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Efficient VLSI Implementation of 2" Scaling of Signed
Integer in RNS {2" — 1, 2", 2" + 1}

Thian Fatt Tay, Chip-Hong Chang, and Jeremy Yung Shern Low

Abstract— Scaling is a problematic operation in residue number system
(RNS) but a necessary evil in implementing many digital signal processing
algorithms for which RNS is particularly good. Existing signed integer
RNS scalers entail a dedicated sign detection circuit, which is as complex
as the magnitude scaling operation preceding it. In order to correct the
incorrectly scaled negative integer in residue form, substantial hardware
overheads have been incurred to detect the range of the residues upon
magnitude scaling. In this brief, a fast and area efficient 2" signed integer
RNS scaler for the moduli set {2" —1, 2", 2" + 1} is proposed. A complex
sign detection circuit has been obviated and replaced by simple logic
manipulation of some bit-level information of intermediate magnitude
scaling results. Compared with the latest signed integer RNS scalers of
comparable dynamic ranges, the proposed architecture achieves at least
21.6% of area saving, 28.8% of speedup, and 32.5% of total power
reduction for n ranging from 5 to 8.

Index Terms— Chinese Remainder Theorem, residue number system,
scaling, signed integer.

I. INTRODUCTION

Residue number system (RNS), with its inherited modularity,
parallelism, and localized carry propagation arithmetic operations,
has emerged as a promising substitute for the conventional two’s
complement system for the data representation and computation of
specific applications [1]-[4]. The moduli set selected for an RNS has
an influence on its implementation efficiency. Of the known moduli
sets, {2 —1,2",2" 4 1} has been most extensively studied. Due to
its abundant number of well-developed residue arithmetic operations
and reverse converter architectures, many applications have been built
around this moduli set [1], [4], [5].

One problem inherited from the nonpositional representation of
RNS is the truncation of a number in residue domain, which makes
overflow avoidance unwieldy. To overcome the magnitude scaling
problem, an adaptive channel equalization filter with a large number
of multiply-accumulations was recently implemented with an allied
RNS-binary system to achieve significant power reduction over the
two’s complement system without compromising throughput [2].
Scaling was performed in binary via residue-to-binary conversion to
avoid the overflow of dynamic range. In the latest RNS implemen-
tation of a 32-b low-pass finite impulse response filter [3], signed
number was represented in sign-magnitude form with its magnitude
converted to RNS. This atypical RNS representation of signed integer
suffers from the dual zero representations and the need to remap the
magnitude for regular addition and multiplication, which undermine
the advantages of RNS. RNS scaler is usually designed based on
either the Chinese Remainder Theorem (CRT) or the mixed-radix
conversion (MRC) [6]-[10]. Almost all of the existing RNS scalers
focus only on magnitude scaling and have either downplayed or
glossed over the problem of sign scaling. Because sign detection
itself is a difficult operation in RNS, the challenge of implementing
a signed over an unsigned integer RNS scaler is the overheads
required for sign detection in order to correctly map the scaled
signed residues to the legitimate range. The state-of-the-art signed
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integer RNS scaler [9] comprises an unsigned integer RNS scaler
and a correction circuit. The correction circuit involves a dedicated
RNS sign detection circuit which is slow and consumes large logic
area. In this brief, a unified architecture is proposed for the signed
integer RNS scaling. The targeted moduli set and scaling factor are
the popular {2" — 1, 2",2" 4+ 1} and 2", respectively. Instead of using
a dedicated RNS sign detection circuit, the residue representation
of the signed integer scaling result is obtained by manipulating
the intermediate computation results. Owing to its simplicity, the
proposed architecture is faster, smaller, and consumes lower power
than the latest architectures for the same scaling factor and the same
moduli set [9], and a different moduli set of comparable dynamic
range [10].

II. UNSIGNED AND SIGNED INTEGERS IN RNS

An RNS is defined by a set of N pairwise relatively prime integers
{mi,mo,...,mpy}, where m; is called a modulus. An unsigned
integer X within the range of [0, M — 1] can be uniquely represented
by an N-tuple (xi,x2,...,xy), where the dynamic range M
]_[lN: 1 m;. The residue x; is the least positive remainder of the division
of X by m;, and is usually represented as X mod m; or | X/, .

Let X be a signed integer in the range [—M/2, M/2 — 1] if M
is even, or in the range [—(M — 1)/2, (M — 1)/2] if M is odd [6].
X can also be uniquely represented by an N-tuple (X1, X2,...,XnN)
in signed RNS representation. The relationship between the residue
representations of X in unsigned RNS and X in signed RNS under
the same moduli set is

X=X if X>0 and X — M if X <O. (D

When~)~( > 0, the residue representation of X can be mapped to
that of X in the range [0, M/2 — 1] if M is even, or in the range
[0, (M — 1)/2] if M is odd. Wher~1 X < 0, the residue representation
of X can be mapped to that of X in the range [M/2, M — 1] it M

is even, or in the range [(M + 1)/2, M — 1] if M is odd.

III. PROPOSED SIGNED INTEGER RNS SCALER CIRCUIT
A. Magnitude Scaling Error in Signed RNS

Let Y = (y1, y2, ¥3) be the residues obtained by scaling X = (x,
X2, x3) by k in the residue domain of RNS {2" — [, 2", 2" + 1}.
For my = =2"—1, my = 2", and my = 2" + 1, M |, = 2771,
My |m2 =2"—1, and |M3 |m3 = 2"=1 4 1, respectively [11],
where M; = M/m;, and |M; |m1 is the multiplicative inverse of
[M;|m; . According to CRT [1], [4], the integer Y can be recovered by

N
2.Mi
i=1

2" (2" +1) 2!

Y
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i

Yi
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mj;
N+ -)2"+1)2"=1)»

+ -2 (27 4)
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However, if X is treated as a signed integer X and is represented
in signed RNS, (2) may not yield the correct result of scaling X by
k. This is because, the scaling of magnitude in unsigned RNS creates
an ambiguity in the range partitioning of signed RNS, causing the
scaled residues to be incorrectly mapped for negative integers.

The range mismatch can be resolved by detecting the sign of
the input operand. Unfortunately, the sign of an integer is not
distinguishable from its residue representation. Existing solutions
to the RNS sign detection problem are mainly based on the CRT,
MRC, or core function [5], [12], [13]. ROM matrices are required
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to find the orthogonal projections in these approaches, making the
overall circuit in conjunction with the magnitude scaling module to
be more expensive than a residue-to-binary converter. To significantly
lower the cost of signed integer scaling circuit, the sign detection
and correction circuit must be kept simple and coherent with the
magnitude scaling module.

B. Correction Circuit for Signed RNS Scaling
From the definition of scaling in RNS, the following expressions
of the scaled residues (y1, y2, y3) in terms of (x1, xp, x3) of an
unsigned integer X can be derived [4], [7]:
1= lxp = x2lpy, 3)
_ 2n—1 n—1 n
yz_H(Z + 2 )x1—2 b

+ (22 2 1) @)

mims |y,

3 = |2 +2"%;,, (5)

where k = 2", and |.] denotes the least integer function.

In order to obtain the correct residue representation of Y, V1, Y2,
and y3 need to be corrected by detecting the sign of X to map X to
X based on their relationship expressed in (1).

No correction is required when X > 0 because X = X according
to (1). Hence, y1 = y1, ¥2 = y2, and y3 = y3.

However, when X <0, X = X — M. Since k = m»,

= |X/k| = L= k) = LK) —mms ) ()
Since mm3 is an integer, (6) can be rewritten as
?:{X/kj—mlm:i:Y—m]mg. (@)

The residue representation of ¥ when X < 0 can be computed as
follows [9]:

F1 = 1Y —mim3ly, = [|Y|m, — Imim3ly, \ml =1ly1 = O0l,, =1
(3

2 = Y —mim3lyy = |[¥lny = [m1m3lmy |, = 12+ L,
9
3 = 1Y —mim3lyy = |I¥ Ly —mim3ly |, = 13 = Oly = 3.
(10)

From (8) and (10), we see that no correction is needed for y; and
73 when X < 0, but yp needs to be incremented by one to obtain
, as indicated in (9). To detect X < 0 from its residues, a full sign
detection circuit is required. This is what we would like to avoid
here.

Since the dynamic range M = 23" — 2" of the moduli set {2" —
1,2", 2" —1} is always even, the residue representation of X can be
mapped to that of X for X in the range of [0, M/2 — 1] if X > 0
and in the range of [M/2, M — 1] if X < 0. In order to correct Y
in unsigned RNS to Y in signed RNS, it is necessary to know when
becomes negative. The ranges of the scaled unsigned integer Y for
positive and negative X are determined as follows.

When X >0,0<X <M/2—1,0<Y < (M — 2)/2k], and

(1)

When X <0, M/2 <X <M—1, |[M/2k] <Y < (IM —1)/k],
and

0<y <21 _q,

2=l <y <22, (12)

From (11) and (12), we understang that when ¥ > 227—1 _ 1, Yis
negative and when ¥ < 22n=1_ 9y s positive. Thus, the condition
when Y is negative can be detected by the (2rn — 1)th bit of Y, that is,
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(Y)2,,—1 being “1”. According to (9), this bit can be added at the LSB
of yp to correct the sign error of the magnitude-scaled residue, that
is, ¥ = |y2 + (Y)2,—1lon. By adopting [7] for magnitude scaling,
no additional circuit is needed to determine (Y)>,_1, because Y is
available in the result of (4) before taking the modulo of m>.
However, when ¥ = 22"~1_1, ¥ can be either positive or negative
according to (11) and (12). Based on the definition of magnitude
scaling, ¥ = | X/2" |, the range of X for ¥ = 22"—1 _ | is given by

231171 _211 < X < 23”71 —1.

IA

13)

From (13), we find that there are altogether 2" integers in [23" ! —
2 237=1 _ 1], From (1), we know that when X > M/2 = 23"—1 _
2n=1 X% 0. Therefore, for ¥ =221 _1, when X > 0and ¥ > 0

=l _on < x <03l _gnel (14)
and when X <0 and ¥ <0
23"—1 _ 2”—1 S X S 23"—1 _ 1 (15)

Since the magnitude of X is not directly available at the input, it
can only be determined from the residue representation. By taking the
modulo 2" operation on (15), the range of the residue x; is found to
be 271 < xp < 2" —1. Since ¥y = xp, we have =1 < Xp <2"—1.
Let (x;) jdenote the jth bit of x;. It is observed that the bit (¥2),—1
is always “1” for x> in the range of (15) and “0” otherwise. Hence,
when ¥ = 22n—1 _ 1, (%2),,—1 alone is sufficient to determine the
sign of Y, that is, (¥2),_1 is “1” when ¥ < 0, and “0” when ¥ > 0.

In the above discussion, we have proven that the sign of ¥ can be
simply detected by using the bit (Y)2,—1 except for the case when
Y = 227=1 _ 1 where we need an extra bit (%2),—1 to determine
the sign of Y. The condition of ¥ = 22"~1 —_ 1 can be determined
by checking if 2n — 1 LSBs of Y are 1s and the MSB of Y is “0”.
However, this implementation results in a very high fan-in multilevel
logic structure, which is very slow and costly when n is large. We
will show that the fan-in of the multilevel logic gate circuit for the
detection of the condition ¥ = 22*~1 — | can be reduced from 21 b
to only n 4+ 2 b, namely the n-bit residue yq, and two other bits
(Y)2n—1 and (y2)n—1-

When ¥ =22"=1 _ 1, (Y)p,_1 = “0” and

=|en (") -1
-1

==l _q

— 22}’1—1 _ 1
Y1 ‘ m_1
(16)

Using (16), y; can be computed as 2=l _ 1 when ¥ =
22n=1 _ 1. However, y1 alone is not sufficient to determine if
Y = 22n=1 _ 1 because there are 2" + 1 different integers of
Y that have y; = 2"~!—1 in their residue representation. Among
these integers, 2"=1 4 1 of them have values less than or equal to
22n=1 _ 1 When y; = 2" — 1 and ¥ < 2?"=1 — 1, ¥ have
values of 2" ~1 —1, 27— 40n o p2n=1_on 22n=1 1 Thys,
yo =201 1,271 — 2. ,0,2" — 1. Among these y, values,
only when ¥ = 22"~ _ 1 can y, have value greater than 2"~1 — 1
(.e., O2)n-1= ). In other words, (Y)2,—1, y1, and (¥2),,—1 are
sufficient to determine if ¥ = 220—1 — 1. Fig. 1 depicts the proposed
architecture of the signed integer RNS scaler. The architecture of
unsigned integer RNS scaler [7] is enclosed in the dashed-line box,
and the correction circuit is enclosed in the solid-line box. The role of
the control signal generation under correction circuit is to detect the
condition when ¥ = 22"~1 _1 and ¥ is in negative range. Under this
condition, “1” will be selected as the LSB of the correction factor.
Otherwise, (Y)2,—1 will be selected. The control signal generation
circuit can be built using n+42 two-input AND gates with yi, (X2),—1,
(Y)2p—1, and (y2),,—1 as the inputs.

“1”
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Fig. 1. Proposed two-stage signed integer RNS scaler.
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Fig. 2. Proposed simplified signed integer RNS scaler.

C. Unified Signed Integer RNS Scaler Architecture

The architecture depicted in Fig. 1 is a direct implementation
based on the mathematical manipulation discussed earlier. It has
modest speed and area complexity. The area and speed can be further
improved by merging the two stages of computations into one by
eliminating some redundancies in the arithmetic circuits. The single-
stage architecture is shown in Fig. 2. The modulo 22n=1 adder of the
magnitude scaler and the correction circuit of Fig. 1 are integrated
into a “merged sign detection and correction” module. It comprises
a modified mod 2" adder with cj,, a simplified mod 2" adder, a
modified control signal generation block, and an AND gate array as
shown in Fig. 2.

According to [7]

if A4+ B> 22"
otherwise.

1A + Blyr + 1y
14+ Bl | = A+ Bl
(17)

From (17), ||A + B|y2a_1l2# can be implemented by a simple mod
2" adder provided that when A + B > 22 the sum is incremented
by one. For simplicity, this simplified implementation of (17) is
succinctly denoted by

[IA+ Bly2_1|pn = |A+ B+ cinln (18)

where cj, € {0, 1} is the carry input to the modified mod 2" adder
with ¢;;, shown in Fig. 2.

Fig. 3(a) depicts an example of the proposed mod 2" adder with
¢in for n = 4. The computation of y, in (4) can be performed by
using the proposed modified mod 2" adder with cj,. This adder adds
two n-bit operands taken from the n LSBs of the sum and carry
vectors A and B, produced by the 2n-bit carry-save adder (CSA)

B ,
y 81 &1 PP & p hen o ga(0n) o
0-D87 o:[Y 0658 04 -0
& h P
g P Si g »p

)z(y2)| (yZ)o
(a)

Fig. 3. (a) Modified mod 2" adder with cj, for n = 4. (b) Simplified Mod
2" adder for n = 4.

ay, e, ]

o (1),

(G p )_Generation
n-1

n=1°

Fig. 4. Modified control signal generation module.

with end-around carry (EAC) block shown in Fig. 2. This adder has
a similar structure as a standard mod 2" adder with an additional
prefix level. This extra level of prefix operators is enclosed in the
dashed-line box of Fig. 3(a). They are used to generate the carry
signals due to cj, [14]. ¢j, in this case is equal to ¢, —1, which is
the carry output generated from the A 4+ B operation. By using this
adder, we can avoid the use of a large and slow mod 22n=1 adder.

Besides being one of the inputs to the modified control signal
generation circuit, (Y)7,—1 is also the LSB of the correction factor
to map y> to yp. The mapping is done by using a simplified mod
2" adder which has a structure shown in Fig. 3(b), where (Y)2,—1
is added to y, to obtain y’,, that is, y'5 = |y2 + Y2,—1l2=. Since
all bits except the LSB of the correction factor are “0”, the prefix
operator, denoted by “@”, is simplified to “©” to reduce the critical
path delay.

Fig. 4 shows the circuit of the modified control signal generation
block which is similar to that in Fig. 1 with the addition of a (Y)2,,—1
generation block. The role of the (Y);,—1 generation block is to
compute (Y)o,—1 and bit ¢, 1 based on the n MSBs of A and B,
and G,,_1 and P,_1 from the modified mod 2" adder with cj,. The
¢yn—1 bit is fed as the carry input cj, to the modified mod 2" adder
with c¢j,shown in Fig. 3(a).

In Fig. 1, a multiplexer is needed to select the correction factor to
be added to y. As (y2),—1 is an input to the control signal generation
block, addition of the correction factor to y, will be delayed. In
Fig. 2, (Y)2,—1is added to y, before the corrected output is selected
by an AND gate array. This efficient implementation is derived as
follows.

When ¥ =22"=1 _ 1 and Y is in the negative range

2 =1ly2+ 1 =[2" =1+ 1]y =[2"|,, =0. (19)
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TABLE I
UNIT-GATE AREA AND DELAY OF THE PROPOSED DESIGN

n Merged Sign Detection and Correction Others Overall
AMMA | AMcs | AsMA | AAND | Dmcs | Dsma | Danp | A | D | A D
5 57 45 21 5 13 6 1 282 | 5 | 410 | 25
6 72 51 25 6 13 7 1 336 | 5 | 490 | 26
7 87 57 32 7 13 8 1 390 | 5 | 573 | 27
8 105 66 39 8 13 8 1 444 | 5 | 662 | 27
TABLE 1T

COMPARISON OF NUMBER OF TRANSISTORS AND UNIT-GATE DELAY. VALUE IN PARENTHESES IS THE PERCENTAGE REDUCTION

DR (Bit) Number of Transistors Unit-Gate Delay
This Brief [9] [10] This Brief [9] [10]
15 1640 1972 (16.84) 39822 (95.88) 25 42 (40.48) | 56 (55.36)
18 1960 2360 (16.95) 164 881 (98.81) 26 42 (38.10) | 57 (54.39)
21 2292 2748 (16.59) 694 345 (99.67) 27 42 (35.71) | 61 (55.74)
24 2648 3136 (15.56) | 2366381 (99.88) 27 42 (35.71) | 62 (56.45)

For other conditions, we just need to add (Y),—1 to yp as
follows:

Y2 = [y24+ (MNop—ti|pn- (20)

The corrected output derived from (19) and (20) is either O or
[y2 + (Y)2,—1]on. Instead of using n-way multiplexer, n two-input
AND gates will suffice to obtain the correct output.

IV. EVALUATION AND COMPARISON

In this section, our design is compared against the latest signed
integer RNS scaler architectures proposed in [9] and [10] for four
different dynamic ranges of 15, 18, 21, and 24 b. The three-moduli
set {2" — 1, 2", 2" + 1} is used in our proposed design and in [9].
For a fair comparison, the moduli sets {23, 29, 31}, {53, 59, 61},
{109, 113, 127}, and {239, 241, 251} with comparable dynamic
ranges (DRs) of 15, 18, 21, and 24 b and the same scaling factor are
used for [10] as all its moduli must be odd integers. These moduli
sets are made up of adjacent prime numbers and are chosen in favor
of [10] such that their exact dynamic ranges just fall below those of
{2" — 1, 2", 2" + 1} for n = 5, 6, 7, and 8, respectively.

Unit-gate model [15] is adopted for the hardware area and delay
estimation, where a two-input monotonic gate is assumed to have
one unit of area and one unit of delay, an XOR gate has two units
of area and two units of delay, and an inverter has zero unit of area
and delay.

Channels m| and m3 of our proposed design have similar archi-
tectures as those proposed in [7] and their unit-gate areas and delays
are excerpted from Tables III and IV of [7], respectively. Channel
my consists of bit rewiring, 2n-bit CSA with EAC, and merged sign
detection and correction blocks. The bit rewiring and 2n-bit CSA with
EAC blocks are built up of n OR gates and 2n full adders (FAs). The
unit-gate areas for n = 5,6,7, and 8 are listed in Table I, where
AvMA> AMcss AsMmA. and AaANp denote the unit-gate areas of the
modified mod 2" adder with cj,, modified control signal generation
block, simplified mod 2" adder and AND gate array, respectively. The
unit-gate areas of all other modules are added together under A in
the “Others” column of Table I. All component areas are summed
to obtain the overall unit-gate area of the proposed design. Channel
my has the longest path delay among the three parallel channels. The
longest path of the merged sign detection and correction module goes
from the modified control signal generation block to the AND gate
array through the simplified mod 2" adder. Their unit-gate delays

are also listed in Table I, where Dyics, Dsma and Danp denote
the unit-gate delays of the modified control signal generation block,
simplified mod 2" adder, and AND gate array, respectively. The unit-
gate delays of the bit rewiring and 2n-bit CSA with EAC blocks are
consolidated into D in the “Others” column of Table I.

The total unit-gate area and unit-gate delay of the architecture of
[9] are estimated to be 13.5n[logyn] 4+ 56.57n + 8 and 8[logon] + 18
units, respectively, based on the same unit-gate analysis as in [15].
In [10], the arithmetic operations are implemented by lookup tables,
which are usually implemented with ROM modules. Based on the
ROM model of [8], the number of transistors and unit-gate delay of
the architecture of [10] are estimated and are shown in Table II. The
unit-gate areas of the proposed design and [9] are also converted to
transistor counts and are compared in Table II, where one unit-gate
area is equivalent to four transistors. This conversion assumes that
an FA is implemented with 28 transistors in static CMOS logic style.
The results show that the proposed architecture consumes at least
15% and 95% lesser transistors than [9] and [10], respectively, and
is at least 35% and 54% faster than [9] and [10], respectively, for
DR = 15, 18, 21, and 24 b.

Each design is also specified at gate level using Verilog HDL,
synthesized, and technology mapped to TSMC 0.18-um CMOS
technology standard cell library using Synopsys Design Compiler.
The designs are independently optimized for speed to obtain their
minimum achievable delays. The areas and delays after logic syn-
thesis and optimization are shown in Table III. The results show
that our proposed design is at least 21% and 89% smaller, and at
least 28% and 63% faster than those of [9] and [10], respectively,
for DR = 15, 18, 21, and 24 b. The comparison with [9] suggests
that more aggressive area savings have been obtained from the
actual implementation of our design than the theoretical estimation
based on transistor count. The delay improvement estimated by the
unit-gate analysis is somewhat optimistic for the lower dynamic
range, but is fairly accurate otherwise. Comparing with [10], the
speed improvement obtained by the unit-gate delay model has been
underestimated.

The power consumptions of all circuits are measured using Synop-
sys PrimeTime PX at the same clock rate and the same supply voltage
of 1.62 V. For each dynamic range, a common clock period is set
based on the slowest design. Monte Carlo simulation method [16] is
used with randomly generated inputs to obtain the average power
dissipation with 99% confidence that the error is bounded below
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TABLE III
COMPARISON OF SYNTHESIZED AREAS, DELAYS, AND TOTAL POWER (VALUE IN PARENTHESES IS THE PERCENTAGE REDUCTION)

Synthesized Area (ymz) Synthesized Delay (ns) Total Power (W)
DR (Bit) gﬁ}‘; ] [10] g:::f 9] [10] gﬁff 91 [10]
15| o | oo | wosn | 2% | easy | @io | 192 | Gasa| ose
8ot | et | wom | M| asae | aian | M| Gioy oalo
20 1006 | 555 | Tosan | 2% | gss | aisn | 27 | woaz| o6
24 1375 | Geen | wae | 2% | @iy | ason | ¥ | ism| o
TABLE IV

COMPARISON OF POSTLAYOUT SIMULATION RESULTS

This Brief [9]
Core area (,umz) 21 050 33 298
Delay (ns) 2.00 3.34
Leakage power (uW) 0.623 1.054
Total power (mW) 0.524 1.186
Final core utilization ratio 0.636 0.685

2.5%. The total power dissipations including both dynamic and
leakage powers are listed in Table III. Despite operating at a higher
data rate, our design saves more than 32% and 89% of power over [9]
and [10], respectively. Due to the replacement of mod 22n=1 adder
with merged sign detection and correction, our augmented signed
RNS scaler is even 22.7% smaller and consumes 23.1% less power
on average than the simplest unsigned RNS scaler [7] synthesized
under the same technology library. The ineluctable delay overhead
due to the sign correction has been reduced to slightly below 30%
on average.

Based on the synthesis results, the most competitive contender [9]
and our design for the moduli set {255, 256, 257} were physically
placed and routed using Cadence SoC Encounter with four metal
layers and the same initial core utilization ratios. The postlayout
netlists were back-annotated for the same timing and power simula-
tions at 1.62 V and 3.34-ns clock period. Both designs were able to
attain their respective minimum delay in Table III after the placement
and routing. The physical synthesis results are summarized in Table
IV. The final core utilization ratios of our design and [9] are 0.636
and 0.685, respectively. Our proposed design is 36.78% smaller and
consumes 55.82% lower power, which are slightly better than the
prelayout results due to our design’s lower interconnect complexity.

V. CONCLUSION

In this brief, a low complexity high-speed and low-power 2"
signed integer RNS scaler for moduli set {2" — 1, 2", 2" + 1} was
proposed. By simplifying and merging the expensive sign detection
and correction circuits, the complexity of implementing the signed
integer RNS scaler was reduced substantially. We benchmarked
our proposed design against two latest signed integer RNS scalers
using the unit-gate analysis and logic synthesized results. The logic
synthesized results showed that our proposed design was on average
39.38% smaller, 35.15% faster and 48.60% more power-efficient than
the most competitive contender over four different dynamic ranges.

This superiority was further corroborated by the physical synthesis
results based on the same TSMC 0.18-um standard cell implementa-
tion for n = 8, where our proposed design ran 40% faster, consumed
56% lower power, and occupied 37% lesser silicon area.
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