uint8_t reg_addr, uint3_t *reg_data, uintlé_t len) f/12C read
a8 {

479 intd_t rslt = @;

esicl HAL StatusTypeDef status = HAL OK;

481 status = HAL_I2C_Mem_Read(&hi2cl, (uintlé_t)(dev_id<<l), reg_addr, I2C_MEMADD_SIZE_8BIT, (uintd_t*)reg data, len, @x10@e8);
2 if(status != HAL OK) rslt = -3;

483 return rslt;

485

486 int8_t user_i2c_write(uintd_t dev_id, uint8 t reg_addr, uint8_t *reg_data, uintlé_t len) f/I12C write
37 {

488 intd_t rslt = @;

489 HAL_StatusTypeDef status = HAL OK;

498 status = HAL_I2C Mem lWrite(&hi2cl, (uintle_t)(dev_id<<l), reg_addr, I2C_MEMADD_SIZE_8BIT, (uint8_t*)reg data, len, @x1@eee);
T if(status != HAL OK) rslt = -3;

492 return rslt;

434 /* USER CODE END 4 */

495

497@ * @Ebrief This function is executed in case of error occurrence.[]

Since we have defined the functions that we will use, we are ready to return to calibrate the sensor and ask
for data outputs.

26

Before we ask for data from the sensor, we must activate and calibrate it, as it is described by the
manufacturer.

Therefore, we add lines 120 till 160 as shown below. This part is given by the manufacturer in the
README.md file that we have downloaded.

main.c

118 /* USER CODE BEGIN 2 */

119

dz2a gas_senscr.dev id = BMEG38 I2C ADDR PRIMARY;

121 gas_sensor.intf = BMEESE I2C INTF;

T2 gas_sensor.read = user_il2c_read;

E gas_sensor.write = user_i2c_write;

124 gas_sensor.delay_ms = user_delay_ms;

1252 /* amb_temp can be set to 25 prior to configuring the gas sensor
126 * gr by performing a few temperature readings without operating the gas sensor.
127 *

128 gas_sensor.amb_temp = 25;

129

138 rslt = bme6B@_init(&gas_sensor);

131

132

133 /fConfigure sensor!!lllIT]

134 uintd_t set_required_settings;

135

136 /* Set the temperature, pressure and humidity settings */
137 gas_sensor.tph_sett.os_hum = BMEG38_05_2X;

1338 gas_sensor.tph sett.os pres = BMEGER 05 4X;

139 gas_sensor.tph_sett.os_temp = BMEGBE_05_BX;

SETR gas_sensor.tph_sett.filter = BMEGS88_FILTER_SIZE_3;

141

142 /* Set the remaining gas sensor settings and link the heating profile */
143 gas_sensor.gas_sett.run_gas = BMEGSE_EMABLE_GAS_MEAS;

144 /* Create a ramp heat waveform in 3 steps */

145 gas_sensor.gas_sett.heatr_temp = 328; /* degree Celsius */
las gas_sensor.gas_sett.heatr_dur = 158; /* milliseconds */

147

148 /* Select the power mode */

149 /* Must be set before writing the sensor configuration */
158 gas_sensor.power mode = BMEGS8 FORCED MODE;

151

152 /* Set the required sensor settings needed */

153 set_required settings = BMEGB@ 05T SEL | BMEGS@ _0SP_SEL | BMEGBE_OSH SEL | BMEGS@ FILTER SEL
154 | BMEGBE_GAS SENSOR SEL;

155

156 /* Set the desired sensor configuration */

157 rslt = bme6BR_set sensor_settings(set_required_settings,f&gas_sensor);
158

159 /* Set the power mode */

pi=i= rslt = bme68@_set_sensor_mode(&gas_sensor);

161

162 J/* USER CODE END 2 */

This part of the code it is activated first (once the device is activated) in order to activate and calibrate the
sensor. It runs only once and then the program will enter the while(1) loop.

27

This next part inside the while(1) is not necessary for the project but we use it for debugging reasons.
Its purpose is to give as an uartl output the address of each 12C devices that are connected with the STM32.

We can use to find an address or if we want to know if the microcontroller communicates with the sensor.

main.c
while (1)
{

/* USER CODE END WHILE */

J/* USER CODE BEGIN 3 */

Iy HAL StatusTypeDef result;

uintd t i;

I for (i=1; 1<128; i++)

H i

.-". .-'l- .-". *

I * the HAL wants a left aligned i2c¢ address

I * &hi2cl is the handle

I * (uintle_t)(i<<1l) is the i2c address left aligned

i * retries 2

Iy * timeout 2

__." __." * _.."

i result = HAL_I2C_ IsDeviceReady(8hi2cl, (uintle_t)(i<<l), 2, 2);
Iy if (result != HAL_OK) // HAL_ERROR or HAL_BUSY or HAL_TIMEOUT
Iy i

i size = sprintf(msg, “.");

Iy HAL_UART Transmit(&huartl, (uintd_t*) msg, size, HAL_MAX DELAY);
I ! !

Iz if (result == HAL_OK)

Iy {

Iy size = sprintf(msg, "ex¥}", 1i);

I HAL_UART Transmit(&huartl, (uint8_t*) msg, size, HAL_MAX_DELAY);

Its main function is to ping all available addresses and wait for a reply. If a device replies, it outputs the
address through the uartl. If the address doesn’t return anything, it prints a “.”.As we mentioned above this
part can be omitted.

28

Finally, we are ready to take measurements from the sensor. This next part will be inside the while(1) loop
and continually will give measurements. There are parts that make use of the uartl, but those parts are only
for debugging reasons. We can remove them. The same applies for the Delay at line 225.

So, we add lines 199 till 225.

main.c
8 while (1)

/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
4® / /Find Address[]

size = sprintf(msg, "Prices are:");
HAL_UART Transmit(&huartl, (uintd_t*) msg, size, HAL_MAX DELAY);

user_delay ms(meas_period); /* Delay till the measurement is ready */

rslt
size

bmec8@_get_sensor_data(&data, &gas_sensor);
sprintf(msg, "T: ¥.2f degC, P: ¥.2f hPa, H ¥.2f EXrH\r\n",
data.temperature / 188.8f, data.pressure / 188.8f, data.humidity / 1eee.ef);
HAL_UART_Transmit(&huartl, (uintd_t*) msg, size, HAL_MAX_DELAY);
/* Avoid using measurements from an unstable heating setup */
if(data.status & BMEGB@_GASM_VALID MSK){
size = sprintf(msg, ", G: ¥lu chms\rin", data.gas_resistance);
HAL_UART Transmit(&huartl, (uint8_t*) msg, size, HAL_MAX_DELAY);
¥
/* Trigger the next measurement if you would like to read data out continuously */
if (gas_sensor.power_mode == BMEG3®_FORCED MODE) {
rslt = bme68@_set_sensor_mode(&gas_sensor);

¥

gas_read= log(data.gas_resistance) + @.4%data.humidity; /{convert gas resistance and hummidity to iag
size = sprintf(msg, ", IAQ: ¥d\r\n", gas_read);

HAL_UART Transmit(&huartl, (uintd t*) msg, size, HAL_MAX DELAY);

HAL_Delay(leeaa);

oW o d ka = SO oo - T] BN

[R R S S S]

}

The measurements that we receive from the bme680 sensor are:

e data.temperature =>Temperature(C°)

e data.pressure =>Pressure (hPa)

e data.humidity =>Humidity (%)

e data.gas_resistance =>Gas Resistance (Ohm)

But the measurement that we want is the 1AQ (Index of Air Quality).

To calculate it, we use function:
IAQ = log(gas resistance) + 0. 4humidity

29

5.3 BLE Code

Since we have the bme680 code up and working, it is time to set the BLE function in our project.

So, the first thing that we must do is, to tune our HSP (High Speed Clock). We start by setting the otp (One-
Time-Programmable) code. They can be used for permanent store of configuration data for your device.

The manufacturer provides this info and we simply add it to the code.

We add line 25 and lines 67 till 72 in stm32wbxx_hal_msp.c class.

stm32wbxx_hal msp.c

22 /* Includes --------ccccccccmci it m e e m e e */
23 #include "main.h"

24 [/* USER CODE BEGIN Includes */
25 #include "otp.h"

==t /* USER CODE END Includes */

282 f* Private typedef --------------ecrmmmm e e e 5/
9 /* USER CODE BEGIN TD */

stm32wbxx_hal_msp.c
64= void HAL_MspInit(void)

65 {

66 /* USER CODE BEGIN MspInit @ */

v £ OTP_IDG t * p_otp;

B8 p_otp = (OTP_ID@_t *) OTP_Read(9);

—-— if (p_otp)

T

—_h LL_RCC_HSE_SetCapacitorTuning(p_otp->hse_tuning);
72 } .

/3 /* USER CODE END MspInit @ *

N

__HAL_RCC_HSEM_CLK_ENABLE();

N NN

0 ~J O\

7 * System interrupt init*/
79 * USER CODE BEGIN MspInit 1 */
81 /* USER CODE END MspInit 1 */

30

Next, we need to put the interrupt service routine in. So, the IPPC is doing the interrupts so the Cortex m4
can communicate with the Cortex m0, and we also need to put in the wakeup handler for Our RTC.

We do this so our software interrupts and time servers from the library stack can be used inside the
application.

We make this addition inside the stm32wbxx_it.c

We add lines 26 and 203 till 218 inside the stm32wbxx_it.c class.

stm32wbxx_1t.c

19 /* USER CODE END Header */
28
21 __."='= Includes — - - m e e e e e e :.:-'f.

22 #include “"main.h"

23 #include "stm32wbxx_it.h"

242 /* Private includes --------------oooo */
25 /¥ USER CODE BEGIN Includes */

26 #include “app_ common.h™

L . - .

27 /* USER CODE END Includes */

28

292 /* Private typedef -------------oe---- *f
38 J* USER CODE BEGIN TD */

31

32 J* USER CODE END TD */

stm32wbxx_1t.c

2812 f* USER CODE BEGIN 1 */
282 //Handles RTC wgkeup interrupt through EXTI line 19
283 void RTC_WKUP_IRQHandler(wvoid)

284 {

oo Hu | TS_RTC_Wakeup Handler();

mﬂﬁt h

283 //Handles IPCC RX occupied interrupt
2e0=vyoid IPCC_C1_RX _IRQHandler({woid)

218 {

T HW_IPCC Rx_Handler();

pavall)

L]

213

214 //Handles IPCC Tx free interrupt
215=woid IPCC C1 TX IRQHandler(woid)

L]

216 {

L]

217 HW_IPCC_Tx_Handler();

e)

m—*'USREDE END 1 °

228 f* P . * (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

31

The typical architecture that we have is based on a Sequencer (or Simple Task Scheduler). That mean that
we set various tasks and what goes through we have a switch statement (for all our tasks). Eventually we get
to the point that all the tasks are complete therefore the device goes to case idle which means enter low
power mode.

Inside the Scheduler (inside the utilities folder) we can have up to 32 different tasks, the ability to request a
task to be executed or pause and resume, or even wait for specific events to happen to be executed.

Here is a list of API commands for various tasks: List of API

SCH_lIdle()
SCH_Run()
SCH_RegTask()
SCH_SetTask()

SCH_PauseTask()
SCH_ResumeTask()
SCH_WaitEvt()
SCH_SetEvt()
SCH_IsEvtPend()
SCH_Evtidle()

To include the Scheduler to our main.c we add the lines 32 and 224.

main.c

* Private includes --------ccmmmm e - *f
/* USER CODE BEGINM Includes */

#include <stdio.h>

#tinclude <bmeg3@.h>

#include <bmesd@ _defs.h:

#include <string.h>

#include "scheduler.h™

=]
(3]
1

)

[X= e

(MY VI R I S]
]

[EE Ry WY]
= LUERS =

/¥ USER CODE END Includes */

main.c
163 while (1}

160 {
178 /* USER CODE END WHILE */
172 /* USER CODE BEGIN 3 */
L
L
L
221 //BLE ADV
222
223
224 SCH_Run(~@) ;
5
h

=]

/* USER CODE END 3 */

[I I R S
Bl P B2 P3 RD)
oa

i
L

32

The BLE Advertising data is a defined string and has certain parameters according to the BLE protocols. We
can configure the advertising data which is part of the Protocol data unit.

Inside the Advertising data there is a predefined structure, and it tells us certain things about manufacturer
specific data and where our local name is.

Over-The-Air BLE Packet

Length 1 byte 4 bytes 2~257 bytes 3 bytes
Name Preamble Access Address Protocol Data Unit (PDU)

|

Advertising PDU

Length 2 bytes 6 bytes 0~31 bytes
Name Header Advertising Address Advertising Data

Value OXXXXX [BOXXXXXXXXXXXXX

AD structure AD structure AD structure s AD structure

L

|

AD structure format
Length 1byte 1 byte (Length — 1) bytes
Name Length Type Data

eg.{ "X, W, S, W, W, P, R}

Private variables
static const char local_name[] = { AD_TYPE_COMPLETE_LOCAL_NAME, 'X','X"',"'-','N','0",'D"',"E" };

Inside the class app_ble.c are all the necessary code for the correct function of the Bluetooth. It already
contains the following commands:

Start advertising aci_gap_set_discoverable(..);
Update advertising data — aci_gap_update_adv_data(..);
Stop advertising — aci_gap_set_non_discoverable(..);

As we mentioned above, we will add a led for debugging reasons. To do so we must offer a new service.
This will be a P2P service, a primary service.

P2P STM Service overview

UUID (hex) ©OOOFE40-CC7A-482A-984A-7F2ED5SB3ESSF (proprietary)
Type PRIMARY SERVICE |
O
uuID ©@POOFE41-8E22-4541-9D4C-21EDAE82ED19 (proprietary)
Properties WRITE NO RESPONSE | READ LI oop
Byte 1 (LED state) 0 (Device number) i ATTRIBUTES

Value - 0x00 - LED on oxe0 - all I T GEEEEEREINGS

0x01 - LED off 0x01~0x06 - P2P Server 1~6 P2P_NOTIFY [2 bytes] 'N)

DESCRIPTOR

33

By this point this is the communication between Client and Server. The Led will be controlled through a
phone application that we will cover in another Chapter.

EXS) o (B
® (@] &7 : :

Advertising (XX-NODE, BlueST)

Advertising (XX-NODE, BlueST) : | : Advertising
Scanning il: Connect Request Mode
Mode
= Link (connection) established =
ATT Handle H E . ili ATT Services &
Discovery GATT Procedure establishment Characteristics
Enable Notification
Central-to-Peripheral Write (0x01) — Led ON — —_— .
s A : 7 : ap Button in the phone app to write
gomtmulmscl_alt\lsré : Write (0x00.) - Led OFF new characteristic #2 value
(Oamizo U U 5 I i

To set the code for the Led, we must input the following code into p2p_server_app.c

We add lines 85 till 90 into p2p_server_app.c
p2p_server_app.c

83 case P2PS_STM WRITE EVT:

84 /* USER CODE BEGIN P2P5_STM WRITE_EWT */

B5 if (pMotification-»DataTransfered.pPayload[l] == @xel){

86 HAL GPIO WritePin(LED BLUE GPIO Port, LED BLUE Pin, GPIO PIN SET);
57 }

88 else {

89 HAL GPIOQ WritePin(LED BLUE_GPIO Port, LED BLUE Pin, GPIO PIN RESET):
20 }

91 /* USER CODE END P2P5_STM WRITE_EVT */

a2 break;

93

94 default:

95 /* USER CODE BEGIN P2PS STM App Notification default */

96

97 /* USER CODE END P2PS_STM App Notification default */

a3 break;

9g }

34

Now we must create a new service for our bme680. But the Client must receive information about what it is
transmitted in our Advertising Data in the form of a mask.

AD structure of our BlueST Protocol

Length 1 byte 1 byte 1 byte 1 byte 4 bytes 6 bytes
Name Length Type Protocol Version Device Id Feature Mask Device MAC (optional)

VR o7 ox0 XXX | BXXKXXNX
|

Provides information which features (and related Services
and Characteristics) are implemented by the device
— available proprietary features advertising

We set this mask accordingly with the feature masks that are available from the data reading app developer.

Bit 31 30 29 28 27 26 25 24

z Direction of ADPC g o
Feature RFU ADPCM Sync Switch arrival Audio MicLevel Proximity Lux
Bit 23 22 21 20 19 18 17 16
Feature Acc Gyro Mag Pressure Humidity Temperature Battery second

Temperature

Bit 15 14 13 12 1" 10 9 8

STM32WB STM32WB Beam Sensor
Feature CO Sensor Thread Reboot OTA Reboot SD Logging fortiil AccEvent FreeFall Fusion

; . orming
bit bit Compact
Bit 7 6 5 4 3 2 1 0
. Motion - Carry Proximity MEMS

Feature Sensor Fusion intensity Compass Activity Position Gesture Gesture Pedometer

Since we want to send CO, we will use bit 15.

We must configure the mask in the Advertising part of app_ble.c. Here we have 4 bytes which means 32 bit.
That means, that in order to have a CO mask, the bit 15 must change to 1.

00000000 00000000 10000000 00000000 = 00 00 80 00 in Hex
We change the line 249 from 0x00 to 0x80

app_ble.c

2380 /**

239 * Advertising Data

248 */

241 #if (P2P_SERVERL != @)

242 static const char local_name[] = { AD_TYPE_COMPLETE_LOCAL_NAME ,'P','2",'P','S','"R',"V","1"};
243 uint8&_t manuf_data[l4] = {

244 sizeof(manuf_data)-1, AD TYPE_MANUFACTURER_SPECIFIC_DATA,
245 @x@1/*sKD versiocn */,

248 CFG_DEV_ID P2P_SERVERL /* STM32WE - P2P Server 1%/,
247 @x98 /* GROUP A Feature */,

248 Bx88 /* GROUP A Feature */,

249 , GROUP B Feature */,

258 @xed [* GROUP B Feature */,

251 @x88, /* BLE MAC start -MSB */

252 PxoB,

253 Bxee,

254 BB,

255 Puoa,

2586 @xed, /* BLE MAC stop */

257 };

258 #endif

35

We have set the mask, but it is still classed as an unknown service. That is why we must make the service
recognizable for the client. We will modify the service UUID in template_stm.c.

At line 87 we give a unique UUID and at line 89 a unique characteristic UUID. At 89 we also add the mask
for CO in Hex.

template_s tm.c

79 /* Hardware Characteristics Service */
.

=]

The following 128bits UUIDs have been generated from the random UUID

1

82 generator:

83 D973F2E@-B19E-11E2-9E96-8800200C9A66: Service 128bits UUID

84 D973F2E1-B19E-11E2-9E96-8808288C9A66: Characteristic_1 128bits UUID

85 D973F2E2-B19E-11E2-9E96-8800200C9A66: Characteristic_2 128bits UUID

86 */
87 #define COPY_TEMPLATE_SERVICE_UUID(uuid_struct) COPY_UUID_128(uuid_struct,®x@e,8xes,exee,exee,exee,0xel,x11,8xE], Bx94, BxB4, 0x80, 9x02 ,8xAS, BXD5, 8xC5, @x1B)
528 #define COPY_TEMPLATE_WRITE_CHAR_UUID({uuid_struct) COPY_UUID_128(uuid_struct,@x8@,@xee,dxid, axCC,xde,8x22,0x45,0x41, 8x9d, @xdc, 8x21, Bxed ,Bxae, @x32, Bxed, 8x19)
89 #define COPY_TEMPLATE_NOTIFY_UUID(uuid_struct) COPY_UUID_128(uuid_str‘uct,BxBB,BxBBxBB,BxBB,BxBl,Bxll,BxEl,BxAC,BxBG,BxBB,BxM,BxAS,BxDS,BxCS,BxlB)
L]

The Packet that we want to send is 6 bytes, 2 bytes as a timestamp and 4 bytes for the CO reading, according
with the BlueST protocol.

CO sensor

Feature mask bit: 15
Description: gets the concentration of CO particle in [ppm]

Table 23. CO sensor data format
S R

Timestamp

0
1
2
3
. CO ppm *100 (UInt32)
5

This means that we must align the Service Characteristics with the GATT client expectations. We will make
this change at the template_stm.c

At line 229 we change 2 to 6 bytes.

template_stm.c

244 - Add Notify Characteristi

COPY_TEMPLATE_NOTIFY_UUIO(uuidl6.Char_UUID_128);

aci_gatt_add_char(aTesplateContext.TesplateSvcHdle,
UID_TYPE_128, 8uuidls,

CHAR_PROP_NOTIFY,

ATTR_PERMISSION_NONE,

GATT_NOTIFY_ATTRIBUTE_WRITE, /* gattEivt

10, /" encryKeySize *

1, /* isvariable: 1 °
8(aTemplateContext.TemplateNotifyServerToClientChartdle));

Also make the same change at line 271.

tE’lllpl&tE‘_S tm.c

tBleStatus result = BLE_STATUS_INVALID_PARAMS;
switch(UUID)

case ©x0000:
result = aci_gatt_update_char_value(aTemplateContext.TemplateSvcHdle,
aTemplateContext.TemplateNotifyServerToClientCharHdle,
@, /* charvaloffset *
@;ints_: *) pPayload);
break;

default:
break;

36

We have finished the services part we are moving to the application part. Now we can begin to build the
structure for these 6 bytes. We move to the file named template_server_app.c

We add lines 35,36 and 44.

temphte server_app.c

32 Private typedef -----ccccccccccccccccncnsnccsccccccsccccscnscscncccncccnncaas
338 typ—edEF struct

35 uintlé t TimeStamp;
26 uint32_t value;

3

} TEMPLATE TemperatureCharValue t;

‘3 typedef struct

41 {

42 uintd t MNotificationStatus;

4.3 uintl6_t Parameter;

i TEMPLATE_TemperatureCharvalue t Co;
45

46 } TEMPLATE_Server_App_Context_t;

Next, we will Initialize the new app context variables. We add lines 157 and 158.

template_server_app.c

151% = LOCAL FUNCTIONS]
154= static void TEMPLATE_APP context Imit(void)
155

6 TEMPLATE_Server_App Context.Parameter = 8;
157 TEMPLATE_Server_App Context.Co.TimeStamp =
158 TEMPLATE_Server_App_Context.Co.Value = 8;

}

N

] Nl

15E

Now we need to send the update characteristic function. When we send our notify, there is a task happening
to send all our bytes.

We add lines 163 and 165 till 170.

tE'l]]plﬂtE'_SE']‘TE']“_’Jpp.C
. 161= static void TEMPLATE Send Notification Task(void)

value[@] = (TEMPLATE Server App Context.Co.TimeStamp);
value[1l] = (TEMPLATE_Server_App Context.Co.TimeStamp);
value[2] = TEMPLATE_Server_App Context.Co.Value;

value[3] = TEMPLATE_Server_App Context.Co.Value »>> B8;
value[4] = TEMPLATE_ Server_App Context.Co.Value »»> 16;
value[5] = TEMPLATE_ Server_App Context.Co.Value »» 24;

37

Moving on, we need to register a task to be used to update characteristics. We register a notify CO2 task.
We create a task Id at app_conf.h and create a task initialization at template_server_app.c

We add line 455.

app_conf.h
445= typedef enum

449 {

458 CFG_TASK _ADV CANCEL_ID,

451 CFG_TASK SWI_BUTTON PUSHED ID,
452 CFG_TASK_HCI_ASYNCH_EVT_ID,

453 CFG_IdleTask Updote Parameter,
454 /* USER CODE BEGIN CFG_Task Id With HCI Cmd t */
455 CFG_MY_TASK NOTIFY (O, //Co

456 /* USER CODE END CFG_Task_Id With HCI Cmd_t */

457 CFG_LAST_TASK _ID WITH HCICMD,
458 } CFG Task Td With HCI Cmd t;

We add line 134.

template_server_app.c
1325 void TEMPLATE_APP_ Init(void)

133 {

134 SCH_RegTask(CFG MY TASK NOTIFY CO, TEMPLATE Send Notification Task);

The image below shows the current function of the system. The next step that we will perform will set a

100ms refresh rate.

GATT Client

Scanning
Mode

ATT Handle
Discovery

2 B8 | ik (connection) established 2

® Advertising 0x01, 0x83 ,.

Advertising 0x01, 0x83

Connect Request

GATT Procedure establishment

Enable Notification

2= (IS

Advertising
Mode

ATT Services &

Characteristics

Application layer

Notification (Value1)
Notification (Value2)

Notification (ValueX)

.

Peripheral-to-Central
communication

Send periodically a value
(10Hz update rate)

38

We add line 49 at template_server_app.c

template_server_app.c

48 /* Private defines ------------------------------ i */
49 #define TEMPERATURE_CHANGE_PERIOD (@.1%*1eae*1eea,/CFG_TS_TICK _VAL) /*leéms*/

Now that the updates are coming through, we are going to create and use a time server. This is run by the
RTC wakeup timer (we make use of the LSE). That means that we can create virtual timers to start, stop,
pause in order to reduce energy consumption.

List of API
« HW_TS_lInit()
HW_TS_Create()
HW_TS_Stop()
HW_TS_Start()
HW_TS_RTC_Int_AppNot()
HW_TS_RTC_Wakeup_Handler()

HW_TS_Delete()
HW_TS_RTC_ReadLeftTicksToCount()
HW_TS_RTC_CountUpdated_AppNot()

So, we are going to create a Software timer for periodic characteristic update.

We create a timer and add lines 136 till 139 in template_server_app.c

template_server_app.c
132 void TEMPLATE_APP Init(void)

133 {

134 SCH_RegTask(CFG_MY TASK NOTIFY €0, TEMPLATE Send Notification Task);
135

136 HW_TS Create(CFG_TIM PROC_ID ISR,

137 &(TEMPLATE Server_App Context.Update timer Id),

138 hw_ts Repeated,

139 TEMPLATE CoChange Timer Callback);

148

The next step for us is, to update our structure and add a software time ID. We add line 45.

template_server_app.c
48= typedef struct

41 {
42 uintd t MNotificationStatus;
43 uintlé t Parameter;

L2 TEMPLATE_TemperatureCharValue_t Coj
45 uint8 t Update_timer Id;
46 } TEMPLATE_Server_App Context_t;

)

39

And now we need to create the callback for the Software Timer, as to declare it and execute it.

We add lines 63 and 69 till 72.

template_server_app.c

62 /* Private function prototypes ---------------mmmmm e */
53 static wvoid TEMPLATE_CoChange_Timer_Callback({void);

642 /* Functions Definition --------------"-cmmmmmm */
65 /* Private functions ---------—-- - */

66 static wvoid TEMPLATE_APP context Init(woid);
67 static wvoid TEMPLATE_Send Notification_Task(wvoid);

G&

59= static void TEMPLATE_CoChange Timer Callback({woid)

76 {

Z1 SCH_SetTask(1<<CFG_MY TASK NOTIFY CO, CFG_SCH PRIO @);

22 }

73

74 /* Public functions ----------—----——--- - */

Finally, we need to start and Stop the Software Timer. We add lines 80,86,89 and 95.

template_server_app.c
76=void TEMPLATE_STM_ App_Notification(TEMPLATE_STM App_ Notification_evt_t *pMNotification)

77 4

78 switch(pNotification->Template Evt Opcode)

79

:) case TEMPLATE_STM_NOTIFY_ENABLED_EVT:

81 TEMPLATE_Server_App_Context.NotificationStatus = 1;

32 #if(CFG_DEBUG_APP TRACE != @)

83 APP_DBG_MSG("-- TEMPLATE APPLICATION SERVER : NOTIFICATION ENABLED\n");

84 APP_DBG_MSG(" \n\r");

35 #endif

28 HW_T5_Start(TEMPLATE_Server_App_Context.Update_timer_Id, TEMPERATURE_CHANGE_PERIOD); //Start timer to update characteristics
87 break; /* TEMPLATE_STM_NOTIFY_ENABLED_EVT */

38

29 case TEMPLATE 5TM NOTIFY DISABLED EVT:

98 TEMPLATE_Server_App_Context.NotificationStatus = @;

91 #if(CFG_DEBUG_APP_TRACE != @)

92 APP_DBG_MSG("-- TEMPLATE APPLICATION SERVER : NOTIFICATION DISABLEDYN");

a3 APP_DBG_MSG(" \n\r"):

94 #endif

as HW_TS_Stop(TEMPLATE_Server_App_Context.Update_timer_Id); //Steop timer to update characteristics
96 break; /* TEMPLATE_STM_NOTIFY_DISABLED_EVT */

40

5.4 Transfer value Between Different Classes.

We have completed the ble and bme680 functions, but they belong into different classes.

We need to be able to transfer the IAQ data from the main.c to the template_server_app.c to export them through
the ble function but these classes are not connected. To do so, we will create a new class (co.c) and header (co.h).

We create these new classes and input all the lines in the next image.

CO.C

1 long unsigned int co ;

co.h

#ifndef CO_H
#define CO_H

long unsigned int co;
#endif

|u-| |\ILI.IIhJ I=

We have created the new class and now we must make the connection between main.c and
template_server_app.c

At main.c we add lines 31 and 223.

main.c

/* Includes ---------------—mm - */
#include "main.h"

#include “"math.h"

#include "app_entry.h"

LEUI S I S

o

/* Private includes ------------------o */
/¥ USER CODE BEGIN Includes */

#include <stdic.h>

#include <bmeg3@.h:

#include <bmecd@_defs.h>

#include <co.h:

#include <string.h>

[T

(NI Y R S L T T O L TR o L S 8]
<] J
1

1w h.-l

|-

L gL

/* USER CODE END Includes */

*ee

//BLE ADV

P B3 Pl
Fa B3 R
LERR S]

co = gas_read;
SCH _Run(~@);

[
P
e

41

At template_server_app.c we add lines 23 and 164.

template_server_app.c

22 /* Includes --------cmmm e e m— e *
23 #include <co.h>

24 #include "app_common.h™

25 #include "dbg_trace.h™

26 #include "ble.h"

27 #include "template_server_app.h"

28 #include “"scheduler.h”

29 #include “"stdlib.h"

38

31

32 /* Private typedef ----------------------- - - - - »- - o - b . .} l il b i b b *;
»

»

»

161= static void TEMPLATE_Send Notification_Task(woid)

162 {

163 uintd t value[B];
le4 TEMPLATE_Server_App Context.Co.Value =co *188;

185 value[@] = (TEMPLATE_Server_App Context.Co.TimeStamp);
166 value[l] = (TEMPLATE Server App Context.Co.TimeStamp);
187 value[2] = TEMPLATE Server_ App Context.Co.Value;

1638 value[3] = TEMPLATE Server_ App Context.Co.Value »>»> 8;
189 value[4] = TEMPLATE Server_ App Context.Co.Value >»> 16;
178 value[5] = TEMPLATE Server_ App Context.Co.Value »»> 24;

At line 164 we multiply co with 100 due to the BlueST protocol (reference at page 34).

42

Chapter 6: Smartphone Application
6.1 App Installation

In this chapter we will explain how we can display IAQ data remotely to our mobile phone.

We can do this with through the usage of the ST BLE Sensor app, provided free at Play Store.

Tl 51%) 16:52]

¢« Q

% ST BLE Sensor

STMicroelectronics NV
57

What's new = >

Last updated 75 Feb 2021
- Added the Bluevoice full-duplex Demo

- Added the support to STM32WB1x board
- Added th...

Rate this app

Tell others what you think

P O S < R A S ¢

Write a review

Developer contact v

Once the installation is complete, the app is ready to be used. We execute the app to reach the display below.

Caution: We must activate the Bluetooth and deactivate Wifi on our phone. Also, we must activate the
Location Information.

VodafoneGREECE2021 T all 51% W) 16:52

CONNECT TO A DEVICE

43

6.2 Data Collection & Visualization

Once our device is activated, we press at the “CONNECT TO A DEVICE” Button. This will open the page,
displaying in the following image. Here we can view the Server Name that we gave earlier.

VodafoneGREECE2021

< Device List

P2PSRV1
80:E1:26:07:FA:31

Swipe to update °
] O

We press on the name of our device and wait for the connection to be completed. Once the connection is
completed, we can swipe to see information and data from the Server. At the first we see the received data as

plot. If we press the play button, data will be displayed in a plot with time.

neGREECE2021 3 VodafoneGREECE2021

Plot Data

Vodafo
= Plot Data

o0 Senser ' _ CosenSOI i n

16740 \

16720 \
Select the feature to plot s
5 \j

(ppm)
o

CO S

16680

44

When we swipe right, we can see the current value of the IAQ that is being received.

VodafoneGREECE2021 3+ 3 .l50% ® 1 17:01

= CO Sensor =|

CO Data: 15541.00 ppm

o O O

If we swipe right again, we can see the received power in dBm and we can toggle the Blue led that we have
configured for debugging reasons. Once the led button has been pressed, a blue led will turn on, on our
server board.

EECE2021 J+ ! 00 VodafoneGREECE2021 3
= Led Control 5 = Led Control
Device Server 1 Device Server 1
-’) 63 [dBm] -)) -60 [dBm]
No alarm received No alarm received
Click on the image ta change the led status Click on the image to change the led status

45

Finally, if we swipe right again, we can view the Local name and received power of the server.

= Rssi & Battery

) P2PSRV1
80:E1:26:07:FA:31

0)) Rss: -65 [dBm]

46

Chapter 7: Results
7.1 Final Results and Testing

Now that we have completed all the above stages of the project, our phone device is ready to receive
measurements from the sensor.

The sensor that we have used (bme680) gives as an output an equivalent of CO as part of the IAQ. This is
the value that we receive at our phone. That said, by performing test measurements at given space and given
number of people we can determine the exact number of people in an indoor space.

With the help of Matlab and many calibrating measurements, we can reach a connection between number of
people and prices of IAQ and gas resistance. This is left as future work. In the following tables we can see
such measurements but in order to reach a satisfactory level, we require many more, thus future work is
going to be needed.

Remember, that in order to get the IAQ we use the following function:
IAQ = log(gas resistance) + 0. 4humidity

1 Person Temp (C°) Pressure(hPa) Hum (%) 1AQ Gas Resistance (ohms)
0 min 22.91 1017.77 46.96 18795 29415
10 min 23.68 1017.71 45.84 18345 32979
20 min 22.39 1017.89 46.76 18713 37865
30 min 21.68 1018.15 48.78 19523 40112
40 min 21.97 1018.41 48.37 19357 40074
50 min 22.1 1017.97 48.59 19445 40074
60 min 22.17 1017.89 49.1 19650 39619
2 Persons Temp (C°) Pressure (hPa) Hum (%) 1AQ Gas Resistance (ohms)
0 min 22.42 1008.41 55.05 22030 16723
10 min 22.65 1008.43 54.4 21771 20547
20 min 22.82 1008.53 55.21 22094 21563
30 min 22.95 1008.57 54.5 21810 22321
40 min 22.94 1008.73 54.49 21807 23110
50 min 22.97 1008.77 54.28 21723 23631
60 min 22.94 1008.79 54.28 21722 24076

The code is set to transmit only IAQ to our phone device, but by a simple change the value at line (223 of
main.c) we can send any of the above measurements. Also, since the Bluetooth transmission is in advertise
mode, we could collect all these measurements to a server and thus giving us the ability to store and analyze
data.

47

Conclusions

Having completed the project we now have a fully working loT system that gives us helpful data to calculate
the exact number of people in a given indoor space.

More work is needed and more tests to be executed before the device is correctly calibrated, but the system
is robust and ready for use. For more accuracy in our measurements, a more expensive and accurate sensor
could be used. As long as the new sensor is 12C compatible, the whole project will be ready to function with
minimum changes.

Thanks to our device small size and indoor expected function, the general boxing cost, should be low. Also,
since we expect the device to function indoors and for a short amount of time, the general wear and tear of
the device will be at minimum, thus prolonging the expected lifetime of the device.

Moreover, the low consumption and sleep functions, further drop the usage cost and the Bluetooth addition
makes the device portable.

As for the usage of the project, it could greatly help at controlling and monitoring masses of people in large
and small indoor spaces. Also, the above project could help in the Health department, by controlling and
keeping a low number of people, thus reducing the spread of viruses, or in the Security department, by
upholding certain regulations.

In any case, the project could really help society at crowd control and to be used as a steppingstone for an
even larger or future 10T applications.

48

Bibliography

[1]
[2]
[3]

[4]
[5]

[6]
[7]
[8]

[9]

[10]
[11]
[12]
[13]

[14]

Getting Started with the Internet of Things: Connecting Sensors and Microcontrollers to the Cloud
(Make: Projects) 1st Edition, Kindle Edition by Cuno Pfister

Getting Started with Bluetooth Low Energy, Kevin Townsend, Charles Cufi, Akiba & Robert
Davidson

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and
802.15.4 radio solution — Datasheet

"8052-Basic Microcontrollers” by Jan Axelson 1994

"The Surprising Story of the First Microprocessors". Shirriff Ken, Institute of Electrical and
Electronics Engineers

BMEG80 — Datasheet

Carmine Noveillo, “Mastering STM32”, https://leanpub.com/mastering-stm32
https://community.st.com/docs/DOC-1413-tutorial-interfacing-a-stm321053-discovery-with-an-i2c-
sensor

I2C-bus specification Rev 2.1; Philips Semiconductors; January 2000

I2C-bus specification Rev 3; NXP Semiconductors; June 19, 2007

I2C-bus specification Rev 4; NXP Semiconductors; February 13, 2012

I2C-bus specification Rev 5; NXP Semiconductors; October 9, 2012

STM32WB workshop MOOC (https://www.st.com/content/st_com/en/support/learning/stm32-
education/stm32-moocs/STM32WB_workshop MOOC.html)
Getting-started-with-the-bluest-protocol-and-sdk-stmicroelectronics Datasheet

49

https://leanpub.com/mastering-stm32
https://community.st.com/docs/DOC-1413-tutorial-interfacing-a-stm32l053-discovery-with-an-i2c-sensor
https://community.st.com/docs/DOC-1413-tutorial-interfacing-a-stm32l053-discovery-with-an-i2c-sensor
https://www.st.com/content/st_com/en/support/learning/stm32-education/stm32-moocs/STM32WB_workshop_MOOC.html
https://www.st.com/content/st_com/en/support/learning/stm32-education/stm32-moocs/STM32WB_workshop_MOOC.html

