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Current Sensing Circuit Concepts and Fundamentals
INTRODUCTION
Current sensing is a fundamental requirement in a wide 
range of electronic applications. 

Typical applications that benefit from current sensing 
include:

• Battery life indicators and chargers
• Overcurrent protection and supervising circuits
• Current and voltage regulators
• DC/DC converters
• Ground fault detectors
• Linear and switch-mode power supplies
• Proportional solenoid control, linear or PWM
• Medical diagnostic equipment
• Handheld communications devices
• Automotive power electronics
• Motor speed controls and overload protection

This application note focuses on the concepts and 
fundamentals of current sensing circuits. It introduces 
current sensing resistors, current sensing techniques 
and describes three typical high-side current sensing 
implementations, with their advantages and 
disadvantages. The other current sensing 
implementations are beyond the scope of this 
application note and reserved for subsequent 
Microchip Technology Incorporated’s application notes.

CURRENT SENSING RESISTOR 

Description
A current sensor is a device that detects and converts 
current to an easily measured output voltage, which is 
proportional to the current through the measured path. 

There are a wide variety of sensors, and each sensor 
is suitable for a specific current range and 
environmental condition. No one sensor is optimum for 
all applications. 

Among these sensors, a current sensing resistor is the 
most commonly used. It can be considered a current-
to-voltage converter, where inserting a resistor into the 
current path, the current is converted to voltage in a 
linear way of V = I × R. 

The main advantages and disadvantages of current 
sensing resistors include:

a) Advantages:
- Low cost
- High measurement accuracy 
- Measurable current range from very low to 

medium
- Capability to measure DC or AC current

b) Disadvantages:
- Introduces additional resistance into the 

measured circuit path, which may increase 
source output resistance and result in 
undesirable loading effect

- Power loss since power dissipation 
P = I2 × R. Therefore, current sensing 
resistors are rarely used beyond the low and 
medium current sensing applications.
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Selection Criteria
The disadvantages mentioned previously could be 
reduced by using low-value sensing resistors. 
However, the voltage drop across the sensing resistor 
may become low enough to be comparable to the input 
offset voltage of subsequent analog conditioning 
circuit, which would compromise the measurement 
accuracy. 

In addition, the current sensing resistor’s inherent 
inductance must be low, if the measured current has a 
large high-frequency component. Otherwise, the 
inductance can induce an Electromotive Force (EMF) 
which will degrade the measurement accuracy as well. 

Furthermore, the resistance tolerance, temperature 
coefficient, thermal EMF, temperature rating and power 
rating are also important parameters of the current 
sensing resistors when measurement accuracy is 
required. 

In brief, the selection of current sensing resistors is vital 
for designing any kind of current monitor. The following 
selection criteria can be used for guidance:

1. Low resistance with tight tolerance, to create a 
balance between accuracy and power 
dissipation

2. High current capability and high peak power 
rating to handle short duration and transient 
peak current

3. Low inductance to reduce the EMF due to high-
frequency components

4. Low temperature coefficient, low thermal EMF 
and high temperature capability, if there is a 
wide temperature variation

CURRENT SENSING TECHNIQUES
This section introduces two basic techniques for 
current sensing applications, low-side current sensing 
and high-side current sensing. Each technique has its 
own advantages and disadvantages, discussed in 
more detail in the following topics.

Low-Side Current Sensing
As shown in Figure 1, low-side current sensing 
connects the sensing resistor between the load and 
ground. Normally, the sensed voltage signal 
(VSEN = ISEN × RSEN) is so small that it needs to be 
amplified by subsequent op amp circuits (e.g., non-
inverting amplifier) to get the measurable output 
voltage (VOUT).

FIGURE 1: Low-Side Current Sensing.
a) Advantages:

- Low input Common mode voltage
- Ground referenced input and output
- Simplicity and low cost

b) Disadvantages:
- Ground path disturbance
- Load is lifted from system ground since RSEN 

adds undesirable resistance to the ground 
path

- High load current caused by accidental short 
goes undetected

- Low VDD parts

In a single-supply configuration, the most important 
aspect of low-side current sensing is that the Common 
mode input voltage range (VCM) of the op amp must 
include ground. The MCP6H0X op amp is a good 
choice since its VCM is from VSS – 0.3V to VDD – 2.3V. 

Considering the advantages, choose low-side current 
sensing where short circuit detection is not required,
and ground disturbances can be tolerated.

RSEN Op Amps Circuits

ISEN

ISEN

VOUT

Load
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High-Side Current Sensing
As shown in Figure 2, high-side current sensing 
connects the sensing resistor between the power 
supply and load. The sensed voltage signal is amplified 
by subsequent op amp circuits to get the measurable 
VOUT. 

FIGURE 2: High-Side Current Sensing.
a) Advantages:

- Eliminates ground disturbance
- Load connects system ground directly
- Detects the high load current caused by 

accidental shorts 
b) Disadvantages:

- Must be able to handle very high and 
dynamic Common mode input voltages

- Complexity and higher costs
- High VDD parts

In a single-supply configuration, the most important 
aspects of high-side current sensing are:

• The VCM range of the Difference amplifier must be 
wide enough to withstand high Common mode 
input voltages 

• The Difference amplifier’s ability to reject dynamic 
Common mode input voltages

The MCP6H0X op amp is a good fit for high-side 
current sensing, which will be discussed in more detail 
in the following section.

HIGH-SIDE CURRENT SENSING 
IMPLEMENTATION
High-side current sensing is typically selected in
applications where ground disturbance cannot be 
tolerated, and short circuit detection is required, such 
as motor monitoring and control, overcurrent protection 
and supervising circuits, automotive safety systems, 
and battery current monitoring. 

This section discusses three typical high-side current 
sensing implementations, with their advantages and 
disadvantages. Based on application requirements, 
one choice may be better than another.

Single Op Amp Difference Amplifier
Figure 3 shows a single op amp Difference amplifier 
that consists of the MCP6H01 op amp and four external 
resistors. It amplifies the small voltage drop across the 
sensing resistor by the gain R2/R1, while rejecting the 
Common mode input voltage.
 

FIGURE 3:  Single Op Amp Difference 
Amplifier.
The Difference amplifier’s Common mode rejection 
ratio (CMRRDIFF) is primarily determined by resistor 
mismatches (R1, R2, R1*, R2*), not by the MCP6H0X
op amp’s CMRR. 
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The resistor ratios of R2/R1 and R2*/R1* must be well 
matched to obtain an acceptable CMRRDIFF. However, 
the tight tolerance resistors will add more cost to this 
circuit.

The DC CMRRDIFF is shown in Equation 1. 

EQUATION 1:

Example 1
• If R2/R1 = 1 and TR = 0.1%, then the worst case 

DC CMRRDIFF will be 54 dB. 
• If R2/R1 = 1 and TR = 1%, then the worst case DC 

CMRRDIFF will be only 34 dB.

Moreover, RSEN should be much less than R1 and R2
in order to minimize resistive loading effect. The 
Difference amplifier’s input impedances, seen from V1
and V2, are unbalanced. Note that the resistive loading 
effect and the unbalanced input impedances will 
degrade the CMRRDIFF. 

The reference voltage (VREF) allows the amplifier’s 
output to be shifted to some higher voltage, with 
respect to ground. VREF must be supplied by a low-
impedance source, to avoid making CMRRDIFF worse. 

In addition, as shown in Figure 3, the input voltages (V1, 
V2) can be represented by Common mode input voltage 
(VCM) and Difference mode input voltage (VDM):

• V1 = VCM + VDM/2 and V2 = VCM + VDM/2
• VOUT = (V1 – V2) × G + VREF = VDM × G + VREF, 

where G = R2/R1

In order to prevent VOUT from saturating supply rails, it 
must be kept within the allowed VOUT range between 
VOL to VOH. 

The VCM range of the Difference amplifier has been 
increased due to the resistor dividers made by R1, R2, 
R1* and R2*. 

In brief, the VDM and VCM of the Difference amplifier 
must meet the requirements shown in Equation 2: 

EQUATION 2:

Example 2
Refer to Figure 3 and assume that VDD = 16V, 
VSS = GND, VREF = GND, R2/R1 = 1, and the voltage 
drop across RSEN is 200 mV. 

Thus, according to the MCP6H01 data sheet 
(DS22243), it is VCMRH = VDD– 2.3V =13.7V, VCMRL
=VSS–0.3V = -0.3V. 

Based on Equation 2, the acceptable VCM of the 
Difference amplifier is from -0.5V to 27.3V. 

The advantages and disadvantages of Difference 
amplifiers include:

a) Advantages:
- Reasonable Common mode rejection ratio 

(CMRRDIFF)
- Wide Common mode input voltage range
- Low-power consumption, low cost and 

simplicity
b) Disadvantages:

- Resistive loading effect 
- Unbalanced input impedances
- Adjust the Difference amplifier’s gain by 

changing more than one resistor value

CMRRDIFF 20
1

R2
R1
------+

K----------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

log≈

Where: 

TR = Resistor Tolerance
K = Net Matching Tolerance 

of R2/R1 to R2*/R1*
CMRRDIFF (dB) = Common Mode Rejection 

Ratio of Difference Amplifier

K = 4TR in the worst case

Where: 

G = R2/R1; Gain of Difference Amplifier 
VDM = V1 – V2; Difference Mode Input Voltage 

of Difference Amplifier 
VCM = (V1 + V2)/2; Common Mode Input Volt-

age of Difference Amplifier
VOH = Op Amp High-Level Output
VOL = Op Amp Low-Level Output

VCMRH = Op Amp Common Mode Input Voltage 
High Limit

VCMRL = Op Amp Common Mode Input Voltage 
Low Limit

VCM VCMRL VREF–( )≥ 1
R1
R2
------+⎝ ⎠

⎛ ⎞⋅
VDM

2-----------+

VOL VREF–
G----------------------------- VDM≤

VOH VREF–
G------------------------------≤

VCM VCMRH VREF–( )≤ 1
R1
R2
------+⎝ ⎠

⎛ ⎞⋅
VDM

2-----------–
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Three Op Amp Instrumentation Amplifier
The three op amp instrumentation amplifier (3 op amp 
INA) is illustrated in Figure 4. It amplifies small 
Differential voltages and rejects large Common mode 
voltages. 

FIGURE 4: Three Op Amp Instrumentation Amplifier.
The 3 op amp INA’s architecture includes the following:

1. First Stage
The first stage is implemented by a pair of high-input 
impedance buffers (A1, A2) and resistors (RF and RG). 
These buffers avoid both the input resistive loading 
effect and the unbalanced input impedances issue. In 
addition, the resistors RF and RG increase the buffer 
pairs’ Difference mode voltage gains (GDM) to 1 + 2RF/
RG while keeping their Common mode voltage gains 
(GCM) equal to 1. 

One benefit of this method is that it significantly 
improves the 3 op amp INA’s CMRR (CMRR3INA),
according to the equation CMRR = 20 log (GDM/GCM). 
Thus, CMRR3INA will theoretically increase proportion 
to GDM. 

Another benefit is that the overall gain of the 3 op amp
INA can be modified by adjusting only the resistance of 
RG without having to adjust the resistors of R1, R1*, R2
and R2*.

2. Second Stage
The second stage is implemented by a Difference 
amplifier (A3) which amplifies the Difference mode 
voltage and rejects the Common mode voltage. In a 
practical application, the R2/R1 ratio is usually set to 1.

The CMRR3INA is primarily determined by the 
Difference mode voltage gain of the first stage and net 
matching tolerance of R2/R1 and R2*/R1*. Note that the 
tolerance of resistors RF and RG do not affect 
CMRR3INA. 
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VOUT
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VOUT V1 V2–( ) 1
2RF
RG
----------+⎝ ⎠

⎛ ⎞ R2
R1
------⎝ ⎠

⎛ ⎞⋅ ⋅ VREF+ V1 V2–( ) 1
2RF
RG
----------+⎝ ⎠

⎛ ⎞⋅ VREF+= =
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Load
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Where setting R1 = R1*= R2 = R2* 
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© 2010 Microchip Technology Inc. DS01332A-page  5



AN1332

The DC CMRR3INA is shown in Equation 3.

EQUATION 3:  

However, for the 3 op amp INA, there is a common 
issue that can be easily overlooked. This issue exists in 
the reduced Common mode input voltage range (VCM) 
of the 3 op amp INA. 

Referring to Figure 4, the input voltages (V1, V2) can be 
represented by Common mode input voltage (VCM) and 
Difference mode input voltage (VDM). That is
V1 = VCM + VDM/2 and V2 = VCM + VDM/2.

The amplifiers (A1, A2) provide a Difference mode 
voltage gain (GDM), which is equal to the overall gain 
(G), and a Common mode gain (GCM) equal to 1. 

In order to prevent VOUT1, VOUT2 and VOUT from 
saturating supply rails, they must be kept within the 
allowed output voltage range between VOL and VOH. 

Or, stated in another way, the VDM and VCM of the 3 op
amp INA must meet the requirements shown in 
Equation 4. 

EQUATION 4:

Example 3
Refer to Figure 4 and assume VREF = 0V, VDD = 15V, 
VSS = 0V, VOH = 14.47V, VOL = 0.03V, RF = R1 = R1* =
R2 = R2* = 100 kΩ, RG = 2 kΩ, and the voltage drop 
across RSEN is 100 mV. 

Thus, the overall gain G is equal to 100 V/V, and the 
voltage range left for the 3 op amp INA’s VCM is only 
from 5.03V to 9.47V, based on Equation 4. This range
is smaller than MCP6H01 op amp’s VCM range, which 
is from -0.3V to 12.7V at VDD = 15V.

In conclusion, the VCM range of the 3 op amp INA will 
be significantly reduced when it operates in a high gain 
configuration.

The advantages and disadvantages of the 3 op amp
INA include:

a) Advantages:
- High Common mode rejection ratio 

(CMRR3INA)
- No resistive loading effect 
- Balanced input impedances
- Adjust the overall gain without needing to 

change more than one resistor value
b) Disadvantages:

- VCM range of the 3 op amp INA is reduced
- Increased power consumption and costs, due 

to more op amps

VOUT1 = VCM × GCM + (VDM/2)×GDM
= VCM + (VDM/2) × G

VOUT2 = VCM × GCM – (VDM/2) × GDM
= VCM – (VDM/2) × G

VOUT = VDM × G + VREF

CMRR3INA 20
1

2RF
RG
----------+⎝ ⎠

⎛ ⎞ 2⋅

K
---------------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

log≈

Where: 

TR = Resistor Tolerance
K = Net Matching Tolerance 

of R2/R1 to R2*/R1*
CMRR3INA (dB) = Common Mode Rejection 

Ratio of 3 op amp INA

K = 4TR at the worst case

Where: 

G = 1 + 2RF/RG; Overall Gain 
VDM = V1 – V2; Difference Mode Input Voltage of 

3 op amp INA 
VCM = (V1 + V2)/2; Common Mode Input Voltage 

of 3 op amp INA
VOH = Op Amp High-Level Output
VOL = Op Amp Low-Level Output

VOL
VDM

2
----------- G⋅+ VCM V≤ OH≤

VDM
2

----------- G⋅–

VOL VREF–
G----------------------------- VDM≤

VOH VREF–
G------------------------------≤
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Two Op Amp Instrumentation Amplifier
Figure 5 shows a 2 op amp instrumentation amplifier (2 
op amp INA). Compared to the 3 op amp INA, the 2 op 
amp INA provides savings in cost and power 
consumption. The input impedances of the 2 op amp 
INA are also very high, which avoids the resistive 
loading effect and the unbalanced input impedances 
issue.

The Common mode rejection ratio of the 2 op amp INA
(CMRR2INA) is primarily determined by the overall gain 
and the net matching tolerance of R2/R1 and R2*/R1*.

The DC CMRR2INA is shown in Equation 5.

EQUATION 5:

FIGURE 5: Two Op Amp Instrumentation Amplifier.

CMRR2INA 20
1

R2
R1
------+

K----------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

log≈

Where: 

K = Net Matching Tolerance 
of R2/R1 to R2*/R1*

TR = Resistor Tolerance
 CMRR2INA (dB) = Common Mode Rejection 

Ratio of 2 op amp INA

K = 4TR at the worst case

VOUT V2 V1–( ) 1
R2
R1
------+⎝ ⎠

⎛ ⎞ VREF+=

VREF R2 R1 R1*

VOUT

R2*

RSEN

ISEN

Load

Power Supply

ISEN

Where setting R1 = R1* and R2 = R2* 

1/2
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1/2
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VOUT1

V2 = VCM + VDM/2 

V1 = VCM - VDM/2 
A1

A2

V2

V1
© 2010 Microchip Technology Inc. DS01332A-page  7



AN1332

As shown in Figure 5, the input voltages (V1, V2) can be 
represented by Common mode input voltage (VCM) and 
Difference mode input voltage (VDM). That is, 
V1 = VCM – VDM/2, and V2 = VCM + VDM/2.

To prevent VOUT and VOUT1 from saturating into supply 
rails, they must be kept within the allowed output 
voltage range between VOL and VOH.

The VDM and VCM of the 2 op amp INA must meet the 
requirements shown in Equation 6.

EQUATION 6:

Example 4
Refer to Figure 5 and assume R1 = R1* = 5 kΩ, 
R2 = R2* = 10 kΩ, VREF = 0V, VDD = 15V, VSS = 0V, 
VOH = 14.47V, VOL = 0.03V, and the voltage drop 
across RSEN is 200 mV. 

Thus, the overall gain G is equal to 3 V/V, and the 
voltage range left for the 2 op amp INA’s VCM is from 
0.12 V to 9.75 V. This range is smaller than the 
MCP6H01 op amp’s VCM range, which is from -0.3V to 
12.7V at VDD = 15V.

Unlike the 3 op amp INA, the VCM range of the 2 op
amp INA will be significantly reduced when it operates 
in a low-gain configuration.

Moreover, the circuit’s asymmetry in the Common 
mode signal path of the 2 op amp INA causes a phase 
delay between VOUT1 and V1, degrading the AC CMRR 
performance. Referring to Figure 5, the input signal V1 
must pass through amplifier A1 before it can be 
substracted from V2 by amplifier A2. Thus, the VOUT1 is 
slightly delayed and phase shifted with respect to V2. 
This is a big disadvantage of 2 op amp INA. 

Referring to Figure 6, by adding the resistor RG
between two inverting inputs, the overall gain of the 2
op amp INA can be easily set by adjusting only RG
instead of several resistors. Moreover, the R2/R1 ratio 
is usually chosen for the desired minimum gain. 

Another benefit of adding the resistor RG is that the 
large resistor value usage of R2 and R2* can be 
avoided in very high-gain configurations.

The VDM and VCM of 2 op amp INA with additional RG
must meet the requirements shown in Equation 7:

EQUATION 7:

VOUT = (1 + R2/R1)×(V2 – V1) + VREF
= (1 + R2/R1)×VDM + VREF

VOUT1 = (1 + R1/R2)×V1 – (R1/R2)×VREF
= (1 + R1/R2)×(VCM – VDM/2) – (R1/R2)×VREF

VOUT = VDM × G + VREF

Where: 

G = 1 + R2/R1; Overall Gain
VDM = V2 – V1; Difference Mode Input Voltage 

of 2 op amp INA
VCM = (V1 + V2)/2; Common Mode Input 

Voltage of 2 op amp INA
VOH = Op Amp High-Level Output
VOL = Op Amp Low-Level Output

VCM

VOH
R1
R2
------ VREF⋅+

G------------------------------------------≤
VDM

2-----------+

VCM

VOL
R1
R2
------ VREF⋅+

G-----------------------------------------
VDM

2-----------+≥

VOL VREF–
G----------------------------- VDM≤

VOH VREF–
G------------------------------≤

Where: 

G = 1 + R2/R1 + 2R2/RG; Overall Gain
VDM = V2 – V1; Difference Mode Input Voltage of 

2 op amp INA
VCM = (V1 + V2)/2; Common Mode Input Voltage 

of 2 op amp INA
VOH = Op Amp High-Level Output
VOL = Op Amp Low-Level Output

VCM

VOH
R1
R2
------ VREF⋅

R1
RG
-------+ VDM⋅+

1
R1
R2
------+

------------------------------------------------------------------------≤
VDM

2-----------+

VCM

VOL
R1
R2
------ VREF⋅

R1
RG
-------+ VDM⋅+

1
R1
R2
------+

------------------------------------------------------------------------
VDM

2-----------+≥

VOL VREF–
G----------------------------- VDM≤

VOH VREF–
G------------------------------≤
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FIGURE 6: Two Op Amp Instrumentation Amplifier with Additional RG.

The advantages and disadvantages of the 2 op amp 
INA include:

a) Advantages:
- High DC Common mode rejection 

(CMRR2INA)
- No resistive loading effect 
- Balanced input impedances
- Savings in cost and power consumption, 

compared to the 3 op amp INA
b) Disadvantages:

- Reduced VCM range 
- Poor AC CMRR2INA, due to the circuit’s 

asymmetry
- Unable to operate at unity gain

SUMMARY
This application note provides an overview of current 
sensing circuit concepts and fundamentals. It 
introduces current sensing techniques and focuses on 
three typical high-side current sensing 
implementations, with their specific advantages and 
disadvantages. 
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Where setting R1 = R1* and R2 = R2* 
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